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ABSTRACT. A few years ago Moshinsky and Szczepaniak introduced a Dirac equation linear not
only in the momentum but also in the coordinate, which they caBed the Dirac oscillator, as for
the large component of the eigenstate with positive energy, it reduces to a normal oscil1ator with a
strong spin-orbit termo This problem has interesting degeneracies that were shown by Quesne and
Moshinsky to be due to an 0(4) EIJ 0(3,1) symmetry Lie algebra. The equation was then generalized
to a two particle system with a Dirac oscillator interaction, for which the degeneracy disappears
for states of parity -(-I)i, with j being the total angular momentum, but remains for states of
parity (-I)i. \Ve show that for the latter, the degeneracy is due to a u(3) symmetry Lie algebra
if we take states of spin O and 1 separately or to an 0(4) symmetry Lie algebra if we take them
together. Furthermore wc consider the nonrclativistic limit of our problem which reduces it to an
operator Ñ - L . S where Ñ is the totalnurnber of quanta, L the orbital angular momentum and
S the total spin, whose eigenvalues are now s = Oor 1. In this case the symmetry Lie algebra for
the states of parity (-1)i remains the one discusscd aboye, but there is now degeneracy also for
states of parity -(-I)i, which is explained, by a reasoning similar to that for the single partide
Dirac oscillator by the symmetry Lie algebra 0(4) EIJ 0(3, 1) but now with a spin s = 1 instead of
s = 1/2.

RESUMEN. Algunos años atrás, :rvloshinskyy Szczepaniak introdujeron una ecuación de Dirac lineal
no sólo en el momento sino también en la coordenada, la cual llamaron el oscilador de Dirac, ya
que para la componente grande del eigenestaclo con energía positiva, éste se reduce a un oscilador
normal con un término de un fuerte acoplamiento espín-órbita. Este problema tiene degeneraciones
interesantes que, como ha sido indicado por Quesne y lvloshinsky, se deben al álgebra de simetría
o(4) EIJ 0(3, 1). La ecuación fue generalizada para un sistema de dos partículas con una interacción
del tipo de oscilador de Dirac para el cual la degeneración desaparece para los estados de paridad
-( -I)i, siendo j el momento angular total, pero se mantiene para los estados de paridad (-I)i.
Nosotros demostramos que para este último, la degeneración es debida al álgebra u(3) si tomamos
los estados de espín Oy 1 separados, o al álgebra o(4) si los tomarnos juntos. Además consideramos
el límite no-relativista de nuestro problema, el cual se reduce al operaror Ñ - L. S, donde Ñ es el
número total de cuantas, L el momento angular orbital y S el espín total, cuyos eigenvalores son
Oo 1. En este caso el álgebra de simetría para los estados de paridad (-1)' es igual a la discutida
anteriormente, pero existe ahora una degeneración para los estados de paridad -( -1)J, la cual es
explicada por un razonamiento similar al del oscilador de Dirac de una sola partícula, es decir,
según el álgebra 0(4) EIJ 0(3, 1), pero ahora con espín s = 1 en vez de s = 1/2.
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1. INTRODUCTlON AND SUMMARY

When Dirac [1) introduced his eqllation, his starting point was the rclativistic relation
between energy and momentum, i.e.

(1)

Instead of proceeding to convert it into a quantum mechanical equation by replacing
E and p by the operators ihiJ/DI and -ih'V and thus getting what is known now as the
Klein-Gordon equation, he linearized it and got the equation that bears his name.
If instead of the relation given aboye for a free particle, we wOllld have an added

term qlladratic in the coordinates, i.e., an oscillator interaction, we could think of the
possibility of linearizing it. This was done by Moshinsky and Szczepaniak [21 and it leads
to the replacement of the momentllm p in the Dirac equation by

p -+ p - irnwr/3, (2)

where m is tbe mass of tbe particle, w tbe freqllency of the oscillator, r tbe position
vector and fJ tbe matrix appearing witb that name in tbe ordinary Dirac eqllation. Tbe
substitution (2) gi\'es rise to wbat tbe authors called a Dirac oscillator, as for tbe large
component it reduces to a standard oscillator witb a very strong spin-orbit cOllpling termo
Actually Dirac equations linear in both momentllm and coordinates, bad been proposed

before [3] tbe one discussed in Ref. [2]. But these attempts cOllld be compared witb
Viking, Polynesian and Cbinese predecessors of Coulombs discovery of America, in tbe
sense tbat only the latter led to continuous and ever increasing contacts. By now there
are several dozen papers on the Dirac oscillator, some dealing witb tbe one body 1-11
case mentioned aboye, but otbers concerned with many body systems interacting through
Dirac oscillators [5].
Tbe one body problem presents interesting degeneracies that were explained group

tbeoretically by Quesne and Mosbinsky [6]. Most of these degeneracies disappear in many
body cases [5), wbicb furthermore may require the diagonalization of jinite matrices.
One problem tbat can be solved exactly [7]' and maintains, at least in part, interesting
degeneracies, is tbe system of two particles interacting througb a Dirac oscillator, and
the object of this paper is to analyze them from the standpoint of the corresponding Lie
algebras.
Tbe article is divided in essentially two parts, the first one is tbe relativistic problem

and tbe second its nonrelativistic limit.
In tbe first part we note the difference of the solutions of the problem wben tbe parity

is (-l)i, witb j being tbe total angular momentum, and tbose for parity _( -l)i. Only
tbe former bave accidental degeneracy and tbus we separa te tbe two cases with tbe help
of appropriate projection operators.
For parity (-1Ji there are symmetry Lie algebras of the u(3) type for the cases of spin

O and 1 separately, but more interestingly there is a 0(4) symmetry Lie algebra wben tbey
are considered together. The generators of all tbese Lie algebras are obtained explicitly.
In the second part, the nonrelativistic limit gives a Hamiltonian of the type Ñ - L . S

where Ñ is tbe operator that gives tbe total number of quanta, L is tbe orbital angular
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momentum and S the total spin in this case of eigell\'alue O or 1. For parity (-IJi the
symmetry Lie algebras are the same as for the relativistic case, but now there is also
degeneracy for parity -(-I)i and these are explaincd by the dircct sum Lie algebra
0(4) El) 0(3, 1).
Finally in the concluding section we mention some differcnt approaches to the problem,

including that of supersymmetry, though the detailcd discussion of the latter is left for
another article.
Our starting point will be the Eq. (4.11) given in ReLI7¡, amI in the following discussion

we refer to this paper by aroman number 1, and add it to all the equations quoted.

2. TUI; RI;LATIVISTIC PROBLI;M

In reference 1 we considered a Poincaré invariant equation for a two body system with a
Dirac oscillator interaction. As discussed in Section 4 of this paper [7), in the center of
mass frame, the equation for our system beco mes

[-jz(al - (2)' (p - iwrD) + 131+ I3z]¡jI = E¡jI, (3)

corresponding to Eq. (4.11) but where now we use relativistic units h = rn = c = 1, so
that the frequency w appears explicitly and we replace iD/DXo by its eigenvalue, that we
shall denote as E.
The r, pare relative position and momentllm respectively and

al = ( O <TI) e O) (~ n 0 (:2 <T2 ) (4a, b)O 0 O 1 ' 02= O '<TI

131=U ~I)0 (~ n, I3z=(~ n0(~ ~I), (4c, d)

B= (~~I)0 (~ ~I). (4e)

It is convenient to express all matrices of Eq. (4) in a 4 x 4 type as indicated in (4.41).
They act on state ¡ji of 4 components

(5)

as indicated in (4.31).
Introdllciug creation and annihilation operators by the definitions

(6)
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we can use Eg. (3) to express the componenls 1/121, 1/112 as operators in 1], e, "1, "2 acting
on 1/111, 1/122, and finally writing the latter in terms of 9+,9- by the relation

[9+] = ...L[1 -1] [1/111] ,
9- v'2 1 1 1/122

we see that (9+, 9-) satisfy the matrix operator eguation [71

(7)

o [~+_] == [4W(1]' S)2(e
E
.S) - E2 2E ] [9+] - O

'i' 4w[1]' e - L. S - (1]' S)(e. S)] - E2 9- - ,
(8)

which, in the present notation, corresponds to (4.81).
The states (9+, 9-) can be characterized by the eigenvalues of the operators

P, (9)

which we denote, respectively, as

N, j(j + 1), m, s(s + 1), :i:,

and where

(10)

J = L+ S, L = -i(1] x O, (11)

with P being the parity operator. These operators commute with O and among them-
selves.
The functions 9" can then be expressed in terms of the kets [71

IN(l,s)jm) = ¿(l¡t,saljm}RN/(r)YI,,(O,'I')X,o,
",O

(12)

where r, O, '1' are spherical coordinates associated with r, the ( I ) is a Clebsch-Gordan
coefficient, RNI(r) is the radial function of a three dimensional oscillator for N guanta
and orbital angular momentum l, YI,,(O,'I'}, Jl = l, l - 1, ... , -l, a spherical harmonic
and X,o a spin state with its projection a, where s = 0,1. The parity of the ket is given
by (-1)1.

2.1. Eigenstates and eigenva/ues of Eg. (3), and projection operators for states of dijJerent
parities

We note that for definite (N,j) and spin s = O we have a single state

IN(j,O)jm},

whose parity is (-1)j. For spin s = 1 and parity (-1)j we also have a single state

IN(j,1)jm),

(13)

(14)
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while for parity -( -l)i we have two statcs

IN(j :!: 1, l)jm). (15)

The calculation of the eigenvalucs E in Eq. (8) was done in Refs. [7,8] and in our ullits
it is given for s = O by

E2 = O or E2 = 4 + 4wN,

and for s = 1 and parity (-1)1 is

E2 = O or E2 = 4 + 4w(N + 1),

while for parity -( -l)i, E2 is the solutioll of the fourth order algebraic equation

(16)

(17)

The correspollding eigellstates are givell by Eqs. (4.21,4.22,4.231), with the coefficients
obtained in the Appendix A of Re£. [7J.
\Ve shall restrict ourselves to values of E > O, as the case E = O has been discussed

separately in a recent artic!e, while E < O will be rnentioncd in the cOllc!uding section,
in relation with sorne aspects of supersyrnrnetry of the problern that will be discussed in
a future papero \Ve then see that, except when j = O, the states of parity -(-l)i, have
no accidental degelleracy, so we will concentrate in this section on those of parity (-l)i.
Thus what we require first are projectioll operators that allow to separate the states of
different parities. This is easily achieved with the help of the operators L, j defined by

whose eigenvalues are, respectively,

l,j.

If we now consider the projectioll operator

(19)

(20)

P = (L - j - l)(j - L - 1), (21a)

we see that its value is 1 if l = j and O if l = j :!: 1. Thus applying it to the operator O
of (8) we see that

POP (21b)

allows only eigenvalues E correspollding to states of parity (-l)i.
Frorn now on we shall refer to the syrnrnetry Lie algcbra of the two partic!e systern with

Dirac oscillator interactiolls, as the one whose generators cornrnute with PO P of (21b).
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2.2. The u(3) symmetry Lie algebra o/ the states with parity (-l)i and spin s = O or 1

The operator O of (8) with spin s = O reduces to

and it is immediately clear that the operators

(22)

r=l,O,-l, (23)

commute with O and that, furthermore, satisfy the commutation relations

(24)

so that they are the generators of u(3) Lie algebra and in the projected notation used
in (21) these generators beco me

(25)

(26)

where [1 - (82/2)1 guarantces that for spin 1 the bracket vanishes while for spin O it
becomes 1.

The creation 'lq and annihilation ~r operators are the spherical components of those
defined in (6) and their matrix elements with respect to the states IN(j,O)jm) are given
by [9]

(N + l(f,O)fm + ql'lqIN(j,O)jm) = (N + l(f,O)fII'lIIN(j,O)j)(jm, Iqlfm + q)

= { [(N + j + 3)(j + 1)] ~8 .
(2j + 3) (.)+1

[
(N-j+2)j]~ }.+ (2j _ 1) 8(.i-1 (Jm, 1qlfm + q),

while that of ~q can be obtained from (26) by Hermitian conjugation. In (26) the dou-
ble vertical lines indicated reduced matrix elements while ( I ) is a Clebsch-Gordan
coeflicient.

If we now turn our attention to the states IN(j,l)jm) whose parity is (-l)i but the
spin is 1, then O has the full form (8) multiplied by the projcction operators as in (21b).
To get the generators of the u(3) symmctry Lie algebra we need to find a creation operator
'l~ whose reduced matrix elements with respect to the states IN(j,l)jm) in the ket, and
(N + l(j :l: 1, l)j :l: 1m'I in the bra, are the same as those of in (26).
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'Ye shall achieve this ohjective by first using standard Racah algebra and results in the
curly bracket in (26), to obtain for the onlillary creation operator TI. the reduced rnatrix
elernent [10]

(N + l(e l)eIITlIIN(J' I)J') = { [(N + j + 3)(j + 1)r b(j + 2)1~ ó ., , (2j+3) (j+1) (,)+1

[
(N - j + 2)j] ~ [(j + 1)(j - 1)1~ó. }

+ (2j-1) j (,)-1'
(27)

\Ye now note that the operator i defined in (19) is diagonal with respect to all the
quanturn numbers in the ket IN(e, s)jm) and with eigenvalue j. Thus the operator iTl.-
TI.i has reduced rnatrix elements of the form

(N + l(e l)elli, _ iIIN(' 1)') = { [(N + j + 3)(j + 1)] ~ b(j + 2)1~ ó ., ! TI J, J (2j +3) (j + 1) (.)+1

_ [(N-j+2)j]~ [(j+l)(j-1)I~ó. } (28)
(2j _ 1) j (,)-1'

Thus we see that

(29)

will have only matrix elements with e = j + 1 if we use the + sign or e = j - 1, if we use
the - sign, so long as we are restricted to states of parity (-l)i. lt is clear then that the
new creation operator TI~will have its reduced matrix e¡ements

(N + l(e, l)ell'/IIN(j, l)j),

in exactly the same form as (26) for TI. if we write

(30)

TI~= p{ p(i - n-~¡j+ n-~['!q + i'!q - '!qil

+ ~[Tlq+ TI.i - jTlqJ(j +n-~¡j-l)-U}P. (31)

The corresponding annihilation operator is ~ql = (TI~)t and thus it can be written

immediatcly if we recall that i is Hermitian ami '!~= ~q.

The generators of the u(3) symmetry Lie algebra are then given by

(52 /2) TI~e' (52/2), (32)
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as P in (31) limit us to states with parity (-IF, while (52/2) is 1 for spin s = 1 and °
for s = O.
It is important tu note that in the states

[N(j,I)jm) (33)

the one with j = ° does not exist. Thus the dimensionality of the number states cor-
responding to the given N is not the one that is normally associated with u(3), which
is (1/2)(N + I)(N + 2). This situation was discussed extensively in Re£. [91, where it
was shown that in quantum meehauics u(3) does not explain eompletely the accidental
degeneracy for s = 1 though u(3) is a symmetry Lie algebra of the eorresponding classieal
problem. This can also be seen in Eq. (31) where clearly Il~does not exist if the eigenvalue
j of j is j = O.
To find the full symmetry algebra for parity (-l)i we now tum to eonsidering the

states with spin ° and 1 together, and will find a 0(4) symmetry Lie algebra.

2.3. The 0(4) symme177J Lie algebm Jor states oJ parity (-1 F and both spins

\Ve start by giving in Fig. 1 the leveis for parity (-I)i and both spins s = ° ano s = 1
inoieating on the right of the levels the total angular momentum and parity as r and
above the levels the values (N, f). Gn the ordinate we give the number v = N + s with
N being the total number of quanta, whieh, from Eqs. (lG), (1i), is relateo to the square
of the total energy by

(34)

\Ve note that when v is even we have states with r = 0+,1-,2+,3-, ... , v+ while
when v is odd j' = 1-,2+,3-, ... , v-. This immediately suggests [11] that the syrnmetry
Lie algebra is 0(4) with the representation [v,O) for v even and Iv,11 for v ood.
The set of states we have to deal with, in the notation (12), now have the form

Iv - s(j, s)j",) :; [vj",)" (35)

where from (34), v - s is the number of quanta, s = 0,1 and j = v - s, v - s - 2, ... ,°
or 1 depending on whether v - s is even or odo.
Gur objeeti'.e now will be to find the generators of an 0(4) Lie algebra that conneet all

states (35) of fixed v. For this purpose \Ve rememher that \Ve have at our disposal only
combinations of opemtors

TJq' ~q = (-I)q~_q, Sq = ~(Ol + (2)q, S~ = ~(Ol - (2)q,
o

q=I,O,-1. (36)

\Ve would like first to find operators that relate Ivjm), with ¡vj:l: 1m')", in terms of
those in (36). For this purpase \"'OC note that we ha\'e tlle reduccd matrix clcments of 11y

\Vith respeet to the states (35) i" (26) ami (2i) for s = ° or 1, \Vhere \Ve need to replaee
N by v and v - 1 respeetively.
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v
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(N,Q) J'T (N,Q) J'T
S 'O s' 1

V, N+s
FIGURE 1. Levels oí the spectra oí the rclativistic problem for the cases when s = O and s = 1,
whcre in both j = f. The oashed lille surroullds aB example oí the kind of degcllcracy we want lo
explain.

\Ve shall slarl by lIotiug lhal lhe diffeTl'lIce of lhe spiu of lhe lwo parlides, giveu by
lbe veclor of compouenls S~= t(al - a2). cau ouly couuecl a state of lolal spin s = O
with s = 1 or viceversa. This is due lo the fact that lhe matrix element

(3i)

(where the 1/2 COlT<'SIHludslo lhe spius of eaeh iudividual parlirle of Ihe syslem) chauges
by a phase factor

(38)

whcn we intcn:ilange 1 alld 2 of the two particles. Thus (37) \'anishes ir s = s',
\Ve now introdu('c Bew vcctor crcatioll 1/ and annihilatiotl € opcrators givcll by prcviolls

ones 1/, e multiplied veclorially with S', i.e.,

- [ '] Ie. = e x S • (39)
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and whieh have the hermiticity property

{h x S']:r = - (-1). [e x st.. (40)

Using standard Hacah a.lgebra [101, as well as the rednced matrix elements of 1/, e given
in (2G), we obtain for 'j., e. the followillg expressions, ill which bra and ket are restrieted
to sta tes of parity (-1)1:

I

/ , 1, .) [U + 2)(N + j + 3)] ;;
\N + 1(j', 1)j'11 [11 x S] IIJ' U,O)) = 2(2j + 3) b)',j+l

I_ [U - 1)(N - j + 2)] ;; b, . (41)
2(2j - 1) ) ,)-1'

The reduced matrix element of [e x S'I~can be obtaiued from (41) with the help of the
hermiticity eouditiou (40).
\Ve uote that iu the reduced matrix eleull'uts of 'j., ¿.' where the ket has orbital and

total angular momeutum j, the correspoudiug values for the bra are eith,'r j + 1 or j - 1.
\Ve would like though to have operators iu which these two possibilities cau be separated.
'\'e eau aehieve our pnrpose by defiuiug, as was doue iu Eq. (29) for the case of spiu 1,
the operators

with the hermiticity n'latiou

-cIo I {. :J: (J-' . J-)}'1q = 2" 71q '1q - lJq 1 (42)

(43)

(44 )

\Ve uow uote frolll Fig. I that, for example, if we have v e\'eu the states (N, £, s) corre-
spoudiug to it, where N is the total number of quama, £ the orbital augular 1Il0meutum
and s the spiu, go as follows:

(v,O,O),

0+,

(v - 1,1,1),

1-,

(v,2,0), (v-I,3,1), ... ,
... ,

(v, v, O), (45a)

(45b)

where below (45a) we put the j' of (45b). \Ve see theu that alternatively we decrease or
inerease the uumber of quauta by 1, aud at the same time iucrease or decrease the spin
between O aud 1. The e = j iucreases mouotouical1y from O to v.
From Hef. [91 we see that the type of operators we require are of the form

F' = PSi+pq I.,q'

F" = Pi¡+ SP. .'
(4Ga)

(4Gb)
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if we want to move from left to right in the sequenee of states (45a). In (46a,b) the
operator S is defined by

(47)

with eigenvalues ° or 1, and is introduced in (46a,b) to gnarantee that the bra for F~has
spin 1 and thus, from (37), the ket has spin O, while F~'has bra of spiu ° and ket of spin 1.

If we want now to move from right to Icft in the sequenee of states (45a) we need the
operators

G~ = Pi¡;¡SP, G~ = PS¿;¡P, (48a, b)

where the S appears for similar reasons to those of the previous paragraph.
The presenee of the projection operators P of (2Ia) guarantees that F~,G~,F~',G~,

act only on states of parity (-I)i.
From Eq. (41) we see that the only non vanishing reduced matrix elements of the

operators (46), (48) are the foHowing
I

(N - lU + 1, l)j + lI1F'IIN(j, O)j) == ¡(vj + lllF'lIvj)o = [(j ;;]~ ~ j) r (49a)

!

(N + lU + 1,0)j + lIIF"IIN(j,l)j) = o(vj + ll1F"lIvj)¡ = [j~~~~~)]' (49b)

I

( (. . 11'11 (. ).) (. IIG'II.) [U+l)(V-j+l)]'N+IJ-I,O)J-l G N J,IJ =ovJ-l VJ 1=- 2(2j-l) ,

(49c)

I

( (. . 11"11 ,(. ).) (. IIG"II.) [U-l)(V+j+l)]'N-IJ-l,I)J-l G f\ J,OJ =1 vJ-l VJ 0=- 2(2j-l) ,

(49d)

where we used the relation (34).
\Vith the help of Eqs. (46), (48), (49) we may write explicitly the generators of the 0(4)

symllletry Lie grouJl, when we have the representations [v, O] for v e'.en and Iv,11 for v
odd.

To proceed \Ve first recaH that for the 0(4) ::J 0(3) chain, the generators are [111 the
angular 1Il01llentum L, which we denote by L;, i = 1,2,3 and the Runge-Lenz vector A;,
i = 1,2,3 \Vhich have the cOlllmutation relations

The basis for the representation is a ket of the form

1[1', q]fm),

(50a, b, c)

(51 )
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where [P,q], l, ni are respectively the irreps of 0(4), 0(3), 0(2); with p, q being integers
giving respectively the maximum and minimum angular momenla in the representations
of o( 4),

The reduced malrix element of Li wilh respect to the stales (51) is diagonal in l and
has lhe value [e(f + 1)];, while that oCAi is given by [111

1

([P ]e"IIAII[P le) = [(P + e + 2)(p - e)(e + 1 - q)(e + 1+ q)]' b"
,q,q (f + 1)(2e + 3) l,l+1

+ q(P+I),b[",l
[e(f + 1)],

,
[
(P +f + I)(p + 1 - e)(e + q)(e - q)] , b (52)

- l(U - 1) [",l-1.

\Ve nccd no\\' to writc Aq in terms of the opcrators F~,F;', G:
l
, G~, ¡V, j, S, in such a

way lhat the lllatrix elemenls wilh respect lo the stales oC the form (51) are lhe same as
those in (52).

If vis even [P, ql = Iv, O]' and lhus from (49) and lhe faet that the matrix elements with
respeet to the states (51) of N, j, S are diagonal with eigenvalues N,j, s respectively,
gives us the following generators for the 0(4) Líe algebra:

Jq = Lq + Sq, Lq = -i b x eJ~, Sq = !(a¡ + a2)q, (53)

I I

A = F' [2(N + S +.j + 2)(j + 1)]' + F" [2(N + S -. j)(j + 1)] ,
q q (J + 2) q J

I I

+ [2(/0/ + S +.j + 2)(j + 1)] , G' + [2(N + S -. j)U + 1)] , Gil (54)
(J+2) q J q'

with q = 1,0, -1 and F~, F~', given by (46) and G~, Gil, by (48).
If vis odd lhe represenlation [p,q) = Iv, 1) and so f;om Eqs. (49), (52) the generators

of the subgrouJl 0(3) of 0(4) remain the Jq of (53), but now the operator Aq is given by

A = F' [2(N + ~ + j + 2)j]; + F" [2(N + 5.- j)U + 2)] ;
q q (J+I) q (J+I)

+ (liT + S + 1)[jU + l)¡-l Jq

+ [2(N + ~ + j + 2)j] 1G' + [2(N + 5.- j)(j + 2)] 1Gil.
(J+I) q (J+I) q (55)



334 M. MOSIIIl'SI<Y ET Al,.

\Ve have thus aehieved our objeetive of writing explieitly the generators of the 0(4)
symmetry Lie algebra, in the form Jq, Aq, '1 = 1, O,-1 of E'ls. (53), (54) for aH states
with v even amI of Eqs. (53), (55) for aH odd v.

As a last point we note that 0(4), in the notation (50), has the two Casimir operators [11]

Cz = L. A,

(56a)

(56b)

and if the rcprcsentation is {p, q]l then the ('ig:cIlvalues of thcsc opcrators, \....hic}¡ wc denote
by (C¡), (Cz) have the form [111

(C¡) = (1,2 + qZ + 21'),

(Cz) = 2(1' + ¡)r¡.

(5ia)

(5 ib)

For thc rcprcscntatioll [p, q] = [v, O] corresponding to CVCll v, tlle valuc of t}¡csc Casimir
operators are

(C,) = v(v + 2),

while for v odd the representation is Iv, ¡j and

(58a,b)

(59a, b)

In the next seetion we turn our attention to the nonrelativistie approximation of our
problem.

3. SY~IMETI¡Y LIE ALGEBIlA FOI\ TIIE ~Ol' IlELATIVISTIC L1~IIT OF OVI¡ 1'1l0llLDI

In the previous seetion we discussed the relativistie problem for the system of two particles
with a Dirae osciHator interaction, which Jed us to the operator of Eq. (8) acting on a
two component wave function (4)+,4>-). If we write Eq. (8) explicitly as a system of two
equations in 4>+,4>-, ami eliminate 4>- bclwccn them, we get for 4>+ (whieh from now on
we designale simple as 4» the equalion

where JV = 1/ . e and we eon!inuc using the relativistie units 1, = m = e = 1.
EquatioIl (GO) stiB corrcspolHls lo lIle full relativistic problcm out IlOW in tCfms of a

single wavc fUllction ~. Tú find lhe nonrclativistic approximation wc nole that, in normal
units, thc cllcrgy associatcd with the oscillator inlcraction is ftw while tlle fest cncrgy in
mc2, and thus we obtain lhe non relativistic case if ttw « mc2 In units where /¡ = m =
r = 1. t hE"'l:\.st incoualitv lwcomf's W « 1 amI. in t hat case, we can disreganl lhe tcrm
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with W2 iu (GO). \\,,, ha,'e theu states ~ with £ = 0, which were dealt with iu another
article [121 plus ¡hose satisfying the equatiou

f~:; tl£2 - 414>= w(Ñ - L. 8)4>, (G1)

where f is th" uOlll'clativistic energy, as £ is close to the rest mass 2 for the two particle
systelll so ¡hat ~(£ - 2)(£ + 2) ~ £ - 2 = f.

\\'e now pro(,l'l'd to discuss the accidental degeueracy of the eigenstates of lhe operator
iu the right ha ud side of (G1). Agaiu the parity is a guod quantum number as lhe operators
N, L, 8 are im'ariaut uuder refleclion. Thus we can consider separalely lhe slales of parity
(-1)i awl - ( -1)i. The former ha,'e ( = j allll so lhe eigenvalu"s v of Iir - L . 8 are

v :; N + 1 if s = 1. v = N if s = 0, (62)

aud thus we han' exa('tly thl' same situatiou as for the slates of parity (-1)1 in the
rl'iati"istic pro!>h'ul. The symmetry Lie alge!>ra is theu 0(4) aud has lhe geuerators given
iu Eqs. (53), (5.1) if 1/ is e\'('u aud Eqs. (53), (55) if vis odd.

For parity -( -1)J, ( = j :l: 1 aud thus the situatioll is quite differeut frolll lhe relativis-
tic case whN(', fmlll Eq. (18), we saw that no accidental degeueracy was preseut. lt is
('oun'Bient IlOWto write tlle statt'S (15) in tefms of the orbital angular momenlulll t, in
the fonu

IN((, 1)(:l: 1m),

where

( = N, N - 2, N - 4, ... 1 01' 0,

~owc can deBote, as usual,

,\' = 211 + (; (,11 = 0,1,2, ...

The uOlll'l'lativistic eUl'rgy iu Eq. (G1), divided by w, i.l'. (f/W), is lhen

(63)

(64)

(65)

(f/W) = e\' + (+ 1 = 2(11 + í) + 1 = 2(11 + j + 1) + 1:; 2v + 1, if j = (- 1, (GG)

(f/W) = N - ( = 211, if j = (+ 1. (G7)

The st at l'S (G:J) wit h t he - sigu i.l'. j = ( - 1, have from (GG) lhe value v = 11 + j + 1,
so tItat tllr degenerar)' is v as \\'c can llave j = O,1,2, ... 1 V - 1, as sccn in Fig. 2. The
sYIllIlll'try Lil' alg,,!>ra Sl'ems th"n to be 0(4) with irrep Iv - 1, O]' and we shall derive ils
geIlC'rators in tll(' following slIbs('ction.

Ou ¡he othn haud ¡he states (G3) with the + sign i.l'. j = (+ 1, are an infiuite set as
(f/W) = 211 is iud"I)('ud"nt of (, so that j can take the vallles j = 1,2,3, ... , as seeu in
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n

V 4 (8,0)(9,0(10,21' 1+ 2- 3+ .., , ,

4 (7,1)(6,2)(5,3)(4,4) 0-1+ Z- 3+, , ,

3
(6,0) (7,0(8,2) 1+2- 3+', , ,

3
(5,n (4,2) (3,3) 0-1+ 2-, ,

2
(4,0) (5,1)(6,2) 1+2- 3+', , ,

2
(3,11 (2,2) 0-'+,

(2,0) (3,1)(4,21 '+2- 3+.., , ,

(1,1) 0-

(0,01 (1,1)(2,2) 1+2-3+..

°
' , ,

° (N,.1.) JlT (N,!) JlT

s '1 .l.' j +1 V,t(N+j+i) s = 1 .1.= j - 1 n=t(N-jt1)

FIGURE 2. Levels of lhe operalor Ji' - L . S, FIGUIlE 3. Levels of lhe operalor Ñ - L . S,
wilh eigenvalue 21' + 1 where v = HN + j + 1) wilh eigenvalue 2n where n = ~(N - j + 1)
for lhe case s = 1, e = j + 1. for lhe case s = 1, e = j - 1.
Fig. 3. The symmetry Lie algehra is then a non compact one, and \Ve shall sho\V in the
last subsection thal it is 0(3, 1).

3.1. The 0(4) sym",etl'Y Lie algebm when f = j + 1
In the states of Ec¡. (G3) \Vilh a - sign, \Ve replace f by j + 1 and N by 21' - j - 1 lo \Vrite

[21' - j - l(j + 1, I)jm) = 1[1' - 1,O]jmj. (G8)

The ket on the right hand side of (G8) corresponds to the [[P,q]fm) appearing in (52)
if \Ve lake

1'=1'-1, q=O, f=j,

and the reduced matrix clem('nts

![/)- 1,0lj" 11.41111'- 1,0]j j

(G9)

(70)
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of the Runge-Lenz vector A of Eq. (50) are given oy (52) with the suhstitution (69).
To \Vrite Aq, q = 1,O, -1 explicitly in terms of the creation 71q and annihilation ~q

operators and lit, j, L, S, \Ve need comoinations of 'lq in the form of Eq. (29), as well as
of its hermitian conjugate, to guarantee that there are contrioutions only when j" = j + 1
or j - 1. Furthermore our operators should apply only to states of the form (68) \Vhere
f = j + 1 and v is fixed, so \Ve u('ed the proj('ction operator

p+ == W. + 1 - j)(L - j) (71 )

which vanish('s for f = j or £ = j - 1 out o(,col1les 1 for £ = j + 1. \Ve also need to use
the projection 0lll'rator Sto guaranlee that our kets have only the spin s = 1.

\Ve now introduce the opcrators

(72a)

(720 )

that have the herllliticity property

(73)

The only reduced lllatrix elelllents of Fq• Gq that are different frolll O are the follo\Ving:

(N + 1(j,I)j -IIIFIIN(j + 1,I)j) == !Iv -1.0]j -lllFlllv -1,0]j1

(75)=

I

= [2(j + I)(v - j)]' (74)
(2j + 1)

(N - 1(j + 2, I)j + 111GilN(j + 1, I)j) == I[v - 1,O]j+ IllGlllv - 1,O]jI

[(2j + I)(j + 2)(2" - 2j - 2)J~
(2j + 3)

as can oc seen from (26).
Turning no\V our attention to the relation (52) \Vith the notation (69), we see that the

operator Aq can be written as

4 = -G [(IV + L + 2j + 2)(j + I)(Ú + 3)] ~
'q q 4(j+2)(Ú+I)

_ [U\' + L + 2/ + 2)(~ + I)(Ú + 3)] ~F
.1(J + 2)(2J + 1) q

(76)



338 M. MOSIIINSI<Y ET AL.

and these operators for q = 1, O, -1, togetlter witlt tite tolal angular mOlIlelltulIl Jq,
'1 = 1,0, -1 of (53) conslitule lite six generalors of 0(4) symmetry Lie algebra satisfying,
in earlesian eompollenls, lite commnlalion rules of Eq. (50).

3.2. The 0(3,1) syrnrnetry Lie alyebra 11Ihene = j - 1

In tite Slales of Eq. (G3) willt a + sign we replaee e by j - 1 and N by 2n + e = 2n + j - 1
lO wrile

12n + j - 1(j - 1, l)jm) == 1[-1 + in, l]jm}. (77)

\Ve now proeet'd lo explain tite nolation lltat we use for lhe ket ill tite eurIy braekel,
wltielt requires a diseussion of tite generalors, redueed lIlalrix elements aud Casimir op-
erators of lhe o(:l, 1) symmetry Lie algebra.
Aceording lo lit" diseussion of I3iedenltarn [11], and lite one in !lef. [9] for tite one

body Dirae oseillalor we can pass from lite generalor Aq of 0(4) to lite aq of 0(3, 1) by
the substitution Aq - -iaq and lite redueed matrix elements of aq willt respeel to the
slates (77), ean be obtained by analytie eontinuation from those of Aq in Eq. (52).
\Ve need thonglt to eharaeterize tite irrep of 0(3, 1) lo whielt tite kel (77) belongs.

For litis purpose we note tltat for the irrep [P, '1) of 0(4) the eigenvalue of lite Casimir
operalor el of (5Ga) is (p2 + '/ + 2p). Tite eorresponding Casimir operator of 0(3,1)
will be designaled as c¡ ami, from the analytie eontinnation indieated in lite previous
paragraplt, it Itas tite form

(78)

wltere we replaeed L in (5G) by tite total angular lIlomentum J of tite present problem.
For the eigenvalue (el) of tltese Casimir operators we have lo replaee p by a eomplex

number [11]

k = a + ib, a, b rcal, (79)

as we want lo deal with represeutation for tite eontinuous series, wltile '1 remains equal
lO 1 as j = 1 is lite lowest valne of lhe angular momentum. \\'e Itave then lltat, with the
rcplacemcnts indicated, we obtain

(el) = k2 + 1+ 2k = a2 - b2 + 2iab + 2a + 2ib + 1. (80)

As el is an hCflllit.ian opcrator (el) :;hould be real and this rcquircs that a = -1, so
our irreps are eltaraeterized by Ik, '1] witlt k = -1 + ib, q = 1.
The seeond Casimir operator C2 of (57b) lranslales into

c2=-iJ.a (81)
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and, as tbe eigenvallle 2(k + I)q becomes 2ib, we see tbat witb tbe factor -i in (81) we
get tbe eigenvalue

(C2) = 2b. (82)

011 tbe olber balld from E'I. (Gil \Vesee tbat «/w) = 2n so tbis illllllediately suggests
tbat b = n, alld as q = 1, the irrep of 0(3, 1) is cbaracterized by [-1 + in, II as it appears
in Eq. (77).

Tbe redllced matrix elemellts of "q, \Vitb respect to tbe states 1[-1+in, IJjm} can tben
be obtailled from E'I. (52) by analytic contilluation wben we replace p by -1 + in alld q
by 1. so t bat \Ve get

I

{
[ 2 ( . 1)21'( . ry) }'" '. n+]+ ]]+_{l-1 + in, IJj 11"IIf-l + 11l, 1]]} = (j + 1)(2j + 3) 6j",j+1

n---~b-II.
[j(j + 1)1~ ) ,)

I

{
(n2 +j2)(i -1)}'

- j(2j - 1) 6)",j_l' (83)

To write "q, q = 1,0, -1 explicitly ill terms of tbe creation 'lq alld allllibilation (q
operators as \Vell as of Ji¡, j, L, S, \Veneed combinatiolls of tbe "q ill tbe form of Eq. (29)
as well as of tbeir bermitiall conjllgates, to guaralltee tbat tbey cOlltribute only wben
j" = j + 1 or j - 1. Furtbermore tbe operator Jq, \ViIIconnect states of tbe same j in bras
and kets of tbe form (ii).

As we need operators tbat apply only to states of tbe form (77), wbere e = j - 1 alld
n is fixed, \Ve require tbe projection operator

(84)

whicb vanisbes for e = j or e = j + 1 but becomes 1 for e = j - 1. \Ve need also to use
the projection operator S to guarantee that our kets bave the spin s = 1.

\Ve no\V introduce tbe operators

/q = P-S~hq + (j"q - 'lqj)}Sp-,

9q = p-SH(q - (j(q -(qj)}Sp-,

that have tbe bermiticity property

(85)

(8G)

(8i)
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The only redueed matrix elements of fy, 9. that are different fmm O are the fol1owing

(N + 1(j, l)j + 111f11N(j-1, l)j) = {[-1 + ill, l]j + Illflll-1 + ;11, l]j}
1

= [j(211 + 2j + 1)] 2
(2j + 1)

(N - 1(j - 2, I)j - 111911N(j- 1, l)j) = {[-1 + ill, 11j - 11HII-1 + ;11, 1]j}
I

[(2j + 1)(j - 1)(211 + 2j - 1)] 2
(2j - 1)

(88)

(8!l)

as can be seen fmm (26).
Turning now Olll' attention lo the redueed matrix elemeuts (83), (88), (8!l), we see tbat

t}¡c operator uq can be writtcn as

A _ A A

2
- !

_ 1 {(2J - l)(J + l)[(N - L) + 16J2
]} 2 1', • •. -1

!l. _ '29• ••••• - 4(1\ - L)[J(J + 1)1 .J.
2(2J + I)J[N - L + 4J - 2]

(!lO)

and [Of q = 1,0,-1 the operators aq with the tolal angular momentUll1 Jq1 q = 1,0,-1
of (53), constitute the six gel11'rators of 0(3, 1).
Thus we have completed the determinalion of all the generator, of the sO'mmetrO' Lie

algebras assoeiated with the operator IV - L ' S,
\\'e shall conclucle by discussing some general aspeels of the problems analyzed in tbis

papeL

4. CO¡O;CLUSlOlo:

As we mentioned afler Eq, (18) we onlO'dealt, in the relalivistie problem, with the positive
energO' le\'els, The ones of energO' E = O han, been diseussed in anolher publieation [12],
but there remaiu 1hose in whieh the energy is negative, lt was shown by Quesne [131,
wheu analyzing the single particle Dirae oscillator, that using the Dirae assumption that
all n{'gative energy levels are filled [1]' those with E < 0, can be considered to have
positive energy but for the antiparticle with frequency -w instead of w, as happens also
for ckct.rons, \vlH.~re tlle llegati\'c cnergics states are lIladc positi\'c for t}¡c alltiparticlc
w}¡pn thc charg:c is changed lo -c. \Vith this typc of approach QI1CSIlC \Vas allle lo analyzc
together the states of POSili\'e aud negalive energy, usiug tite fOflualism of supersymmetry,
\Ve plan to exteud, iu a future publicatiou, litis type of aualysis to the 11110 particle system
with a Dirac oscillator interactioll.
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Finally we would like to point out that in a rece lit article ~loshinsky, Quesne and
Loyola [14), analyzed the problem of all possible sYlllllletries for the til'O dimensional
harmollic oscillator for Hallliltonians that are linear functions of the number operator
Ñ alld orhital allgular 1Il0mentum lÚ. The results of the present paper indicate that a
similar consideralioll could be carried out for the three dimensional oscillator with spin,
where the lattl'r fOlIld take the ,'alues s = 0,1/2,1 or s = O and I together. \Ve intend to
look also illto t his problem ill a future publication.
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