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ABSTRACT. The problem of the stability of static, resistive, thermal conductive and viscous
plasmas is investigated by means of an asymptotic expansion in terms of a small positive parameter
f. which relates the Alfvén transit time to the characteristic time for dissipative effects. This
twofold time-scale allows to separa te the dynamics in a convenient way. It is found, assuming
weak dissipation, that, at high frcquencies, to first-order one recovers the well-known solutions of
lhe ideal magnelohydrodynamies (:>lIID), whereas al seeond-order one gels oseillalions respeel lo
the long time-scale t which are modulated by a growing (or decaying) exponential behavior (see
Eqs. (19.2) and (24.1,2)1 respeel lo lhe shorl lime-seale t". On lhe olher hand, for low frequencies
we found that the leading term is that ofsecond order. This gives place to a situation in which the
corresponding first-order soll1tions constitute, in such rcgime, a subclass of the known solutions
from lhe ideal MHD (at first-order approximalion). At seeond-order the solutions exhibit oseillation
respcct to the t time-scale and the uehavior of their corresponding amplitudes is detennincd by
considering the third-order approximation. It results that such amplitudes grow (or decay) linear1y
respect to the t" time-seale [sec, for instance, Eqs. (31)-(33) and (35)-(36)1. Finally, we discuss
somewhat interesting points relevant to furthcr invcstigations.

RESUMEN. El problema de la estabilidad de plasmas estáticos, rcsistivos, térmicamente COlH.lUC-

tores y viscosos es invcstigado por medio de una expansión asintótica en términos de un parámetro
positivo pequeño f., el cual relaciona el tiempo de tránsito de Alfvén t con el tiempo característico
para los efectos disipativos. Esta escala temporal doble permite separar la dinámica en una forma
conveniente. Se encuentra, suponiendo una disipación débil, que en altas frecuencias, a primer
orden, uno recupera las soluciones conocidas de la magnetohidrodinámica (r--tHD) ideal, en tanto
que a segundo orrlen uno obtiene oscilaciones respecto a la escala temporal larga t, que, a su
vez, están moduladas por comportamiento exponencial creciente (o decreeienle) [eL, Ecs. (19.2) y
(24.1,2)} respecto a la escala temporal corta t •. Por otra parte, para bajas frecuencias encontramos
que el término lider es el de segundo orden. Esto da lugar a una situación en la cual las soluciones
para primer orden constituyen, en tal régimen, una subclase de las soluciones conocidas de la ~tHD
ideal para primer orden. A segundo orden las soluciones exhiben oscilaciones respecto a la escala
t y el comportamiento de sus amplitudes correspondientes es determinado teniendo en cuenta la
aproximación de tercer orden. Resulta que esas amplitudes crecen (o decrecen) linealmente respecto
a la escala de liempo t" [eL, por ejemplo, Ees. (31)-(33) Y (35)-(36)J. Finalmente, discutimos
algunos puntos de interés relevantes en vista a estudios ulteriores.

PAes: 59.55.Dy; 52.35.-g

l. INTRODUCTION

The study of plasma stability is one of lhe most imporlant ami far-reaehing problems in
plasma lheory. Needless lo say thal the problem of stability is by no means a closed book.
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It is fundamental in connection with the relaxation processes occurring in magnetically
confined plasmas. To obtain an equilibrium solution as well as its stability conditions one
might use a differential treatment or a variational formulation. Both approaches coincide
when the plasma is conservati,'e. The variational treatment provides an adequate tool to
examine stability conditions in the case of non-dissipative plasmas [1] (it is the "energy
principie"). At present, the variational formulation for the dissipative plasma, although
it is an insufliciently supported framework, it allows us, with adequate modifications,
to obtain a global description through a set of temperature profiles [2,3) and recover
the so-called "profile consistency" condition. In this latter case the variationa! principIe
is built upon the physical assumption that the rate of entropy production reaches its
minimum value for physically admissible relaxated configurations.
There is a vast literature dealing with the problem of the stability of resistive modes.

Let us review several related works. For example, Park el al. [4] studied the equilibrium of
a three-dimensional stellarator using a time-dependent relaxation method in a numerical
fashion assuming that dissipative terms are small and including a density source. Suppos-
ing that the viscosity, 1', the resistivity, '1, and the thermal conductivity, K, are constant
they obtained stable free-boundary equilibria which satisfy the zero field-line-averaged
current condition. On the other hand, Gomberoff and Hernández [5] examined analytically
a dissipative cylindrical plasma column, showing that nonideal elfects such as viscosity
and thermal conductivity allow to obtain a linear solution for the MHD equations even if
the plasma is assumed incompressible, while there is no linear solution for the ideal MHD
equations for a cylindrical current-carrying plasma limited by fixed boundaries if the
plasma is assumed incompressible. AIso they found that perpendicular viscosity removes
the singularity of the ideal case at m = nq, but the boundary conditions can only be
satisfied for Be/ B, » 1 (m denotes the azimuthal number, q is the constant rotational
transform, and n = -kL/21r where k is a real wavenumber along the z-direction and
L the length of the cylinder). Dnder that condition, the resultant spectrum is w = O
(w denotes the frequency related to the normal modes) at m = nq and this spectrum
persists for arbitrary l' providing that the Reynolds number, R, is greater than sorne
critical Reynolds numher, ~, consequently there exists steady convection in the plasma
and the mode with w = O at kll = O satisfies the whole set of linearized nonideal MHD
equations with finite "Y (-y stand s for the specific heats ratio). Their work has shown that
the viscosity does not change the range of the unstable modes rather changes appreciably
the shape of the spectrum. Moreover, for R = ~ the state of the plasma is not only
marginally stable but also stationary, while for R > Re the complete nonlinear equations
possess a stationary convective solution which bifurcates from the equilibrium solution.
Thermal instabilities in a cylindrical plasma column as well as steady-state solutions

to the transport equations in a number of limiting cases were obtained by Dobrott el
al. [6] and they also investigated marginal stability by using a linearization procedure. In
their study were assumed the Spitzer resistivity and the classical perpendicular thermal
conductivity, obtaining that bifurcations depend on the applied electric field and finding
that the same solutions are unique functions of total current, whereas the steady-state
solution is not recoverahle by the approximation used by Fürth el al. [71.
Kerner el al. [8J studied the resistive Alfvén spectrum in straight cylindrical geometry

making use of a spectral code, finding that the ideal continua disappear, the normal
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modes are damped, and the eigenvalues lie on specific curves that become independent of
resistivity for small mlues of 1/. On the other hand, l\linardi [9] has examined the resistive
relaxation of a plasma confined in a Tokamak which is heated by an external auxiliary
power, but restricting his study to the case w = O in order to explain the existenee of the
bifureating states in the framework of the ordinary resistiw elfeets in a Tokamak diseharge
subjeet to transport losses which depend anomalously on temperature. Sueh stead)' states
are that with maximum probabilit)' for the plasma magnetic eonfiguration (i.e., states
with maximum entrop)'). Likewise, Paris [lO] used a dissipati,'e :-'lIID model to anal)'ze
stationary eom'eetion in plasmas under the seheme of the normal-mode deeomposition,
but he did not inelude resisti"ity and imposed some additional eonstraints upon both the
veloeit)' and magnetie field. In his work, however, he shows that the onset of instabilit)'
is via a marginal stationar)' mode with w = O.

The influenee of resisti"ity on plasma stability was first inwstigated by Fürt et al. [U]
for the plane slab model. They separate the resistive and ideal behavior of the plasma
into two spatial regions: a thin layer where the resistivity is important, ontside of whieh
the motion follows the ideal-l\IIID model with zero growth rateo "'ext they matehed the
solutions of both regions. They studied, in particular, the rippling-, tearing-, and grav-
itational interchange-modes, finding that the growth rates go as 52/5, 52/5, and 52/3,
respectively, 5 being the Lundquist number (By passing, we notiee he re that the philos-
ophy of the present work is rather elose to previously eited works than those of Fürth et
al. [UJ).

It should be mentioned that the usual stability analysis is worked out as a normal-
mode deeomposition and this, naturally, is a habit eoming from having dealed with linear
theories. There resides the problem: the separability of the proeesses arising at dilferent
time scales remain out of eonsideration beeause of the 'temporal homogeneity' in the
dynamical evolntion under the standanl normal-mode analysis. Despite that limitation,
the normal-mode treatment to eertain extent is very useful to get global eriteria for
stability and it also allows to separate into three regions: the stable dominia, the unstable
regian, and thc transitioll ZOIlC betwCCll thClll. 5uch transitioll frcqucntly corrcsponds lo
a steady solntion of the linearized equations. lIowever by using appropriate sealings it
is possible to modify the standard normal-mode treatment in order to inelude several
time-seales as we will show in this work.

Our aim in this work is a modest one: to explore the eonditions of stability dynamies
of a dissipative magnetofiuid when a twofold temporal evolution is eonsidered for some
very particular and simple ea",es. Iloughly speaking, the main idea eonsists in performing
an asymptotic cxpallsioll in powcr series of a small positivc dimensionless parameter, t,
of every physieal variable. In faet, we might split the temporal dependenee into a twofold
time-seale in terms of the parameter L These two eharaeteristie times, say the 'long' time,
t, and the 'short' time, t', give place to two essentially different regimes for the dynamieal
evolution. As we will show later, at the 'long' time-seale every mode evolves, to first order
in !, in the well known way from the ideal 1>IIlD for linear stability analysis, thus at the
first-ordcr approximation \\'C rcco\'cr a kuown resulto To sccond-ordcr the system cxhibits
a more elaborate dynamics owed, basically, to the presence of a weak dissipation although
cvcry IIlode cvolvcs in an uIlcouplcd manIlCr. On the othcr hand, al thc 'slow' time-seale
every mode evolves in a rather too simple way: to second-order we get modified solutions
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of that due to I3ernsteiu et al. [1]' while to third-order the amplitudes are linear functions
of the 'short' time-scale.

This work is organized as follows. In Sec\. 2 we present the dissipative 111ID equations,
discussing possible equilibria alld our ordering scheme as well. In Sec\. 3 it is perfonned the
expansion, to n'h arder in " of the s)'stem of differential equat ions governing t he dynamical
evolution at high frequencies, obtaining as result a differential equation of second order
for the perturbed velocit)' to order ,n. "ext we pass to examine the time e\'olution of the
velocit)' in both cases to first- and second-order, and the corresponding stabilit)' conditions
are tletermined. Sec\. 4 is devoted to a similar anal)'sis for low frequeneies but this time
to secontl- and third-ortler. Finally, Sec\. 5 contains a summary antl conc1usions.

2. FOIt~IULATIO" OF TIIE I'HOIlLEM

As was stressed in the Introduction we are considering a resistive, ViSCOllS,and ther-
mal eondueting magnetofluitl. The dynamics of such plasma is governed by the following
equations:

apat + v. (pv) = 0,

p (~: + v . vv) + VI' = J x D - V . n,

aDDi - V x (v x D) + V x ('IJ) = 0,

al' 2at + v. VI' + 'YI'V, v = h- 1)['IJ + v. ("VT) - n :Vvl,

v. D = 0,

(1)

(2)

(3)

(4)

(5)

where J = V x D and J is its magnitude. On the other hand, n stands for the dissipative
part of the stress tensor. Tlle remaining symbols in these equations have their usnal
meaning. Restricting our study to the limit of very large fieltls (whieh is equivalent to
assume WciTj > 1, where Ti alld Wci denote the collision time, i.e., the collision frequency is
T¡-l, and the ion cyc1otron frequency, respectively) the last term on the right-hand side of
Eq. (2) will then involve only parallel viseosity [121. In this approximation the dissipative
part of the stress tensor beco mes

where s is related with the rate-of-strain tensor W tlefined by (see Appendix A)

r .. _ aUj au; 211.] - .,,-- + .,,--- 3b;j V . v,
VIi VXj

bij being the l\roneeker delta.

(6)

(7)
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In what follows we take the Spitzer resistivity, 7] ex T-3/2, and the classical dependence
on temperature for both dynamic viscosity and thermal conductivity, namely 1'," ex
T5/2 [131.

Here we are concerned with the case of a plasma filling wholly a cylindrical vessel whose
wall is rigid and perfectly conducting. At such a boundary the appropriate conditions are

B.n =0, v. Ji = O, E'n=O, (8)

where n is the unit vector normal to the wall.
The static equilibria states come from taking 8/8t = O together with v = O in the set

(1)-(5); nevertheless, we undertake the present study from a general point of view, that
is, we shall obtain the stability conditions for arbitrary equilibria.

In order to determine the stability conditions for the system under study we begin
determining a twofold time-scale: the ratio of the involved time scales goes as a power
of the small parameter ( which will be used to expand in power series every physical
variable. In principIe, one could have as many time-scales as transport coefficients besides
the Alfvén time, tA = aO/VA; VA is the Alfvén speed defined using for the magnetic strength
the typical value Bo, VA = ¡Bol/)Po, and ao is the length scale for magnetic variations. Ir
one chooses the orderings for dissipative processes as 7] ~ (JI, " ~ (h, and l' ~ (13 (jI, h,
and h are greater than unity), there exist three characteristic times: the resistive decay
time, tR = a5/7], the thermal diffusion time, tT = poa~Cp/ "VA, and the viscous decay time,
tv = poa5/ l' (Cp and Po denote the specific heat at constant pressure and the characteristic
value for the mass density, respectively). As is well known, the possible combinations
of ratios of these characteristic times are useful to get a global physical picture of the
dynamics. Particularly interesting are the Lundquist number, S = tR/tA = aovA/7] ~ ej,;
the magnetic Reynolds number, RM = tV/tA = poaovA/1' ~ (-13; the standard Reynolds
number, R = tv/to = poaovo/I' ~ e13; and N = tT/tA = poa5Cp/" ~ Ch. Vo is a typical
value of the plasma lIow vclocity and to the corresponding time of transit connected to
ao. By comparing lhe Lundquist number with the remaining parameters one obtains the
following orderings: 5/ RM ~ E13-j" 5/ R ~ (VA/VO)E13-JI, and S/N ~ (vA/vo)(12-JI. Of
course there are several combinations but, for simplicity's sake, here we restrict ourselves
to the case in which each transport process contributes equally to the dynamics (viz.,
S ~ RM ~ R ~ N), i.e. we assume ji = h = h = j together with Vo ~ VA' As a
consequence, it suffices to consider two time scales, one related to the Alfvén speed and
the other to dissipative processes. Then we may take t as the longer time-scale and t' as
the shorter, i.e.,

j ~ 1; (9)

with j being integer. For the remaining variables we set: (equilibria values) - 1, and
(n th-order perturbations) ~ En.

\Ve notice that the nonideal effects here considered are small (they go as E
i, i being

a positive integer) but even so they playa role of paramount importance in the present
study as we shall see latero For the transport coefficients we will use the aboye mention'ed
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dependence on temperature T normalized to its corresponding equilibrium value Te(r),
namely

(10)

where 'lo, /lo, and "O are constant. I3y the way, the first equality in (10) is the well-known
express ion for Spitzer's resistivity.

3. STABlLITY CO~DITIO~S FOIt IIIG!! FREQUENCIES

In this section we will obtain the stability conditions at the long time-scale, accordingly
we require the governing equations describing the dynamics in t. I3y expanding in power
series of, the system (1)-(5) one obtains to nth order the following set of equations:

op" (7ft + \7. Pev,,) = D",

ov"
Pe7ft + \7p" - Je X D" - J" X Be = M",

oD" (Di - \7 X v" X De) = 1",

op"
7ft + v" . \7pe + -¡Pe\7. v" = P",

\7. B" = O.

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

Here the subscript n denotes the order of approximation and e stands for denoting equi-
libria values. The terms on the right-hand sides im'oh'e physical variables at order less
than n - 1 and time derivatives with respect to t'. Their explicit form will be shown at
the moment of examining each particular case. Without 10ss of generality, we may restrict
OUT examination to the case i = 1 (i.e., the dissipative effects go as ,) and consider only
static equilibria, Ve = O.
Taking the time derivative of the momentum Eq. (11.2) and using Eq. (11.3) together

with the remaining expressions we obtain the corresponding equation for the temporal
evolution of v" as a function of the physical variables at order lower than n,

(12)

where F is the familiar operator from the linear stability analysis in the ideal-MHD
model [1] defined as

F(v) = \7(-yPe\7. v + v. \7Pe) + Je X \7 X (v X Be) - De X \7 X \7 X (v X Be), (13)
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while Hn is given by

H n DMnn = - V rn + Je x In - Be X V X In + --o

Dt

3.1. First-order approximatioTl

To first-order Eq. (12) becomes

( 14)

(15 )

seeing that H¡ == O. Hence, the first-order solutions will be like that of the ideal MHD
stability problem (see Appendix B). Indeed, by assuming a discrete spectrurn given by
the following relationship:

(16)

it is possible to recover the familiar solutions obtained by Bernstein et al [1]. Here Uk and
Wk denote the eigenvector and its eigenvalue, respectively, rclated to F for the mode k. It
should be noted that F is a hermitian operator making use of the standard definition for
the inner product

(u, v) =¡u. v. d3x, (17)

where u and vare two arbitrary vector functions and V is the volume cif the regio 71 of
interest, taking into account the boundary conditions (8). Obviously, the hermiticity of
F ensures that every eigenvalue wk is real. Under present circumstances the set {ud
constitutes a cornplete basis introducing the following orthonormality condition:

(18)

with 8kk, denoting the Kronecker delta. The inner product of Eq. (12) with Ub mak-
ing use of expressions (16) and (18), yields the known ideal solutions (see Appendix B)
providing [141

(19.1)

Precedent result implies there is not any change with respect to the ideal case at the
long time scale (viz., high frequencies) to first-order approxirnation, although this situation
does not exclude the possibility that VI depends 071 t' through both a~l) and b~l) \Ve
will show below that the relevant differences start off the second-order approximation.
Nevertheless it should be noticed that the use of a multiply periodic expansion like t)¡at
given by (19.1) complica tes the present study beca use it drives a strong coupling arnong
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aH modcs [15). For simplicit.y, we fcstrict our attcntioll to the case of a monoch7'ornaiic
cxpansioIl [15]. In other words, [raIn now 011 \VConly cOllsidcr just DIle modc (viz., aIle
frequeney) for the first-order approximat ion. Eqnation (1D.I) then beco mes

VI = {a(1) eos(wt) + b(l) sin(w/)} \l. (ID.2)

Then we wil1 use for lhe rest of the high frequeney analyses the solutions to first-order
given in Appendix !3 but eonsidering only one mode and, consequently, one frequency.

3.2. Seeond-order appmximation

To s('cond-order, Eq. (12) hecom('s

(20)

H2 is given explicitly in Appendix C (see Ec¡. (C2)).
For the purposes of the proc"dur" outlined hefore, we wil1 take for solving Eq. (20)

the simplest case j = I (i.e. /' = €t). Speeifical1y, we look for solutions in the form
Y2 = Lk(Uk, PeY2)Uk, thus Eq. (20) takes the fonn

(21 )

with the expression for the somewhat complieat"d term H2 given by (C3) in Appendix C.
Of course Uk is one of the eigenvectors of F.

Jt is clear that a particular solution to Eq. (21) is

(22.1 )

where .\~k) denotes a solution for the algebraic equation .\2 +wZ = O. It should be observed
that Eq. (22.1) eould be rewritten as

(22.2)

This solution is adequate for the case when, as natural, (Uk, PeY2) = O at t = O.
The solution for the homogeneous equation related to Eq. (21) is, of eourse, a super-

positioll of sines and cosilH's of Wkt whcn wl > O, and <loes not give place to instabilities;
however when wZ < O we have solutions whieh grow or deeay exponential1y, but by using
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an appropriate initial condition we can eliminate the growing terms. Thus it appears that
the only potentially unstable contribution is that related to the particular solution (22.2).
Rence, for ensuring bounded solutions we have to impose that the amplitudes in Eq. (22.2)
satisfy a non-resonance condition, that is

(23)

The application of (23) to (22.2) leads to a system of ordinary differential equations for
a(I)(t') and b(1)(t'), namely

(24.1)

(24.2)

In these equations n is defined by

/ - 3 (TI ) --'70\U,JeXV'XJI-zJeXV'X Teje -BeXV'XV'xJI

(25)

Rere the quantities with tilde correspond to the spatial part of the first-order solutions
for one mode (see Eqs. (Bl)-(B2) in Appendix B).

Therefore it is immediate that when n < Owe have a decreasing amplitude while n > O
gives place to a positive growing rate. These conditions constitute the corresponding
stability criteria for the present case.

4. STABlLlTY AT LOW FREQUENCIES

4.1. Second-order approximation

As was pointed out in the last section, because of the functional form of Hn there is not any
substantial change at high frequencies comparing with the ideal case in what concerns to
stability conditions, at least for cases here considered, although the resistive contributions
appear in Eqs. (23) and (24) through the term n. Let us choose now a low-frequency regime
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(viz., 'short' time-scale). 1'0 slart wilh, we shall examine the lemporal evolulion espect
lo t' according to

1
81 .- _,lat- ' (26)

and expand again in power series of, lhe syslem (1)-(5) but lhis time we set i = 2. \Ve
get therefore inslead of (11.1)-(11.4), in lhe simplest case j = 1,

DPn ,
8t' + vn+1 . 'ilpe + "(pe'il . Vn+1 = Pn+l,

(27.1)

(27.2)

(27.3)

(27.4)

logether wilh Eq. (11.5). The lerms on lhe righl-hand side of (27.1)-(27.4) are analogous
to that appearing in Eqs. (11.1)-(11.5).

The derivative of the momentum Eq. (27.2), wilh respect lo t', making use of the
remaining equalions, leads to

(28)

where

(29)

It is worth to nolice that H; '" O and as a consequence F(vl) '" O for arbilrary
equilibria. This implies that VI = O and consequently the leading order syslem relaled
to (28) will be those corresponding lo the second-order approxilllalion,

(30)

for the case under consideralion.
Now, we take for v2 a similar expression to lhal given for VI Itl (19.2) wilh a slight

modification

{
da(2) db(2) }

V2 = -d- cos (wt) + -- sin (wt) u',
t* dt* (31 )

whcre u' uclongs to a subspace of that space cOlltaining thc vectors u. Former vector has
lhe property of satisfying F(u') = O in virlue of Eq. (30).
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Substituting (31) into the system (27.1)-(27.4) with n = 1 we might obtain a set of
equations for PI, PI, TI, and BI, by using P = pT. These solutions are similar to those
from the ideal ~lHD, however they depend only on the time t' through both a(2)(t')
and b(2)(t') while their spatia! dependence appear through both u' and the equilibrium
values. It is to say, we get similar solutions to that of the ideal-MHD but they are a more
restricted ones because oC the replacement of u by u'. That solutions are:

PI = -g(2)W,t) V'. (Peu~),

Bl = g(2)(t', t) V' x (u~ X Be),

TI = g(2)(t', t) [2.u' . V'pe + "rPeV'. u' + Te V' . (PeU')] ,
Pe Pe Pe

where

g(2)(t', t) = a~2)W) cos(wt) + b(2)(t') sin(wt).

Note that the momentum balance equation is fulfilled when u' satisfies

(32.1)

(32.2)

(32.3)

(32.4)

(33)

V'(u'. V'pe + "rPeV'. u') = Je x V' X (u' x Be) - Be X V' x V' X (u' X Be). (34)

From this relationship one gets a particular structure for the eigenvectors u' for a given
equilibrium state.

As remarked previously, the solutions for the present range of frequencies constitute
a more restrictive dass respect to those from the ideal MHD. From (34) we can deter-
mine u' which is required for further analyses, though, we do not perform any numerical
evaluation. Now we will proceed to examine the stability to the next order.

4.2. Third-order approximation

To examine the case concerning to the third-order approximation, we use for the velocity
to third order a similar express ion like that of the second order, (31), namely

{
da(3) db(3) }

V3 = -- cos(wt) + -d sin(wt) u'.dt. t.
(35)

Substituting (35) and VI = O into (28), setting n = 2 and making use of (32)-(34), we
get, after taking its inner product with u',

d { (2) (2) . } _ (u', D2(u'; W = O))
dt. a cos (wt) + b Slll (wt) - - (u', .N2(u'; w = O))' (36)
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'02 and N2 are familiar to reader, they arised when we analyzed the case of high
frequencies to sccolld-order approximation. Thcrc is a diffcrcnce, hO\vevcf, uccausc we
use here u' instead u and they were, for the case at hand, evaluated at w = O (see
Appendix C).

Of eourse, Ec¡. (36) is valid just when (u', N2(u'; w = O)) # O; then we have that
(u', '02(U'; w = O))/(u', N2(u'; W = O)) > O implies that the amplitude decays linearly,
whereas if that c¡uotient is negati\'e the amplitude grows linearly; both oeeurring at the
'short' time-seale.

5. COI'CLUSIO:"S AI'D FINAL ItE~lAHKS

In this seetion we sumlllarize the points treated in this work. In order to stndy the sta-
bility of a dissipati\'e plasma (i.c., there are present resistivity, thermal eondnetivity, and
viscosity) against small disturuallces from a static equilibriulll initial statc, \\o'C scparate
the dynalllics by introducing two time sea!es. One of them is related to Alfvén transit time
whereas the other is eonel'med with the dissipation in the sense that it is the eharaeteris-
tic time for sueh a proeesses. I3a.sieally, we have performed a decomposition in oseillating
lIlodcs but including t\\'o tillle-~calcs, thus this trcatmcllt appcars in SOI1l(,extcnt as a kind
of gcncralization of the cOIlvl'ntiollai normal-modc analysis. It worth mcntioning that aue
lllight to set up, at least. three different regimes (i.e., three eharaeteristie time-seales)
eorresponding to resistivity, therma! eonduetivity, and viscosity. However, in the present
paper we restriet onrsl'l\"es to eonsider only two regimes, that defined by the resistive
diffnsion and the A!f\'én transit time.

Starting from a flnid model for a dissipative plasma eontained within a rigid and per-
feetly eondueting ey!indrieal vesse! we have diseussed suffieient eonditions for stability for
the three !owest orders after performing an asymptotie expansion in terms of a positive
small parameter f. This parallleter is related to the Lundc¡uist number (in the present
case, also to the Reynolds num),l'r) as was disenssed in See. 2.2. The time sea les and
lile cxpallsion in powcr scri('s of E \Vere rcstrictcd to positi\'c integcr po\\'crs. Thc maio
advalltagc of the approach showll in this \vork secms to be, in the author's opinioll, that
it allO\\'s lIS ta determillc1 ill a prrcÍsc mallllcr, ho\\' t he dissipation affccts the stability
conditions at diffcreIlt charartcristic times.

In particular, for the prescnt case, we found that at high frequeneies and to first-
order in f one reeO\'ers thl' well known solution for an ideal plasma whilst to second-
order one gets an oseillatory behavior (respect to t) and their corresponding ampli-
tudes depend on the first-order c¡nantities in sueh way that the stability criterio (say,
bounded solutions) gives place to an exponential dependenee upon t' [see Eqs. (24.1)
and (24.2)1.

On the other hand, for the low frec¡uencies rcgime, we found that the second-order
is the l('ading order. This !atter implies that at this time-sea!e the first-order c¡uantities
possess a similar behavior to that of the ideal-MIlO but they are a more restrietive dass of
solutions. Whell it is eonsidered the third order approximation \\"e found so!utions which
osrillate respeet to t with an amplitude which grows (or decays) linearly respect to t' [see
Ec¡. (36)1.
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It is apparent that a nonlinear evolution arises as one increases the order of approxi-
mation, however, such case deserve a further study.

It is worth to notice a missing point in this work. The conventional device for studying
plasmas is an externally fOTcedsystem. Thus it is required in order to get a more realistic
description to include in this kind of studies, for example, the presence of a so urce heating
whose role could be to sustain the plasma dynamics, through thermal waves, against the
dissipation.

Finally, we should like to add we believe that results discussed here are justified enough
to explore further extension; for example, to examine the effect of anomalous transport
and anisotropy upon the stability conditions.
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ApPENDlX A. ION STRESS TENSOR

In terms of carlesian coordiuates the 13raginskii ion stress is given [13]' assuming In
parlicular lhat the equilibrium magnelic field goes along lhe z-direction, by

JI Ji. 1
I1xx = -"2(Wxx + Wyy) - "2(Wxx - Wyy) - Ji.3Wxy,

Ji. Ji.1
I1yy = -"2(Wxx + Wyy) + "2(Wxx - Wyy) + Ji.3Wxy,

(A.1)

(A.2)

(A.3)

(AA)

(A.5)

(A.6)

wilh Wij defined by (7). The viscosily coeflicients have lhe following functional form:

PJi. = 0.96 -TiTi,
mi

p ( 254(2+ 2.23 )
Ji.l = mi

TiTi 16(4 + 16.12(2 +2.33 '

p ( ~(2 + 2.23 )
Ji.2 = miTi Ti (4 + 4.03 (2 + 2.33 '

(A.7)

(A.S)

(A.,9)
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, _ 2.!!..-T, ( 4(4 + 2.38 )
13 - mi ,( 16(4 + 16.12(2 + 2.33 '

, _.!!..- T,T ( (2 + 2.38 )
1 4 - mi •• ( (4 + 4.03 (2 + 2.33 '
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(A.10)

(A.l1)

where ( = "'iTi and mi is the ion mass. In the limit of very large fields ( » 1, /li = O for
i = 1, ... ,4, therefore only l' contributes to n. On the other hand, s is given by

s = -(1 - 3ellell)lVlIlI, (A.12)

in view that tr(\V) == O, tr(\V) being the trace of W. Here 1 is the unit tensor of second-
rank, the subscript '11' refers to the parallel direction with respect to the equilibrium
magnetic field B" and ell = Bel Be with Be = IBel.On the other hand,

3 (miTi)3/2
T---~-
• - 4 ,¡:¡rp>'e4 (A.13)

with >. the Coulomb logarithm, and e the electro n charge. Thereby (A.7), together with
(A.13), leads to

(A.14)

Thus the stress tensor becomes that given by the expression (6).

ApPENDlX n. IDEAL-MHD SOLUTIONS

The ideal solutions for linear stability, like those obtained by 13ernstein [11 using an energy
principIe can be written as

where

PI = ¿!k')W,I)'I7. (Peud == ¿!i1)(I.,I)¡;\k)(x).
k k

_ "\"" (1)(.) ( ) _ "\"" (1)(. ) - (k)( )Bl-~!k 1,1 '17X BeXUk =~!k 1,1 BI x,
k k

PI = ¿!il)(I.,I)[Uk . 'l7pe+I'Pe'l7. ud == - ¿!k')(I.,I)p\k),
k k

(13.1)

(B.2)

(B.3)

(B.4)
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For the perturbed temperature we have

'"""¡(¡)(' )[1 Te]T¡ = ~ k t, t -Uk' \lpe - (1 - -y)Te \1 . Uk - -Uk . \1Pe
k ~ ~

== L¡~¡)(t',t)Tik).
k

ApPEl'DIX C. TIIE EXPRESSlO:-I FOR Hz

Here we provide the detailed fUllctiollal form of Hz. From (30) we have

which, makillg use of (24)-(27) with n = 2, leads to

[
DP¡Hz = \1 - + V¡' \lp¡ +-YP¡\I. V¡ + (1 --y)(2'/oJe .Jl
Dt'

[
Dll¡ ]+ Je x - Dt' + \1 X (v¡ X ll¡ - 'IoJ¡ - 'lIJe)

- lle X \1 x [- ~~,¡ + \1 X (v¡ X ll¡ - 'IoJ¡ - 'I¡Je)]

Dp¡ Dv¡ DZv¡ (DV¡) (DVl)- 75t75t - PI Dt2 - Pe 75t . \lV¡ - PeV¡ . \1 7ft

DJ ¡ DZv¡ Dll¡ 110 D+ - X III - P -- + JI X -- - - - \1 . SI
Dt e DtDt' Dt 2 Dt '

where we have taken j = J. This expression may be written as

Hz = [a Sill(wt) - b cos(wt))(2Pew 11)

I .+ _[(b2 - a2) SIIl (2wt) + 2abcos(2wt)jN2
2w

I .+ -Ibcos(wt) - aSIIl(wt)]V2,
w

([3.5 )

(C.I)

(C.2)

(é.3)
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where the dot denotes derivative with respect to t., and

N2(u; w) = \7(u. \7Pl + /'PI \7. u) + Je x \7 x (u x DI)

- Be X \7 x \7 x (u X D ¡) +Ü1 X DI

3 (TI ) /lo 2 _- :¡'70Be X \7 X \7 X -Je - - W \7. SI.
Te 2

The spatial dependence is introduced through u. and equilibria quantities.
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