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ABSTRACT. The problem of the stability of static, resistive, thermal conductive and viscous
plasmas is investigated by means of an asymptotic expansion in terms of a small positive parameter
¢ which relates the Alfvén transit time to the characteristic time for dissipative effects. This
twofold time-scale allows to separate the dynamics in a convenient way. It is found, assuming
weak dissipation, that, at high frequencies, to first-order one recovers the well-known solutions of
the ideal magnetohydrodynamics (MHD), whereas at second-order one gets oscillations respect to
the long time-scale t which are modulated by a growing (or decaying) exponential behavior [see
Eqs. (19.2) and (24.1,2)] respect to the short time-scale t*. On the other hand, for low frequencies
we found that the leading term is that of second order. This gives place to a situation in which the
corresponding first-order solutions constitute, in such regime, a subclass of the known solutions
from the ideal MHD (at first-order approximation). At second-order the solutions exhibit oscillation
respect to the t time-scale and the behavior of their corresponding amplitudes is determined by
considering the third-order approximation. It results that such amplitudes grow (or decay) linearly
respect to the t* time-scale [see, for instance, Eqs. (31)-(33) and (35)-(36)]. Finally, we discuss
somewhat interesting points relevant to further investigations.

RESUMEN. El problema de la estabilidad de plasmas estdticos, resistivos, térmicamente conduc-
tores y viscosos es investigado por medio de una expansién asintética en términos de un parametro
positivo pequeiio ¢, el cual relaciona el tiempo de trénsito de Alfvén t con el tiempo caracteristico
para los efectos disipativos. Esta escala temporal doble permite separar la dindmica en una forma
conveniente. Se encuentra, suponiendo una disipacién débil, que en altas frecuencias, a primer
orden, uno recupera las soluciones conocidas de la magnetohidrodindmica (MHD) ideal, en tanto
que a segundo orden uno obtiene oscilaciones respecto a la escala temporal larga t, que, a su
vez, estan moduladas por comportamiento exponencial creciente (o decreciente) [cf., Ecs. (19.2) y
(24.1,2)] respecto a la escala temporal corta t*. Por otra parte, para bajas frecuencias encontramos
que el término lider es el de segundo orden. Esto da lugar a una situacién en la cual las soluciones
para primer orden constituyen, en tal régimen, una subclase de las soluciones conocidas de la MHD
ideal para primer orden. A segundo orden las soluciones exhiben oscilaciones respecto a la escala
t y el comportamiento de sus amplitudes correspondientes es determinado teniendo en cuenta la
aproximaci6n de tercer orden. Resulta que esas amplitudes crecen (o decrecen) linealmente respecto
a la escala de tiempo t* [cf., por ejemplo, Ecs. (31)-(33) y (35)-(36)]. Finalmente, discutimos
algunos puntos de interés relevantes en vista a estudios ulteriores.

PACS: 59.55.Dy; 52.35.—g

1. INTRODUCTION

The study of plasma stability is one of the most important and far-reaching problems in
plasma theory. Needless to say that the problem of stability is by no means a closed book.
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It is fundamental in connection with the relaxation processes occurring in magnetically
confined plasmas. To obtain an equilibrium solution as well as its stability conditions one
might use a differential treatment or a variational formulation. Both approaches coincide
when the plasma is conservative. The variational treatment provides an adequate tool to
examine stability conditions in the case of non-dissipative plasmas [1] (it is the “energy
principle”). At present, the variational formulation for the dissipative plasma, although
it is an insufficiently supported framework, it allows us, with adequate modifications,
to obtain a global description through a set of temperature profiles [2,3] and recover
the so-called “profile consistency” condition. In this latter case the variational principle
is built upon the physical assumption that the rate of entropy production reaches its
minimum value for physically admissible relaxated configurations.

There is a vast literature dealing with the problem of the stability of resistive modes.
Let us review several related works. For example, Park et al. [4] studied the equilibrium of
a three-dimensional stellarator using a time-dependent relaxation method in a numerical
fashion assuming that dissipative terms are small and including a density source. Suppos-
ing that the viscosity, u, the resistivity, n, and the thermal conductivity, , are constant
they obtained stable free-boundary equilibria which satisfy the zero field-line-averaged
current condition. On the other hand, Gomberoff and Herndndez [5] examined analytically
a dissipative cylindrical plasma column, showing that nonideal effects such as viscosity
and thermal conductivity allow to obtain a linear solution for the MHD equations even if
the plasma is assumed incompressible, while there is no linear solution for the ideal MHD
equations for a cylindrical current-carrying plasma limited by fixed boundaries if the
plasma is assumed incompressible. Also they found that perpendicular viscosity removes
the singularity of the ideal case at m = ng, but the boundary conditions can only be
satisfied for Bg/B. > 1 (m denotes the azimuthal number, ¢ is the constant rotational
transform, and n = —kL/27 where k is a real wavenumber along the z-direction and
L the length of the cylinder). Under that condition, the resultant spectrum is w = 0
(w denotes the frequency related to the normal modes) at m = ng and this spectrum
persists for arbitrary g providing that the Reynolds number, R, is greater than some
critical Reynolds number, R, consequently there exists steady convection in the plasma
and the mode with w = 0 at kj = 0 satisfies the whole set of linearized nonideal MHD
equations with finite v (v stands for the specific heats ratio). Their work has shown that
the viscosity does not change the range of the unstable modes rather changes appreciably
the shape of the spectrum. Moreover, for R = R the state of the plasma is not only
marginally stable but also stationary, while for R > R, the complete nonlinear equations
possess a stationary convective solution which bifurcates from the equilibrium solution.

Thermal instabilities in a cylindrical plasma column as well as steady-state solutions
to the transport equations in a number of limiting cases were obtained by Dobrott et
al. [6] and they also investigated marginal stability by using a linearization procedure. In
their study were assumed the Spitzer resistivity and the classical perpendicular thermal
conductivity, obtaining that bifurcations depend on the applied electric field and finding
that the same solutions are unique functions of total current, whereas the steady-state
solution is not recoverable by the approximation used by Fiirth et al. [7].

Kerner et al. [8] studied the resistive Alfvén spectrum in straight cylindrical geometry
making use of a spectral code, finding that the ideal continua disappear, the normal
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modes are damped, and the eigenvalues lie on specific curves that become independent of
resistivity for small values of 7. On the other hand, Minardi [9] has examined the resistive
relaxation of a plasma confined in a Tokamak which is heated by an external auxiliary
power, but restricting his study to the case w = 0 in order to explain the existence of the
bifurcating states in the framework of the ordinary resistive effects in a Tokamak discharge
subject to transport losses which depend anomalously on temperature. Such steady states
are that with maximum probability for the plasma magnetic configuration (i.e., states
with maximum entropy). Likewise, Paris [10] used a dissipative MHD model to analyze
stationary convection in plasmas under the scheme of the normal-mode decomposition,
but he did not include resistivity and imposed some additional constraints upon both the
velocity and magnetic field. In his work, however, he shows that the onset of instability
is via a marginal stationary mode with w = 0.

The influence of resistivity on plasma stability was first investigated by Fiirt et al. [11]
for the plane slab model. They separate the resistive and ideal behavior of the plasma
into two spatial regions: a thin layer where the resistivity is important, outside of which
the motion follows the ideal-MHD model with zero growth rate. Next they matched the
solutions of both regions. They studied, in particular, the rippling-, tearing-, and grav-
itational interchange-modes, finding that the growth rates go as S*/®, S%/® and 52/3
respectively, S being the Lundquist number (By passing, we notice here that the philos-
ophy of the present work is rather close to previously cited works than those of Furth et
al. [11]).

It should be mentioned that the usual stability analysis is worked out as a normal-
mode decomposition and this, naturally, is a habit coming from having dealed with linear
theories. There resides the problem: the separability of the processes arising at different
time scales remain out of consideration because of the ‘temporal homogeneity’ in the
dynamical evolution under the standard normal-mode analysis. Despite that limitation,
the normal-mode treatment to certain extent is very useful to get global criteria for
stability and it also allows to separate into three regions: the stable dominia, the unstable
region, and the transition zone between them. Such transition frequently corresponds to
a steady solution of the linearized equations. However by using appropriate scalings it
is possible to modify the standard normal-mode treatment in order to include several
time-scales as we will show in this work.

Our aim in this work is a modest one: to explore the conditions of stability dynamics
of a dissipative magnetofluid when a twofold temporal evolution is considered for some
very particular and simple cases. Roughly speaking, the main idea consists in performing
an asymptotic expansion in power series of a small positive dimensionless parameter, ¢,
of every physical variable. In fact, we might split the temporal dependence into a twofold
time-scale in terms of the parameter e. These two characteristic times, say the ‘long’ time,
t, and the ‘short’ time, t*, give place to two essentially different regimes for the dynamical
evolution. As we will show later, at the ‘long’ time-scale every mode evolves, to first order
in €, in the well known way from the ideal MHD for linear stability analysis, thus at the
first-order approximation we recover a known result. To second-order the system exhibits
a more elaborate dynamics owed, basically, to the presence of a weak dissipation although
every mode evolves in an uncoupled manner. On the other hand, at the ‘slow’ time-scale
every mode evolves in a rather too simple way: to second-order we get modified solutions
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of that due to Bernstein et al. [1], while to third-order the amplitudes are linear functions
of the ‘short’ time-scale.

This work is organized as follows. In Sect. 2 we present the dissipative MHD equations,
discussing possible equilibria and our ordering scheme as well. In Sect. 3 it is performed the
expansion, to n'" order in ¢, of the system of differential equations governing the dynamical
evolution at high froquoncies, obtaining as result a differential equation of second order
for the perturbed velocity to order €. Next we pass to examine the time evolution of the
velocity in both cases to first- and second-order, and the corresponding stability conditions
are determined. Sect. 4 is devoted to a similar analysis for low frequencies but this time
to second- and third-order. Finally, Sect. 5 contains a summary and conclusions.

2. FORMULATION OF THE PROBLEM

As was stressed in the Introduction we are considering a resistive, viscous, and ther-
mal conducting magnetofluid. The dynamics of such plasma is governed by the following
equations:

dp :
L4V (o) =0, (1)

ov
(E-i—v Vv)-}—Vp:JxB—V-II, (2)

OB
5 -Vx(vxB)+Vx(pJ)=0, (3)

9p 2

Y +v-Vp+pV . -v=(y-1)[nJ*+ V. (kVT) - I1: Vv, (4)
V.B=0, (5)

where J = V x B and J is its magnitude. On the other hand, IT stands for the dissipative
part of the stress tensor. The remaining symbols in these equations have their usual
meaning. Restricting our study to the limit of very large fields (which is equivalent to
assume weiTi > 1, where 7; and w; denote the collision time, i.e., the collision frequency is
Ti » and the ion cyclotron frequency, respectively) the last term on the right-hand side of
Eq. (2) will then involve only parallel viscosity [12]. In this approximation the dissipative
part of the stress tensor becomes

) O a1 (6)

where s is related with the rate-of-strain tensor W defined by (see Appendix A)

_ Oy | Oy
+

Wi
= 0z; | 0z, x;

- 25,V v, (7)

6;; being the Kronecker delta.
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In what follows we take the Spitzer resistivity, 7 oc T=%/2, and the classical dependence
on/temperature for both dynamic viscosity and thermal conductivity, namely p,x o
T2 [13].

Here we are concerned with the case of a plasma filling wholly a cylindrical vessel whose
wall is rigid and perfectly conducting. At such a boundary the appropriate conditions are

B-ai=0, v-a=0, E-a=0, (8)

where n is the unit vector normal to the wall.

The static equilibria states come from taking /8t = 0 together with v = 0 in the set
(1)-(5); nevertheless, we undertake the present study from a general point of view, that
is, we shall obtain the stability conditions for arbitrary equilibria.

In order to determine the stability conditions for the system under study we begin
determining a twofold time-scale: the ratio of the involved time scales goes as a power
of the small parameter ¢ which will be used to expand in power series every physical
variable. In principle, one could have as many time-scales as transport coefficients besides
the Alfvén time, t, = ag/va; va is the Alfvén speed defined using for the magnetic strength
the typical value By, v, = |Bo|/\/Po, and ag is the length scale for magnetic variations. If
one chooses the orderings for dissipative processes as 1 ~ €/!, k ~ €2, and p ~ €3 (41, jo,
and js3 are greater than unity), there exist three chara.cteristm times: the resistive decay
time, tg = ao/n, the thermal diffusion time, t; = poan »/KUa, and the viscous decay time,
ty = poao/ it (Cp and pg denote the specific heat at constant pressure and the characteristic
value for the mass density, respectively). As is well known, the possible combinations
of ratios of these characteristic times are useful to get a global physical picture of the
dynamics. Particularly interesting are the Lundquist number, S = tg/tx = agUa/m ~ €771;
the magnetic Reynolds number, Ry = ty/ta = poaova/p ~ e ~73; the standard Reynolds
number, R = ty/to = poagvo/pt ~ € 7% and N = tr/ts = poal p/fs: ~ €772, yp is a typical
value of the plasma flow velocity and to the corresponding time of transit connected to
ag. By comparing the Lundquist number with the remaining parameters one obtains the
following orderings: S/Ry ~ €377, S/R ~ (vs/vg)e™™71, and S/N ~ (va/vo) )e2=91, Of
course there are several combinations but, for simplicity’s sake, here we restrict ourselves
to the case in which each transport process contributes equally to the dynamics (viz.,
S ~ Ry ~ R ~ N), i.e. we assume j; = j» = j3 = j together with vg ~ vs. As a
consequence, it suffices to consider two time scales, one related to the Alfvén speed and
the other to dissipative processes. Then we may take ¢ as the longer time-scale and t* as
the shorter, t.e.,

tr=¢et, j>1 (9)

w1th j being integer. For the remaining variables we set: (equilibria values) — 1, and
(n**-order perturbations) ~ €"

We notice that the nomdeal effects here considered are small (they go as €', ¢ being
a positive integer) but even so they play a role of paramount importance in the present
study as we shall see later. For the transport coefficients we will use the above mentioned
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dependence on temperature T' normalized to its corresponding equilibrium value T,(r),
namely

= WO(Te/T)S/Qa M= #"O(T/Te)sny K= KO(T/Te)S/za (10)

where 79, po, and kg are constant. By the way, the first equality in (10) is the well-known
expression for Spitzer’s resistivity.

3. STABILITY CONDITIONS FOR HIGH FREQUENCIES

In this section we will obtain the stability conditions at the long time-scale, accordingly
we require the governing equations describing the dynamics in . By expanding in power
series of € the system (1)-(5) one obtains to n'® order the following set of equations:

Opn
s ’ n = ny ].1.
o+ Y (eva) = D (1L.1)
v,
peﬁ'{“vpn_']e X By —Jn XBEZMH: (112)
8;" -V X (vp xBe) =1, (11.3)
dp,
5 + Vi s Vpe + 70V o vy = Py, (11.4)
V- By =0, (11.5)

Here the subscript n denotes the order of approximation and e stands for denoting equi-
libria values. The terms on the right-hand sides involve physical variables at order less
than n — 1 and time derivatives with respect to ¢*. Their explicit form will be shown at
the moment of examining each particular case. Without loss of generality, we may restrict
our examination to the case i = 1 (i.e., the dissipative effects go as €) and consider only
static equilibria, v, = 0.

Taking the time derivative of the momentum Eq. (11.2) and using Eq. (11.3) together
with the remaining expressions we obtain the corresponding equation for the temporal
evolution of v, as a function of the physical variables at order lower than n,

9*v,
Pe"‘(ﬁ = F(Vn) =H,, (12)

where F is the familiar operator from the linear stability analysis in the ideal-MHD
model 1] defined as

F(v)=V(7perv+v-Vpe)+JexVx(vae)—BexVxVx(vae), (13)
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while H,, is given by

Hn:—VPn+JexIn—BexVxIn+%. (14)
3.1. First-order approzimation
To first-order Eq. (12) becomes
0%v
P ~F(vi) = (15)

seeing that H; = 0. Hence, the first-order solutions will be like that of the ideal MHD
stability problem (see Appendix B). Indeed, by assuming a discrete spectrum given by
the following relationship:

F(ux) = —pewiug, (16)

it is possible to recover the familiar solutions obtained by Bernstein et al [1]. Here uy and
wy denote the eigenvector and its eigenvalue, respectively, related to F for the mode k. It
should be noted that F is a hermitian operator making use of the standard definition for
the inner product

{u;, v) = /v u-v*dr, (17)

where u and v are two arbitrary vector functions and V is the volume of the region of
interest, taking into account the boundary conditions (8). Obviously, the hermiticity of
F ensures that every eigenvalue w;*: is real. Under present circumstances the set {uj}
constitutes a complete basis introducing the following orthonormality condition:

(ug, peup) = b, (18)

with 6k denoting the Kronecker delta. The inner product of Eq. (12) with ug, mak-
ing use of expressions (16) and (18), yields the known ideal solutions (see Appendix B)
providing [14]

Z{ak cos(wyt) +b( )sm(wkt)}uk. : (19.1)

Precedent result implies there is not any change with respect to the ideal case at the
long time scale (viz., high frequencies) to first-order approximation, although this situation

does not exclude the possibility that v, depends on t* through both GS) and bil). We
will show below that the relevant differences start off the second-order approximation.
Nevertheless it should be noticed that the use of a multiply periodic expansion like that
given by (19.1) complicates the present study because it drives a strong coupling among
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all modes [15]. For simplicity, we restrict our attention to the case of a monochromatic
expansion [15]. In other words, from now on we only consider just one mode (viz., one
frequency) for the first-order approximation. Equation (19.1) then becomes

Wy = {a(l) cos(wt) + btV sin{wt)}u. (19.2)

Then we will use for the rest of the high frequency analyses the solutions to first-order
given in Appendix B but considering only one mode and, consequently, one frequency.

3.2. Second-order approzimation

To second-order, Eq. (12) becomes

2
p oL~ F(v) = Hy. (20)
H; is given explicitly in Appendix C (see Eq. (C2)).
For the purposes of the procedure outlined before, we will take for solving Eq. (20)
the simplest case j = 1 (i.e. t* = et). Specifically, we look for solutions in the form
vy = Zk(uk, peVa)ug, thus Eq. (20) takes the form

d2
F(Uk» pev2) + wit(ug, peva) = (uy, Hy), (21)

with the expression for the somewhat complicated term Hj, given by (C3) in Appendix C.
Of course uy is one of the eigenvectors of F.
It is clear that a particular solution to Eq. (21) is

t [ AP-t) _ 2P (-t ’
(uka peVZ) = / (%) (k) <uka H?) dt’, (221)

where ,\Sk) denotes a solution for the algebraic equation A? +w? = 0. It should be observed
that Eq. (22.1) could be rewritten as

sin (wgt
(uk, PeVE) = ( - )

t
/ cos (wkt')(uk, Hg) dt’

Wi 0

t
_ cos(wit) / cos (wit'){uy, Hy) dt'. (22.2)
Wi 0
This solution is adequate for the case when, as natural, (ui, pevs) = 0 at t = 0.
The solution for the homogeneous equation related to Eq. (21) is, of course, a super-
position of sines and cosines of wit when w? > 0, and does not give place to instabilities;
however when w} < 0 we have solutions which grow or decay exponentially, but by using
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an appropriate initial condition we can eliminate the growing terms. Thus it appears that
the only potentially unstable contribution is that related to the particular solution (22.2).
Hence, for ensuring bounded solutions we have to impose that the amplitudes in Eq. (22.2)
satisfy a non-resonance condition, that is

T
i 51; /0 (ug, H) (C"S(“”‘”) dt = 0. (23)

T—oo sin(wgt)

The application of (23) to (22.2) leads to a system of ordinary differential equations for
aM(t*) and b(V)(¢*), namely

2w?-L g _ g =g, (24.1)
dt*
2.4 ,1) _ op)

In these equations {Q is defined by

" s 5 T:
Q:=(u, D) =(1-%) <u, \Y [ZUOJe -Jp - %ngJE% + ko V2T + gﬂov- (?IVTE)] >
e e

" T "
—ng<u,JexVxJ1—%JexVx (FIJE)—BexVxVxJi
3 Tl Ho 9 2
=+ EBe %'V % Vi (']TJE)>""2—W (u, V-Sl). (25)

Here the quantities with tilde correspond to the spatial part of the first-order solutions
for one mode (see Egs. (B1)-(B2) in Appendix B).

Therefore it is immediate that when £ < 0 we have a decreasing amplitude while 2 > 0
gives place to a positive growing rate. These conditions constitute the corresponding
stability criteria for the present case.

4. STABILITY AT LOW FREQUENCIES

4.1. Second-order approzimation

As was pointed out in the last section, because of the functional form of H,, there is not any
substantial change at high frequencies comparing with the ideal case in what concerns to
stability conditions, at least for cases here considered, although the resistive contributions
appear in Egs. (23) and (24) through the term Q. Let us choose now a low-frequency regime
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(viz., ‘short’ time-scale). To start with, we shall examine the temporal evolution espect
to t* according to

d

6t' ~ fj’ (26)

and expand again in power series of € the system (1)-(5) but this time we set i = 2. We
get therefore instead of (11.1)-(11.4), in the simplest case j = 1,

dpn
o+ V- (peVn41) = Dy, (27.1)
Vpn —Jn x Be = Je x B, = M/, (27.2)
oB,, ,
p -V x (Vn+1 x Be) = In+1v (2?-3)
ot
Ipn v v .y 27.4
ot t Vni1 - Vpe +7peV - vy = n+1s (27.4)

together with Eq. (11.5). The terms on the right-hand side of (27.1)-(27.4) are analogous
to that appearing in Egs. (11.1)-(11.5).

The derivative of the momentum Eq. (27.2), with respect to t*, making use of the
remaining equations, leads to

F(Vni1) +Hyy, =0, (28)

where

oM,
wert =N Py ~Bs XV R Ly #T, 561 o (29)
It is worth to notice that H| = 0 and as a consequence F(v;) = 0 for arbitrary
equilibria. This implies that v; = 0 and consequently the leading order system related
to (28) will be those corresponding to the second-order approximation,

F(vy) =0, (30)

for the case under consideration.

Now, we take for v, a similar expression to that given for v; in (19.2) with a slight
modification

da(? db® .
vz—{ 7 cos (wt) + e sm(wt)}u, (31)

where u’ belongs to a subspace of that space containing the vectors u. Former vector has
the property of satisfying F(u’) = 0 in virtue of Eq. (30).



266 J.A. ALMAGUER-ANDRADE

Substituting (31) into the system (27.1)-(27.4) with n = 1 we might obtain a set of
equations for py, pi, T\, and By, by using p = pT. These solutions are similar to those
from the ideal MHD, however they depend only on the time t* through both a@(t*)
and b(?)(¢*) while their spatial dependence appear through both u’ and the equilibrium
values. It is to say, we get similar solutions to that of the ideal-MHD but they are a more
restricted ones because of the replacement of u by u’. That solutions are:

pr = —g (", 1) V - (peu}), (32.1)
By = ¢P(t*,t)V x (u} x Be), (32.2)
p1=—gB(t*,t) (- Vpe + 7peV - u}), (32.3)
T, = ¢t 1) iu’ - Vpe + "”’:v cu' + i;:v - (peu'):l ; (32.4)

where
gDt 1) = P (%) cos(wt) + b (t*) sin(wt). (33)

Note that the momentum balance equation is fulfilled when u’ satisfies
V(u' - Vpe + 7PV -u') =Je x V x (u' x Be) = Be x V x V x (u’ x Be). (34)

From this relationship one gets a particular structure for the eigenvectors u' for a given
equilibrium state.

As remarked previously, the solutions for the present range of frequencies constitute
a more restrictive class respect to those from the ideal MHD. From (34) we can deter-
mine u’ which is required for further analyses, though, we do not perform any numerical
evaluation. Now we will proceed to examine the stability to the next order.

4.2. Third-order approzimation

To examine the case concerning to the third-order approximation, we use for the velocity
to third order a similar expression like that of the second order, (31), namely

da® db3)
vy = {-g?*—cos(wt) - T sin(wt) p u'. (35)
Substituting (35) and v, = 0 into (28), setting n = 2 and making use of (32)-(34), we
get, after taking its inner product with u’,

(u', Dy(u’; w =0))

“ W My w = 0)) (36)

e {am cos (wt) + b®) sin (wt)} =
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D, and AN; are familiar to reader, they arised when we analyzed the case of high
frequencies to second-order approximation. There is a difference, however, because we
use here u’ instead u and they were, for the case at hand, evaluated at w = 0 (see
Appendix C).

Of course, Eq. (36) is valid just when (u’, Nj(u’; w = 0)) # 0; then we have that
(u', Dy(u'; w = 0))/(u’, Ny(u'; w = 0)) > 0 implies that the amplitude decays linearly,
whereas if that quotient is negative the amplitude grows linearly; both occurring at the
‘short’ time-scale.

5. CONCLUSIONS AND FINAL REMARKS

In this section we summarize the points treated in this work. In order to study the sta-
bility of a dissipative plasma (i.e., there are present resistivity, thermal conductivity, and
viscosity) against small disturbances from a static equilibrium initial state, we separate
the dynamics by introducing two time scales. One of them is related to Alfvén transit time
whereas the other is concerned with the dissipation in the sense that it is the characteris-
tic time for such a processes. Basically, we have performed a decomposition in oscillating
modes but including two time-scales, thus this treatment appears in some extent as a kind
of generalization of the conventional normal-mode analysis. It worth mentioning that one
might to set up, at least, three different regimes (i.e., three characteristic time-scales)
corresponding to resistivity, thermal conductivity, and viscosity. However, in the present
paper we restrict ourselves to consider only two regimes, that defined by the resistive
diffusion and the Alfvén transit time.

Starting from a fluid model for a dissipative plasma contained within a rigid and per-
fectly conducting cylindrical vessel we have discussed sufficient conditions for stability for
the three lowest orders after performing an asymptotic expansion in terms of a positive
small parameter e. This parameter is related to the Lundquist number (in the present
case, also to the Reynolds number) as was discussed in Sec. 2.2. The time scales and
the expansion in power series of ¢ were restricted to positive integer powers. The main
advantage of the approach shown in this work seems to be, in the author’s opinion, that
it allows us to determine, in a precise manner, how the dissipation affects the stability
conditions at different characteristic times.

In particular, for the present case, we found that at high frequencies and to first-
order in € one recovers the well known solution for an ideal plasma whilst to second-
order one gets an oscillatory behavior (respect to t) and their corresponding ampli-
tudes depend on the first-order quantities in such way that the stability criterio (say,
bounded solutions) gives place to an exponential dependence upon t* [see Eqs. (24.1)
and (24.2)].

On the other hand, for the low frequencies regime, we found that the second-order
is the leading order. This latter implies that at this time-scale the first-order quantities
possess a similar behavior to that of the ideal-MHD but they are a more restrictive class of
solutions. When it is considered the third order approximation we found solutions which

oscillate respect to t with an amplitude which grows (or decays) linearly respect to t* [see
Eq. (36)).
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It is apparent that a nonlinear evolution arises as one increases the order of approxi-
mation, however, such case deserve a further study.

It is worth to notice a missing point in this work. The conventional device for studying
plasmas is an externally forced system. Thus it is required in order to get a more realistic
description to include in this kind of studies, for example, the presence of a source heating
whose role could be to sustain the plasma dynamics, through thermal waves, against the
dissipation.

Finally, we should like to add we believe that results discussed here are justified enough
to explore further extension; for example, to examine the effect of anomalous transport
and anisotropy upon the stability conditions.
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APPENDIX A. ION STRESS TENSOR

In terms of cartesian coordinates the Braginskii ion stress is given [13], assuming in
particular that the equilibrium magnetic field goes along the z—direction, by

Mar = =5 (Wae + Wiy) = 5 (Waz = Wyy) = 5aWiy, (A1)
Iy = _g(Wxx + Wyy) + %(Wm — Wyy) + n3Way, (A.2)
My = My = —% g -”’2—3(Wu —W,y), (A.3)
e =Mz = —paWa — uaWy., (A.4)
My, =1y = —poWy, + paWy,, (A.5)
I, = —uW, (A.6)

with W;; defined by (7). The viscosity coefficients have the following functional form:

p=096 LT, (A.7)
my
24 2
B $C°+2.23 A8
P m;ﬁT‘(16C4+16.12C2+2.33 ’ gl

62
P £(°+2.23 o
o= B (c" +4.03¢2+233)" (A9)
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p 4¢* +2.38
=2l , 10
B (16 T 16.12¢7 + 2.33) L0

P ¢*+2.38
= T (g*‘ +4.03¢2+2.33)°

(A.11)

where ( = w;7; and m; is the ion mass. In the limit of very large fields ¢ > 1, p; = 0 for
1 =1,...,4, therefore only x contributes to II. On the other hand, s is given by

—(1 - 3e||e||)W||||, (A12)

n view that tr(W) = 0, tr(W) being the trace of W. Here 1 is the unit tensor of second-
rank, the subscript ‘||" refers to the parallel direction with respect to the equilibrium

magnetic field Be, and e = Be/B. with B, = |B|. On the other hand,
_ 3 (miTy)*?
T4 /mplet

with A the Coulomb logarithm, and e the electron charge. Thereby (A.7), together with
(A.13), leads to

(4.13)

0.72
=i gt ipSfe (A.14)

V7 /midet

Thus the stress tensor becomes that given by the expression (6).

APPENDIX B. IDEAL-MHD SOLUTIONS

The ideal solutions for linear stability, like those obtained by Bernstein [1] using an energy
principle can be written as

=3 1 V- (pew) = Zf,:) t*,) 517 (x), (B.1)
k
Zf‘” )V x (Bexug) = ) A0, 1) B (x), (B.2)
k
=) [ O Vpe+ eV ul = -3 (D05, (B3
k k

where

S, 1) = wi[be cos(wit) — ag sin(wit)]- (B.4)



270 J.A. ALMAGUER-ANDRADE

For the perturbed temperature we have

T,
met t) [ ug - Vpe — (1 = 9)TeV - up — —ug - Ve

e

= Zf(l) (t°,t) (B.5)

APPENDIX C. THE EXPRESSION FOR Hp

Here we provide the detailed functional form of Hy. From (30) we have

oM
HQ:—VP2+JexIQ—BexVxIQ+—52—2, (C.1)
which, making use of (24)-(27) with n = 2, leads to
_ dpy
H, =V T +v1 - Vpr+ymV-vi+ (1 —7)(2n0de - 1
£ mI2+ V(oY + 1 VT)|
0B,
F+d s X |:——E)t_+vx(VI XBl—-'I]()Jl —-1]1.] ):|
- B, x V x [—%1+Vx(v1 x B, —no.]l—m.]e)]
8,01 8v1 32V1 8v1 3‘/1
o BRLERE L TN R Y e, i |
5t ot oe P\ m WL at
83, vy OBy o 0
o3 Pk et O i C.2
+ 5 XBimpegpe Y X G T v Sy (C2)

where we have taken j = 1. This expression may be written as
H; = [asin(wt) — b cos(wt))(2pew )

+ %[(b"’ — a?)sin (2wt) + 2abcos(2wt)| Ny

+ é[bcos(wt) — asin(wt)] Dy, (C.3)
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where the dot denotes derivative with respect to t*, and

Na(u; w) = V(u-Vp + 95V u) + Je x V x (u x By)
-B.xVxVx(uxB;)+2J, xB,

+ 2w?jpu — 2pew?u - Vu, (C.4)

. T =
Da(u; w) = (1 - )V [ch Jy =302 + KoV
e

+ %K,DV 2 (?VTG)] — nDJe x V x jl
e

e

T .
+%nDJexvx(%Je)+BeXVXVXJ1

— $m0Be x V x V x (ZT;J) e CAAL (C.5)

The spatial dependence is introduced through u and equilibria quantities.
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