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ABSTRACT. A few years ago Moshinsky and Szczepaniak introduced a Dirac equation linear not
only in the momentum but also in the coordinate, which they called the Dirac oscillator, as for
the large component of the eigenstate with positive energy, it reduces to a normal oscillator with a
strong spin-orbit term. This problem has interesting degeneracies that were shown by Quesne and
Moshinsky to be due to an o(4) ®0(3, 1) symmetry Lie algebra. The equation was then generalized
to a two particle system with a Dirac oscillator interaction, for which the degeneracy disappears
for states of parity —(—1)7, with j being the total angular momentum, but remains for states of
parity (—1)7. We show that for the latter, the degeneracy is due to a u(3) symmetry Lie algebra
if we take states of spin 0 and 1 separately or to an o(4) symmetry Lie algebra if we take them
together. Furthermore we consider the nonrelativistic limit of our problem which reduces it to an
operator N — L - S where N is the total number of quanta, L the orbital angular momentum and
S the total spin, whose eigenvalues are now s = 0 or 1. In this case the symmetry Lie algebra for
the states of parity (—1)’ remains the one discussed above, but there is now degeneracy also for
states of parity —(—1)7, which is explained, by a reasoning similar to that for the single particle
Dirac oscillator by the symmetry Lie algebra o(4) @ o(3,1) but now with a spin s = 1 instead of
g ="1/2.

RESUMEN. Algunos afios atras, Moshinsky y Szczepaniak introdujeron una ecuacién de Dirac lineal
no sélo en el momento sino también en la coordenada, la cual llamaron el oscilador de Dirac, ya
que para la componente grande del eigenestado con energia positiva, éste se reduce a un oscilador
normal con un término de un fuerte acoplamiento espin-6rbita. Este problema tiene degeneraciones
interesantes que, como ha sido indicado por Quesne y Moshinsky, se deben al dlgebra de simetria
o(4) ® 0(3,1). La ecuacién fue generalizada para un sistema de dos particulas con una interaccién
del tipo de oscilador de Dirac para el cual la degeneracién desaparece para los estados de paridad
—(—1)7, siendo j el momento angular total, pero se mantiene para los estados de paridad (—1).
Nosotros demostramos que para este dltimo, la degeneracién es debida al dlgebra u(3) si tomamos
los estados de espin 0 y 1 separados, o al dlgebra o(4) si los tomamos juntos. Ademds consideramos
el limite no-relativista de nuestro problema, el cual se reduce al operaror N —L-S, donde N es el
niimero total de cuantas, L el momento angular orbital y S el espin total, cuyos eigenvalores son
0 o 1. En este caso el dlgebra de simetrfa para los estados de paridad (—1)7 es igual a la discutida
anteriormente, pero existe ahora una degeneracién para los estados de paridad —(-1)7, la cual es
explicada por un razonamiento similar al del oscilador de Dirac de una sola particula, es decir,
segiin el dlgebra o(4) @ o(3,1), pero ahora con espin s =1 en vez de s = 1/2.
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1. INTRODUCTION AND SUMMARY

When Dirac (1] introduced his equation, his starting point was the relativistic relation
between energy and momentum, i.e.

E? = pc® + m2ct. (1)

Instead of proceeding to convert it into a quantum mechanical equation by replacing
E and p by the operators i%9/9t and —ihV and thus getting what is known now as the
Klein-Gordon equation, he linearized it and got the equation that bears his name.

If instead of the relation given above for a free particle, we would have an added
term quadratic in the coordinates, i.e., an oscillator interaction, we could think of the
possibility of linearizing it. This was done by Moshinsky and Szczepaniak (2] and it leads
to the replacement of the momentum p in the Dirac equation by

P — p — tmwrf, (2)

where m is the mass of the particle, w the frequency of the oscillator, r the position
vector and ( the matrix appearing with that name in the ordinary Dirac equation. The
substitution (2) gives rise to what the authors called a Dirac oscillator, as for the large
component it reduces to a standard oscillator with a very strong spin-orbit coupling term.

Actually Dirac equations linear in both momentum and coordinates, had been proposed
before [3] the one discussed in Ref. [2]. But these attempts could be compared with
Viking, Polynesian and Chinese predecessors of Coulombs discovery of America, in the
sense that only the latter led to continuous and ever increasing contacts. By now there
are several dozen papers on the Dirac oscillator, some dealing with the one body [4]
case mentioned above, but others concerned with many body systems interacting through
Dirac oscillators [5].

The one body problem presents interesting degeneracies that were explained group
theoretically by Quesne and Moshinsky [6]. Most of these degeneracies disappear in many
body cases [5], which furthermore may require the diagonalization of finite matrices.
One problem that can be solved exactly [7], and maintains, at least in part, interesting
degeneracies, is the system of two particles interacting through a Dirac oscillator, and
the object of this paper is to analyze them from the standpoint of the corresponding Lie
algebras.

The article is divided in essentially two parts, the first one is the relativistic problem
and the second its nonrelativistic limit.

In the first part we note the difference of the solutions of the problem when the parity
is (—1)7, with j being the total angular momentum, and those for parity —(—1)J. Only
the former have accidental degeneracy and thus we separate the two cases with the help
of appropriate projection operators.

For parity (—1)7 there are symmetry Lie algebras of the u(3) type for the cases of spin
0 and 1 separately, but more interestingly there is a 0(4) symmetry Lie algebra when they
are considered together. The generators of all these Lie algebras are obtained explicitly.

In the second part, the nonrelativistic limit gives a Hamiltonian of the type N-L-S
where NV is the operator that gives the total number of quanta, L is the orbital angular
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momentum and S the total spin in this case of eigenvalue 0 or 1. For parity (—1)7 the
symmetry Lie algebras are the same as for the relativistic case, but now there is also
degeneracy for parity —(—1)7 and these are explained by the direct sum Lie algebra
o(4) ®o(3,1).

Finally in the concluding section we mention some different approaches to the problem,
including that of supersymmetry, though the detailed discussion of the latter is left for

another article.
Our starting point will be the Eq. (4.11) given in Ref. (7], and in the following discussion
we refer to this paper by a roman number I, and add it to all the equations quoted.

2. THE RELATIVISTIC PROBLEM

In reference I we considered a Poincaré invariant equation for a two body system with a
Dirac oscillator interaction. As discussed in Section 4 of this paper (7], in the center of
mass frame, the equation for our system becomes

[J5(e1 — @) - (p — iwrB) + B + B2] ¥ = E¥, (3)

corresponding to Eq. (4.1I) but where now we use relativistic units h = m = ¢ =1, so
that the frequency w appears explicitly and we replace i9/0X" by its eigenvalue, that we
shall denote as E.

The r, p are relative position and momentum respectively and

0 o I 0 I 0 0 o

alz(al 01)3(0 1)’ “2=(0 I)®(0'2 02)’ a,b)
I 0 I 0

B=(0 —1)®(0 _I). (4e)

It is convenient to express all matrices of Eq. (4) in a 4 x 4 type as indicated in (4.4]).
They act on state 1 of 4 components

Y1

| ¥
Y= ol (5)

Y22

as indicated in (4.3I).
Introducing creation and annihilation operators by the definitions

n= %(w”zr = iw_1/2p), £E= %(wlﬂr + iw—l,f?p)‘ (6)
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we can use Eq. (3) to express the components 31, ¥12 as operators in 7, €, o1, o2 acting
on 111, Y92, and finally writing the latter in terms of ¢, ¢_ by the relation

¢ 1 -1][¢
)=l L] ®
we see that (¢4, ¢_) satisfy the matrix operator equation [7]
o[ #+] = [4wn-8)E 8) - E? 2E } ¢+]=0
-] = 2E 4wl €~L-S—(n-S)E-S)|-E2| |¢-| ="
(8)

which, in the present notation, corresponds to (4.8I).
The states (¢4, ¢—) can be characterized by the eigenvalues of the operators

N’ ']21 J3a 827 Pa (9)
which we denote, respectively, as

N, J(] % 1)1 m, S(S 63 1)’ *, (10)
and where
N=n-¢, J=L+S, L = —i(n x &), S = 3(o1 + 02), (11)

with P being the parity operator. These operators commute with O and among them-
selves.
The functions ¢4 can then be expressed in terms of the kets [7]

IN(€,8)jm) = " (En, soljm) Rne(r) Yeu(6, ) Xoo, (12)
u,o
where 7,6, ¢ are spherical coordinates associated with r, the { | ) is a Clebsch-Gordan

coefficient, Ry(r) is the radial function of a three dimensional oscillator for N quanta
and orbital angular momentum ¢, Yg,(0,¢), p = €, —1,...,—¢, a spherical harmonic
and X;, a spin state with its projection ¢, where s = 0,1. The parity of the ket is given

by (-1)%.

2.1. Eigenstates and eigenvalues of Eq. (8), and projection operators for states of different
parities

We note that for definite (N, j) and spin s = 0 we have a single state
[N (5,0)5m), (13)
whose parity is (—1)/. For spin s = 1 and parity (—1)/ we also have a single state

|N(F,1)jm), (14)
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while for parity —(—1)7 we have two states
IN(j £1,1)jm). (15)

The calculation of the eigenvalues E in Eq. (8) was done in Refs. [7,8] and in our units
it is given for s = 0 by

E?=0 or E%=4+4wN, (16)
and for s = 1 and parity (—1)’ is
E*=0 or E*=4+4w(N +1), (17)
while for parity —(—1)7, E? is the solution of the fourth order algebraic equation
E*{E’[E® - 4 — 4w(N + 1)][E® - 4 — dw(N +2)] - 64%i(j + 1)} =0.  (18)

The corresponding eigenstates are given by Eqs. (4.21, 4.22, 4.231), with the coefficients
obtained in the Appendix A of Ref. 7].

We shall restrict ourselves to values of E > 0, as the case £ = 0 has been discussed
separately in a recent article, while £ < 0 will be mentioned in the concluding section,
in relation with some aspects of supersymmetry of the problem that will be discussed in
a future paper. We then see that, except when j = 0, the states of parity —(—1)7, have
no accidental degeneracy, so we will concentrate in this section on those of parity (—1)7.
Thus what we require first are projection operators that allow to separate the states of
different parities. This is easily achieved with the help of the operators L, J defined by

E=@+1)7-3, J=@2+bhi-}, (19)
whose eigenvalues are, respectively,
Ly (20)
If we now consider the projection operator
P=(L-J-1)(J-L-1), (21a)

we see that its value is 1 if { = j and 0 if £ = j + 1. Thus applying it to the operator O
of (8) we see that

POP (21b)
allows only eigenvalues E corresponding to states of parity (—1)7.

From now on we shall refer to the symmetry Lie algebra of the two particle system with
Dirac oscillator interactions, as the one whose generators commute with P O P of (21b).
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2.2. The u(3) symmetry Lie algebra of the states with parity (—1) a_nd spin s =0 or 1

The operator O of (8) with spin s = 0 reduces to

¢ —E? 2E P+
o[&t]=[3F wnt-s sl -

and it is immediately clear that the operators
Cq =n¢€", 4, r=1,0,~1, (23)
commute with O and that, furthermore, satisfy the commutation relations

[Cs, Ce) = C{6; — Crét, (24)
so that they are the generators of u(3) Lie algebra and in the projected notation used
in (21) these generators become

[1- (8%/2)]Pn € P[1 - (S%/2)], (25)

where [1 — (S%/2)] guarantees that for spin 1 the bracket vanishes while for spin 0 it
becomes 1.

The creation 7, and annihilation &" operators are the spherical components of those
defined in (6) and their matrix elements with respect to the states |N(j,0)jm) are given
by [9]

(N +1(¢,0)¢m + q|ng| N (G, 0)jm) = (N + 1(6,0)¢|n|| N (5,0)7) (3m, 1q|ém + q)

) [N+ 43)G+1)
a (2 +3)

1
2
] 8¢, +1

[(N —j+2)

+ (23 ” 1) J] 2 68,]‘*1} <Jm11QI£m+Q>: (26)

while that of £7 can be obtained from (26) by Hermitian conjugation. In (26) the dou-
ble vertical lines indicated reduced matrix elements while ( | )is a Clebsch-Gordan
coefficient.

If we now turn our attention to the states IN(j,1)jm) whose parity is (—1)7 but the
spin is 1, then O has the full form (8) multiplied by the projection operators as in (21b).
To get the generators of the u(3) symmetry Lie algebra we need to find a creation operator
ng Whose reduced matrix elements with respect to the states |[N(7,1)jm) in the ket, and
(N +1(j £1,1)j + 1m/| in the bra, are the same as those of in (26).
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We shall achieve this objective by first using standard Racah algebra and results in the
curly bracket in (26), to obtain for the ordinary creation operator 74 the reduced matrix
element [10]

[ i 36+ )] G+ 20
(N-{-l(f,l)an"N(],l)]) - {[ (2J+3) ] (J+1) 6(.j+1

(N=j+2)5]F [G+1)G - 1)
[ wegmty, )

We now note that the operator J defined in (19) is diagonal with respect to all the
quantum numbers in the ket |[N (¢, s)jm) and with eigenvalue j. Thus the operator jqq -
n¢J has reduced matrix elements of the form

(N+j+3)u+1)]% [iG + 21}

(N+1(8,1)£||jn—nj||N(j,1)j>={[ @G T3 G e

(N =7 +25]7 [+ 1) - )F
—[ Oy ] ; 5:.;-1}- (28)

Thus we see that
ng £ (Jng — ngJ) (29)

will have only matrix elements with £ = j + 1 if we use the + sign or ¢=j—1,if we use
the — sign, so long as we are restricted to states of parity (—1)7. It is clear then that the
new creation operator 7 will have its reduced matrix elements

(N +1(6,1)¢||n'|| NG, 1)5) (30)

in exactly the same form as (26) for n, if we write

" 1 1 2 a
ny=P{3J(J = 1)73(J + 1)"2[ng + Jng — ngJ]

+ Ylg +med — Ing)(J +1)7H(I - 1)72T}P. (31)

The corresponding annihilation operator is {9 = (4:7;)T and thus it can be written

immediately if we recall that J is Hermitian and 7?3 =9,
The generators of the u(3) symmetry Lie algebra are then given by

(S2/2) mg €7 (8%/2), (32)
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as P in (31) limit us to states with parity (—1)7, while (S?/2) is 1 for spin s = 1 and 0
for =10,
It is important to note that in the states

IN(7,1)jm) (33)

the one with j = 0 does not exist. Thus the dimensionality of the number states cor-
responding to the given N is not the one that is normally associated with u(3), which
is (1/2)(N + 1)(N + 2). This situation was discussed extensively in Ref. [9], where it
was shown that in quantum mechanics u(3) does not explain completely the accidental
degeneracy for s = 1 though u(3) is a symmetry Lie algebra of the corresponding classical
problem. This can also be scen in Eq. (31) where clearly 1]; does not exist if the eigenvalue
jofJ isj=0.

To find the full symmetry algebra for parity (—1)7 we now turn to considering the
states with spin 0 and 1 together, and will find a 0(4) symmetry Lie algebra.

2.3. The o(4) symmetry Lie algebra for states of parity (—=1)7 and both spins

We start by giving in Fig. 1 the levels for parity (—1)’ and both spins s = 0 and s = 1
indicating on the right of the levels the total angular momentum and parity as j* and
above the levels the values (V,£). On the ordinate we give the number v = N + s with
N being the total number of quanta, which, from Egs. (16), (17), is related to the square
of the total energy by

v=(N+s)=(4w)"Y(E? - 4). (34)
We note that when v is even we have states with J" =0%17,2% 37, ..., vt while
when vis odd j* =1=,9%3~.... ¥~ This immediately suggests [11] that the symmetry

Lie algebra is 0(4) with the representation [v, 0] for v even and [, 1] for v odd.
The set of states we have to deal with, in the notation (12), now have the form

lv = s(7,8)jm) = lvim),, (35)

where from (34), v — s is the number of quanta, s =0,1and j=v—-s5,v—5-2,....0
or 1 depending on whether v — s is even or odd.
Our objective now will be to find the generators of an o(4) Lie algebra that connect all

states (35) of fixed v. For this purpose we remember that we have at our disposal only
combinations of operators

Mg gq 7= (_l)qf—qv Sq = %(Jl + Uz)qa S; = %(01 = 02)(1: g = 11{)! =]. (36)

We would like first to find operators that relate lvjm)s with |vj £ 1m')y, in terms of
those in (36). For this purpose we note that we have the reduced matrix elements of g
with respect to the states (35) in (26) and (27) for s = 0 or 1, where we need to replace
N by v and v — 1 respectively.
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FIGURE 1. Levels of the spectra of the relativistic problem for the cases when s = 0 and s = 1,
where in both j = £. The dashed line surrounds an example of the kind of degeneracy we want to

explain.

We shall start by noting that the difference of the spin of the two particles, given by

the vector of components S,"; — %(0'1 — 09)4 can only connect a state of total spin s = 0

with s = 1 or viceversa. This is due to the fact that the matrix element

%%sm|%(a1 - Ug}q'%%s'm'> (37)
(where the 1/2 corresponds to the spins of each individual particle of the system) changes
by a phase factor

(ﬁ1)1+3+5' (38)

when we interchange 1 and 2 of the two particles. Thus (37) vanishes if s = &'
We now introduce new vector creation 1 and annihilation € operators given by previous

ones 7, £ multiplied vectorially with §', i.e.,

fo= xS =[exs], (39)
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and which have the hermiticity property

t

{[nxs7}} = ~(-1[exs)" (40)

Using standard Racah algebra [10], as well as the reduced matrix elements of 17, £ given
in (26), we obtain for 7j,, &, the following expressions, in which bra and ket are restricted
to states of parity (—1)7:

(¥ +1G 15| [n x 87N G, 0)7) =

1
G+2N+i+3)]7
2(2j +3) st

- .
2(2j - 1) 7

The reduced matrix element of [§ x S’]; can be obtained from (41) with the help of the
hermiticity condition (40). )

We note that in the reduced matrix elements of 7lqs ¢ where the ket has orbital and
total angular momentum j, the corresponding values for the bra are either j+lorj—1.
We would like though to have operators in which these two possibilities can be separated.
We can achieve our purpose by defining, as was done in Eq. (29) for the case of spin 1,
the operators

iy = g {ilg £ (Jiig = g D)}, (42)

& =&+ (Ug -6} (43)
with the hermiticity relation

()" = —€7 = —(~1)%F, (44)

We now note from Fig. 1 that, for example, if we have v even the states (N, £, s) corre-
sponding to it, where N is the total number of quanta, € the orbital angular momentum
and s the spin, go as follows:

(40,0), (v-1,1,1), (v,2,0), (v=1,3,1), ..., (v,1,0), (45a)
0t, 1= 2t 3=, . ut, (45b)

where below (45a) we put the j™ of (45b). We sce then that alternatively we decrease or
increase the number of quanta by 1, and at the same time increase or decrease the spin
between 0 and 1. The ¢ = j increases monotonically from 0 to v.

From Ref. [9] we see that the type of operators we require are of the form

F, = PSEP, (46a)

F} = Pij} 5P, (46b)
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if we want to move from left to right in the sequence of states (45a). In (46a,b) the
operator S is defined by

§=(s+1)7 -}, (47)

with eigenvalues 0 or 1, and is introduced in (46a,b) to guarantee that the bra for F has
spin 1 and thus, from (37), the ket has spin 0, while F{" has bra of spin 0 and ket of spin 1.

If we want now to move from right to left in the sequence of states (45a) we need the
operators

G.=Pi;8P, G)=PSEP, (48a,b)
where the S appears for similar reasons to those of the previous paragraph.
The presence of the projection operators P of (21a) guarantees that F,, Gi, F/, Gg,
act only on states of parity (—1).
From Eq. (41) we see that the only non vanishing reduced matrix elements of the
operators (46), (48) are the following

G+ -7)]*
2(2j + 3) ] i lada)

(N =1(j +1,1)j + 1||F'||N(5,0)5) = 1(vj + LI F'[[vj)o = [

1
jlv+j+2)|°

2(25 +3) ' (9)

(N +1(5 +1,0)5 + 1| F"|| NG, 1)j) = o(vi + UIF"lvih = [

G+1w—-j+1)]7
225 - 1) ’

(N +1( - 1,0)j = 1]|G'||N(, 1)5) = o(wi = 1IG"llvi)r = = [

(49¢)

(N =10 - 1,1)j = 1||G"||N(,0)) = 1(vj = 1IG"|lvs)o = = [(j _;()z(;jf;r 1)] ‘

(49d)

where we used the relation (34).

With the help of Egs. (46), (48), (49) we may write explicitly the generators of the o(4)
symmetry Lie group, when we have the representations [v,0] for v even and [v,1] for v
odd.

To proceed we first recall that for the o(4) D o(3) chain, the generators are [11] the
angular momentum L, which we denote by L;, i = 1,2,3 and the Runge-Lenz vector A,
i =1,2,3 which have the commutation relations

[Li, L;] = i€iji Lk, [Li, Aj] = i€iji A, [Aiy Aj] = i€ije L. (50a,b,c)
The basis for the representation is a ket of the form

|[p, g]¢m), (51)
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where [p, g], £, m are respectively the irreps of o(4), o(3), 0(2); with p, ¢ being integers
giving respectively the maximum and minimum angular momenta in the representations
of o(4).

The reduced matrix element of L; with respect to the states (51) is diagonal in ¢ and
has the value [£(f + 1)]%, while that of A; is given by [11]

" (P+L+2)(p—OE+1-g)l+1+q)]?
il 4] lpvaly = [p ;2“1)(2“3;;( q} i)

q(p+1)

——léfﬂ"g
€+ 1)]2

1
: s g == 2

_ [(p + £+ 1)(19(;;215 _»5’1))( +9)(¢ Q)J by (52)

We need now to write A, in terms of the operators 5, s Gl Gy, N, J, S, in such a
way that the matrix elements with respect to the states of the form (51) are the same as
those in (52).

If v is even [p, q] = [, 0], and thus from (49) and the fact that the matrix elements with
respect to the states (51) of N, J, S are diagonal with eigenvalues N, j, s respectively,
gives us the following generators for the o(4) Lie algebra:

; 1
Jq = Lq + Sqa Lq === [7] X 5]4‘}’ Sq = %(‘71 pa 02)Q? (53)

Ag=F!

q [2(N+S+J+2)(J+ 1)} 2 +E {2(N+S—AJ)(J+ 1)] :

(S 4.9 7

. [2(N+S+i+2)(i+1)]%c,+ {2(N+§;j)(j+l)}%

- G/, 54
(J+2) ! w34
with ¢ = 1,0, -1 and F(;, Fé’, given by (46) and G;, G’g, by (48).

If v is odd the representation [p,q] = [v, 1] and so from Eqgs. (49), (52) the generators
of the subgroup o(3) of 0o(4) remain the Jg of (53), but now the operator A, is given by

2 & - p—
2(N+S+J+2)J]2

P :F,[ AN +5 - J)J+2)]?
R (J +1) j

+Fq[ (J +1)

+(N+ S+ DI+ 1),

% . N rom & a O 1
2 - 2
N [2(N+S+J+2)JJ o+ [2(N+S J)(J+2)} a.

(J+1) ¢ (d ) (55)
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We have thus achieved our objective of writing explicitly the generators of the o(4)
symmetry Lie algebra, in the form J,, A,, ¢ = 1,0,-1 of Egs. (53), (54) for all states
with v even and of Eqgs. (53), (55) for all odd v.

As a last point we note that o(4), in the notation (50), has the two Casimir operators [11]

& =1L + 42, (56a)
C;=L"A, (56b)

and if the representation is [p, ¢, then the eigenvalues of these operators, which we denote
by (C;), (C3) have the form [11]

(C1) = (P* + ¢* + 2p), (57a)

(C2) =2(p+ 1)g. (57b)

For the representation [p,q] = [v, 0] corresponding to even v, the value of these Casimir
operators are

(C1) = v(v +2), (Ca) =0, (58a,b)

while for v odd the representation is [v,1] and
C1)=w+1)?  2C)=(v+1). (59a, b)

In the next section we turn our attention to the nonrelativistic approximation of our
problem.

3. SYMMETRY LIE ALGEBRA FOR THE NON RELATIVISTIC LIMIT OF OUR PROBLEM

In the previous section we discussed the relativistic problem for the system of two particles
with a Dirac oscillator interaction, which led us to the operator of Eq. (8) acting on a
two component wave function (¢4, ¢_). If we write Eq. (8) explicitly as a system of two
equations in ¢4, é_, and eliminate ¢_ between them, we get for ¢, (which from now on
we designate simple as ¢) the equation

{E*—4E? —4wE*|N - (L-S)| + 16°[N = (L-S) - (n-S)(£-S)|(n-S)(€-S)} & = 0, (60)

where N = 5 - € and we continue using the relativistic units h =m =c=1.

Equation (60) still corresponds to the full relativistic problem but now in terms of a
single wave function ¢. To find the nonrelativistic approximation we note that, in normal
units, the energy associated with the oscillator interaction is hw while the rest energy in
mc?, and thus we obtain the non relativistic case if hiw < mc?. In units where h = m =

A~ — 1 the last ineaualitv becomes w < 1 and. in that case. we can disrecard the term
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with w? in (60). We have then states ¢ with E = 0, which were dealt with in another
article [12] plus those satisfying the equation

ep = 3E* - 4]¢ =w(N - L-S)¢, (61)

where € is the nonrelativistic energy, as E is close to the rest mass 2 for the two particle
system so that %(E —2)(E+2)=F-2=c¢

We now proceed to discuss the accidental degeneracy of the eigenstates of the operator
in the right hand side of (61). Again the parity is a good quantum number as the operators
N, L, S are invariant under reflection. Thus we can consider separately the states of parity

(=1)? and —(—1)’. The former have ¢ = j and so the eigenvalues v of N — L - S are
v=N+1ifs=1, p=Nifg=_0 (62)

and thus we have exactly the same situation as for the states of parity (—1)7 in the
relativistic problem. The symmetry Lie algebra is then o(4) and has the generators given
in Egs. (53), (54) if v is even and Eqs. (53), (55) if v is odd.

For parity —(—1)?,¢ = j +1 and thus the situation is quite different from the relativis-
tic case where, from Eq. (18), we saw that no accidental degeneracy was present. It is
convenient now to write the states (15) in terms of the orbital angular momentum ¢, in
the form

|N(¢,1)¢ £ 1m), (63)
where
{=N,N-2,N—-4,...10r0, (64)
so we can denote, as usual,
N=2n+¥ ln=0.12,... (65)

The nonrelativistic energy in Eq. (61), divided by w, i.e. (¢/w), is then

(/w)=N+l+1=2n+0)+1=2(n+j+1)+1=20+1, ifj=€-1, (66)

(ef/w)y=N—-€=2n, ifj=0+1. (67)

The states (63) with the — sign i.e. j = £ — 1, have from (66) the value v = n +j + 1,
so that the degeneracy is v as we can have j = 0,1,2,...,v — 1, as seen in Fig. 2. The
symmetry Lie algebra seems then to be o(4) with irrep [ — 1,0], and we shall derive its
generators in the following subsection.

On the other hand the states (63) with the + sign i.e. j = £ + 1, are an infinite set as
(e/w) = 2n is independent of ¢, so that j can take the values j = 1,2,3,..., as seen in
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FIGURE 2. Levels of the operator N — L - S, FIGURE 3. Levels of the operator N — L - S,
with eigenvalue 2+ 1 where v = %(N +7+1) with eigenvalue 2n where n = %(N —Jj+1)
for the case s =1, =7+ 1. for the case s =1, =7 — 1.

Fig. 3. The symmetry Lie algebra is then a non compact one, and we shall show in the
last subsection that it is o(3,1).

3.1. The o(4) symmetry Lie algebra when € = j + 1
In the states of Eq. (63) with a — sign, we replace £ by j+1 and N by 2v —j —1 to write
|2v —j = 1( + 1,1)jm) = |[v — 1,0]5m]. (68)

The ket on the right hand side of (68) corresponds to the |[p, ¢]¢ém) appearing in (52)
if we take

p=w—1, g=0 =3, (69)

and the reduced matrix elements

(v - 1,01 Alllv — 1,015 ] (70)
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of the Runge-Lenz vector A of Eq. (50) are given by (52) with the substitution (69).

To write A;,q = 1,0, -1 explicitly in terms of the creation ng and annihilation ¢,
operators and N, J, L, S, we need combinations of 7q in the form of Eq. (29), as well as
of its hermitian conjugate, to guarantee that there are contributions only when j = j +1
or j — 1. Furthermore our operators should apply only to states of the form (68) where
¢ =j+1and v is fixed, so we need the projection operator

Pr=YL+1-J)L-J) (71)

o=

which vanishes for ¢ = Jor £ =j—1 but becomes 1 for £ = j + 1. We also need to use
the projection operator S to guarantee that our kets have only the spin s = 1.
We now introduce the operators

Fy=PtS1ng — (Jng — 0, 0))SPH, (72a)
Gq = PHS3lE, + (J& — &D)$P, (72b)
that have the hermiticity property
Fl=67= (-1)%G..,. (73)
The only reduced matrix elements of Fy, G, that are different from 0 are the following:

(N+1(,1)j - 1||F

ING +1,15) = [[v - 1,00 — 1| F|l[» — 1,0]7]

20+ 1)(v-3) 7 i

- [WJ ! (74)
(¥ =1G +2.1)j +1]|G||NG +1,1)5) = [Iv - 1,0)j + 1]|Gl[v — 1,0]]

_ @+ )G +2)(ev - 25 - 2] -

(25 + 3)

as can be seen from (26).

Turning now our attention to the relation (52) with the notation (69), we see that the
operator A, can be written as

(N+L+2J+2)(J+1)(2F + 3)} :

A, = -G . .
' "[ 4(J +2)(2J +1)

) {(N+E+2j+2)(j+1)(2j+3)J5F 81
q

4(J +2)(20 +1)
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and these operators for ¢ = 1,0,—1, together with the total angular momentum Jg,
g =1,0,—1 of (53) constitute the six generators of o(4) symmetry Lie algebra satisfying,
in cartesian components, the commutation rules of Eq. (50).

3.2. The o(3,1) symmetry Lie algebra when £ =j — 1

In the states of Eq. (63) with a + sign we replace £ by j —1 and N by 2n+£=2n+;—-1
to write

12n 4§ — 1(j — 1,1)jm) = |[-1 + in,1]jm}. (77)

We now proceed to explain the notation that we use for the ket in the curly bracket,
which requires a discussion of the generators, reduced matrix elements and Casimir op-
erators of the o(3,1) symmetry Lie algebra.

According to the discussion of Biedenharn [11], and the one in Ref. [9] for the one
body Dirac oscillator we can pass from the generator Ay of o(4) to the a, of o(3,1) by
the substitution A, — —iay and the reduced matrix elements of a, with respect to the
states (77), can be obtained by analytic continuation from those of A, in Eq. (52).

We need though to characterize the irrep of o(3,1) to which the ket (77) belongs.
For this purpose we note that for the irrep [p, q] of o(4) the eigenvalue of the Casimir
operator Cy of (56a) is (p* + ¢* + 2p). The corresponding Casimir operator of 0(3,1)
will be designated as ¢; and, from the analytic continuation indicated in the previous
paragraph, it has the form

o =32 - a?, (78)

where we replaced L in (56) by the total angular momentum J of the present problem.
For the eigenvalue (c¢;) of these Casimir operators we have to replace p by a complex
number [11]

k =a+ b, a, b real, (79)
as we want to deal with representation for the continuous series, while ¢ remains equal
to 1 as j =1 is the lowest value of the angular momentum. We have then that, with the
replacements indicated, we obtain

(c1) = k2 + 1+ 2k = a® - b* + 2iab + 2a + 2ib + 1. (80)
As ¢ is an hermitian operator (c;) should be real and this requires that a = -1, so
our irreps are characterized by [k, q] with k = —1+1b, ¢ = 1.

The second Casimir operator ¢y of (57b) translates into

cy = —J -a (81)
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and, as the eigenvalue 2(k + 1)g becomes 2ib, we see that with the factor —i in (81) we
get the eigenvalue

(CQ) = 2b. (82)

On the other hand from Eq. (67) we see that (¢/w) = 2n so this immediately suggests
that b = n, and as ¢ = 1, the irrep of 0(3,1) is characterized by [-1+in,1] as it appears
in Eq. (77).

The reduced matrix elements of a,, with respect to the states |[[1 + in, 1]jm} can then
be obtained from Eq. (52) by analytic continuation when we replace p by —1 +4n and ¢
by 1, so that we get

[n2+(j+1)2}j(j+2)}55_ |
J":J+1

{[=1+in,1)"||a||[-1 + in,1)5} = { G+ +3)

mn
=, __1(5,,,‘.
G+
2 4 s2\0:2 _ 3
_{(n ;(;j)ijl) 1)} L S

To write a4, ¢ = 1,0,-1 explicitly in terms of the creation Mg and annihilation £,
operators as well as of N, J. L. S, we necd combinations of the 7, in the form of Eq. (29)
as well as of their hermitian conjugates, to guarantee that they contribute only when
J"=j+1orj- 1. Furthermore the operator Jg, will connect states of the same j in bras
and kets of the form (77).

As we need operators that apply only to states of the form (77), where ¢ = J—1 and
n is fixed, we require the projection operator

P-=iJ+1-L)J-1), (84)

B[t

which vanishes for ¢ = j.or £ =j+1 but becomes 1 for £ = j — 1. We need also to use
the projection operator S to guarantee that our kets have the spin s = 1.
We now introduce the operators

“S3{ng+ (Jn, - 1J)} 5P, (85)
{

Gy = _S% fq—(ij—qu)}.g"P—, (86)

f1=9"=(-1)%_,. (87)
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The only reduced matrix elements of f;, g, that are different from 0 are the following
(N +1(,1)j +1||f[[NG = 1,1)5) = {[-1 +in,1]j + 1| £]|[=1 +in, 1)5}

1
B [j(2n+2j +1)] 2

@i+ 1) i
(N =10 - 2,1)j = 1||g||N(G - 1,1)5) = {[-1 +in,1]j = 1[|g[|[-1 +in, 1)5}
_[@i+nG-neen+2i- 1)]%, .

(27 -1)

as can be seen from (26).
Turning now our attention to the reduced matrix elements (83), (88), (89), we see that
the operator a, can be written as

~1 {@j—UU+1MN—£F+mﬂ]
g = 39q

99\ " 52) + DIN L+ 47— 2] } ~ 3 = DI+ )7,

. {(21—1)(J+1)1(N ~—L)2+16J'2]}§fq, (90)

2 @i+ 1)JN-L+4J-2

and for ¢ = 1,0, —1 the operators a, with the total angular momentum Jou § = 10,1
of (53), constitute the six generators of o(3,1).

Thus we have completed the determination of all the generators of the symmetry Lie
algebras associated with the operator N~ L-8.

We shall conclude by discussing some general aspects of the problems analyzed in this
paper.

4. CONCLUSIGN

As we mentioned after Eq. (18) we only dealt, in the relativistic problem, with the positive
energy levels. The ones of energy E = 0 have been discussed in another publication [12],
but there remain those in which the energy is negative. It was shown by Quesne (13],
when analyzing the single particle Dirac oscillator, that using the Dirac assumption that
all negative energy levels are filled [1], those with E < 0, can be considered to have
positive energy but for the antiparticle with frequency —w instead of w, as happens also
for electrons, where the negative encrgies states are made positive for the antiparticle
when the charge is changed to —e. With this type of approach Quesne was able to analyze
together the states of positive and negative energy, using the formalism of supersymmetry.
We plan to extend, in a future publication, this type of analysis to the two particle system
with a Dirac oscillator interaction.
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Finally we would like to point out that in a recent article Moshinsky, Quesne and
Loyola [14], analyzed the problem of all possible symmetries for the two dimensional
harmonic oscillator for Hamiltonians that are linear functions of the number operator
N and orbital angular momentum M. The results of the present paper indicate that a
similar consideration could be carried out for the three dimensional oscillator with spin,
where the latter could take the values s = 0,1/2,1 or s = 0 and 1 together. We intend to
look also into this problem in a future publication.
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