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ABSTRACT. Within the framework of a revisit to the linear Standard Enskog Theory, the kinetic
theory for a binary mixture of rigid spheres is proved to be consistent with linear irreversible ther-
modynamics in terms of the thermodynamic forces and fluxes derived from the kinetic definition
of the entropy production. A straightforward calculation of the Onsager coefficients is presented.

RESUMEN. Dentro del contexto de una reconsideracién de la teoria de Enskog estdndar linealizada,
se muestra la consistencia de la teoria cinética de una mezcla binaria de esferas duras con la
termodindmica irreversible lineal en términos de flujos y fuerzas termodindmicos derivados de la
definicién cinética de la produccién de entropia. Se presenta un célculo directo de los coeficientes
de Onsager correspondientes.

PACS: 05.20.Dd

1. INTRODUCTION

In order to describe the behavior of a simple dense gas of rigid spheres, D. Enskog proposed
in 1921 a kinetic equation which essentially modifies the collision term of the Boltzmann
equation [1,2], assuming that only binary collisions need to be considered and that the
molecular chaos hypothesis still holds. Due to the finite diameter o of the rigid spheres,
collisions do not occur at a given point in space. Thus, the point where the distribution
function of the colliding sphere in the collision term is evaluated must be modified, which
means that the term

fr,v,t)f(r,vi,t)
in Boltzmann's equation must be replaced by
f(r,v,t)f(r £ ok, v1,t),
where k is a unit vector along the line which joins the centers of the colliding molecules.
On the other hand, taking into consideration the fact that in the case of a dense gas

the probability of a collision increases with increasing density, an additional factor, the
equilibrium value of the nonequilibrium pair correlation function xE, is introduced in the
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collision term; x¥ is a function of density, position and time and reduces to unity in the
case of the dilute gas. With these modifications, Enskog equation reads

a 3] d ., %
(T)'t'.f‘*‘V'Ef'*‘F"a—vf—J(faf), (1)
where
G0 = [+ §o1 7+ 0k
D %ok)f(r)fl(r - ak)}an ~kdkdv,. (2)

The evaluation of the factor \F in the case of a fairly rare uniform simple gas goes
back to Boltzmann and Clausius up to second order in the density. In the case of a
non-uniform gas, one should expect that this factor may also involve a dependence on the
space derivatives of the density.

In an unpublished work [1], H.H. Thorne generalized Enskog's theory to the case of
a binary mixture introducing three types of factors, x1; and y9; related respectively to
collisions between pairs of molecules of species 1 and between pairs of species 2, and,
X12 = X21 corresponding to the collisions between pairs of dissimilar species, in terms of
the densities of both, their diameter and the distance between their centers. Solving the
Enskog like equations using the Chapman-Enskog method, he obtained an expression for
the diffusion forces, the heat flux ,the coefficient of diffusion and the thermal conductivity.

Following the same ideas, an extension of Thorne’s work to the case of a multicomponent
dense fluid mixture was studied by Tham and Gubbins [3]. Some inconsistencies in both
works were brought into consideration by Garcia-Colin, Barajas and Pifia [4-6] basically
due to the way in which the point of evaluation of the functions x,; is taken. They
showed that these functions may be evaluated in any arbitrary point located between the
centers of the colliding molecules. The only quantity which is affected by the choice of this
point is the diffusion force. This result was taken as an argument to assert that Enskog’s
theory for mixtures is incompatible with linear irreversible thermodynamics (LIT) [6].
This last description together with the preceeding ones are known in the literature as the
standard Enskog theory (SET) [7]. Starting from the fact that SET is a theory which
apparently exhibits inconsistencies with LIT, mainly an incompatibility with Onsager
reciprocity relations, a new kind of approach was taken which may be embodied in the
so called revised Enskog theory (RET) (7-15] which has not been modified in the last
ten years [16]. A thorough revision of RET will not be made in this paper. Here, we
shall revisit SET and prove that, contrary to what was mentioned above, there is a very
simple case of the linear SET which is consistent with LIT, in particular, the Onsager
reciprocity relations are satisfied. Although in some works (17] the fact that SET may
be compatible with LIT has been mentioned using techniques such a maximization of
the entropy, we consider worthwhile to present this version of the linear case of SET and
show in a transparent way its compatibility with LIT using a different method that the
one used in Ref. [17]. In order to avoid cumbersome notation we shall restrict ourselves
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to a binary mixture of dissimilar hard spheres. In Sect. 2, we develop the generalized
SET linear kinetic equations; in Sect. 3 we find the corresponding thermodynamic fluxes
and forces that arise from the kinetic definition of the entropy production. In Sect. 4, we
prove that these forces and fluxes follow Onsager symmetry relations. Finally, in Sect. 5,
we discuss the important aspects of this work.

2. THE LINEAR KINETIC EQUATIONS IN THE REVISITED STANDARD ENSKOG THEORY

Let us consider a system consisting of a binary mixture of dissimilar rigid spheres with
diameters ¢;, number density n;, and masses m; (i = 1,2).

In the absence of external forces, the Enskog type equations for a binary mixture
proposed by Barajas, Garcia-Colin and Pia [5] for the single particle distribution function
f are given by

2
afi af; / /
8_{& +%; - 8{' = = ;//{X:j{ri-f-yijk)fj(ri + ai;k) fi(r:)

— xij(ri — yi;k) £ (ri — oik) fi(ri) Yok (gji - k) dk dv;

= J(fi, f;), (3)
where vy, v;c are the molecular velocities before and after the collision, respectively; x;; 1s

the generalization of Enskog’s function evaluated in an arbitrary point y;; located between
the centers of the colliding particles, and

___ai+aj K= ri —rj
gi; = _fz_s = )
|ri r;
gji EVj — Vi, Yiz T Y5 = Cij = Oz

The novel aspect of this present work is that we shall here assume that x;; is a general
and unknown function of the density, that is

Yo = Xl ng):

In order to obtain the linearized expression for the kinetic equation (3), we must first
expand the distribution function f; and the Enskog function xi; in Taylor series up to the
first order in gradients. Then, in order to solve this linear equation we shall follow the
Chapman-Enskog method considering consistently the solution also up to the first order.

The expansions of f; and y;; may be written as

xii (r =+ 3i;K) = x £ yijk - Vi, (4)
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with

2
Axis
VX =y (ﬁf) Vi, (5)

k=1
and x?j is the equilibrium value of Xi; evaluated in the point of contact, and
filr £ 0i;k) = fir) £ aijk - Vfi(x). (6)

Using the Hilbert-Enskog method for the solution of Eq. (3), we may write, keeping
only linear terms,

fi=f+fl+ =21+ ¢!+, (7)

where f? is the local Maxwellian distribution function,

o_, (_M )3/2 _ mic}
i ”‘(%knT P\ T oT [ (8)

and the number density n; is given by

ni=ff,~0 dv;, (9)

Ci = Vi —u is the thermal velocity, and the local hydrodynamic velocity u is

2
pu = Z/‘flpm,-vi dv;, (10)
f==]

and the local temperature T is given through

3
%nkl,T = Z/.f:)%mic? dv;. (11)
=T

Using the expansions given by Egs. (4)-(8), we may rewrite the linearized form of the
kinetic equation (3) as

2 2 3
Dufi = D Lh(FO8) + 303 (s, (12)
g=1

J=1 k#1
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where
ELIP M =3 / ] P20 + ¢j — ¢ — ¢)oi(gsi - k) dkdvj, (13)
L5 =% f f k- (fIVf) + [0V )0l (i k) dkdvj, (14)
L= f / k- Vi (FY ) + 12 1] yioli(gsi - k) dkdv;. (15)

In order to obtain the corresponding conservation equations in the lincar regime we
shall multiply Egs. (12) by the collisional invariants, namely

: 2
=1, m;ci, mc; [2.

Performing an integration over the velocity space, and carrying out a summation over
species 1 and 2, we recover the conservation equations in the Euler regine [5], namely:
i) For ¥; = 1, the equation of continuity,

D
Tk +nV.-u=0, (16)

where n =Y. n;.
it) For ¥; = m;c;, the equation of motion,

1
%u + ;V})U = 0 (17)

where p=>_.pi = Yo mng,

iii) For ¢; = %mic?, the energy conservation equation,

1 D 2[)[)
Ly B g 18
Tt ' anker . " CLE)

In Eqs. (16)-(18) we have denoted

J
; (91‘.+u :

’C:J|c3

and we have recognized in Eqs. (17)-(18) the hydrostatic pressure pg of the hard spheres
system given by the equation of state

2

2 2
Po = Z"iknT 1+ Z B!j”j,\’?j = Zpgi, (19)
=1

i=1 j=1
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with
! 3
;Bi] = 5”01]

Using the conservation equations (16)-(18) in Eq. (12) we finally arrive to the linearized
kinetic equation

2
ZX?J' //f,pf_?(qf), + @ — ¢'2 = @})a;ﬂ(gﬁ . k)dkdvj =
§=3

- fAK(C?=3)c; - VInT + 2dj;-c; + 2K, [c,c,-]s :Vu+4 2% f’(c?—g)v-u}, (20)

where C; = (nl,‘/Qk.,T)l/?c,, [ ]s represents the traceless symmetric part of a tensor, and
d;; defines the diffusion force, namely,

Pip; 1 1
dij = ——— —Vpy, — — Vg
. kT (,o1 P P; Puj)

" %ﬁﬁnix?j {vm (”J) +(My; - M)VInT + Y =Ty, X,-j}, (21)

n; Tij
where
d;; = —dj;, (22)
and
M = m—’_’;irh
2
Ki=1+12 Zﬁijnjx?jﬂfijﬁfﬁ, (23)
j=1
2
Ki=1+2)" Binxd My, (24)
J=1
- Po
K =1+ 2§ﬁfjvz}-x?jinfj,- ~ e (25)

Following the same procedure as the one used to solve Boltzmann’s equation in the
case of a dilute binary mixture [1], the solution of the linearized kinetic equation, Eq. (20)
may be written as

¢i = —Ai(c;) - VInT = nDi(c;) - dyj — Bi(c;) : Vu — Hi(e))V - 1 (26)
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with A;, D;, B; and H; satisfying the following integral equations:

2
> o f FOFO(A: + Aj — Al - AlJod(gji - k) dkde; = K P (CF - §)e: (27)
g=1
ZX?;/ f2f9[D; + D; - D} — D}]o?(gji - k) dkdej = 3 flei (28)
3=1

2
> % / f FOFOB: + B — B — B)lod(gsi - k) dkde; = 2K f{CC}s, (29)
i=1

2
> / f fO£OH; + Hy — H, — o (g - ) dkde; = K f)(C} = $)ei.  (30)
j=1

By means of the transformations

xhof,

n; — K o s M, 2 in Egs. (27),
1 1 1) ]K.KJ

ofj — x?ja?j in Egs. (28), (31)

0 .2
T

n; — K, a?j — -ﬁ,ﬁ in Egs. (29),
7

Equations (27)-(29) may be compared with the corresponding integral equations for the
Boltzmann equation for the dilute binary mixture [1}:

2
Z j/ fOFO[AR + AT — AP - AP oli(gji - k) dkdc; = 22 -3)e  (27a)
3=1

2
¥ / / f2£°[D? + D? - DY — Do} (gji - k) dkde; = 7 fles (28a)
j=1

2
> f f FOrO[BB + BY — BY — BY] ol (i - k) dkde; = 2£{CC}s. (29a)
j=1

Since the solutions for the functions AB, DB, and B® are already known, we may use
these respectively for our functions A, D, and B, simply by applying the transformations
given in Eq. (31). Since we have no need for these functions here, they will not be written
explicitly [3].
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3. THE ENTROPY PRODUCTION

The definition for the entropy density ps for the binary mixture in terms of the single
particle distribution function is given by [18,19],

2
pr=—ta Y [ flnsi= v (52)
i=1

Taking the time derivative of Eq. (32), and after performing a partial integration, we
obtain the following expression,

2 2
d
éﬁ = V . {kBu;fﬂ(ll}f{ e l)dV;‘} + V & {kng/.cifi(lnfi = l)d\’,‘}
2 2
_kuZZ/JE(fifj)lﬂfidvi, (33)

i=1l j=1

where JE(f,-fJ-) is defined in Eq. (2). Equation (33) has the form of the entropy balance
equation, namely,

dps
= =~V (psu+3) +o, (P4
where
2
Ji = ~ky Z/Cifi(lﬂfi = 1) dwv; (35)
=1

represents the entropy flux, and the entropy production o is recognized as [20,21]

2 2
a:—m§:§:]ﬁﬁﬂnNnﬁmm (36)

i=1 j=1

where JE(f; f;) is defined in Eq. (2). We emphasize that in Eq. (36) we are not taking into
account contributions to o that arise from correlations between two or more particles.

We shall now calculate the entropy production o given by Eq. (36) for the binary
mixture. Using the first order term in Chapman-Enskog approximation,

fi=f21+¢}),
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the entropy production up to this order in the gradients may be written as

B g
ol = —anZ/JE‘”(fffj)# dvi, (37)
=1 3=1
where
JED fe b =Dif),
and
1 vT m;
0 _ 40 2.4 T |
lei =f {Ca t Evni +c; (Ci - i) ! ? = }.TBTCiCi : Mu
+2(c2- 9 (1_ i )v.u_mmf.m (38)
cd L nksT kBT p |

Making use of the fact that x;; = xij(ni,n;) given in Eq. (5), as well as the hard sphere
equation of state, namely Eq. (8),
2 2 2
po = Z nikgT (1 - Z ﬁ;jan?J) = ZPO;‘,
i=] J=1 i=1

the entropy production to first order in the gradients ¢ may be rewritten as follows:

1 vr T!
o BB, | oo Y,
9 - Vng + kBTJq T + T u} , (39)

Ul':—ku{ 1 J}Vm-}'

min mong

that is, o is of the form
(40)

ot = ZJI@Xh
1

where J; and X, are the thermodynamic fluxes and forces, respectively, and the product
® couples the forces and fluxes of the same tensorial character. In this case

i) J! represents the mass flux:

Jtl =m¢/fp¢}ctdv!, (41)

where J; + J2 = 0.
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ii) J§ is the energy flux:

2
=3 dmi [ Reideiv, (12)

i=1
and
2
v = Z Im; ff?¢}(c, - hi)dv;, (43)
=1
where h; is the specific enthalpy.
iii) T! is the stress tensor:
2
T! = Zmi /fioqb,-]c?ci dv;. (44)
=1

The entropy production may be written in alternative ways. Equation (39) may be
expressed in terms of the concentrations ¢;, which characterizes the representation in
which the barycentric mass flux J! is defined [20]. It may be shown that [20]

on;  nin;

de née;’

so that Eq. (39) is transformed into the following expression:

i} nins

1 nins
ol = —k, J%-Vc;—i— Jé-ch
min) ncyca Mana nejcy
1 T!
i .
+ —J,VInT+ : Vu 45)
ks 9 ks T ’ (
but, since Ve; = —Vey, we may rewrite ¢ in terms of only one concentration, namely,

1

1 'n.l'n.g ]. 1 1 1) 1 11 T
= —k (=—3-——a).v JY.VinT L Vub. (46
7 § {nclq miny b mony " 2 AL kT 9 bl kol " (46)

Finally, we may cast the entropy production o! in terms of the diffusive force d;; given
by Eq. (21). This force may be rewritten as

di2 = BVInT + (A; - Ay) Ve, (47)
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with

P2 f1 :
B = E{(?nl + Bunixd) + Braninaxyy) — p—n(2n2 + Baan3x3y + Braninaxiy),

n
4 fﬁmnix?z(ﬂhz - My), (48)
1 )
A= —= |2+ 8 ( \11?11 +n1 BX 1)] + B2 (ngx(l}? + niny le) [Q — ,0_1]
dany Pn PN
N9 1 (21}12"012) IX12
+— n — X9 + 3 49
= Brany [nl)\u B (49)
a
Ay = <L 2 + (o9 2\ 292 + n2 Ox22 + B2 n-l)(?g + ning X12 A _ A
pn dng any Pn PN
na 1 ¢ (2y12 -"012) Ix12
o M0 A , 50
nlﬁnﬂl [n?,\lz + o 01t (50)

Therefore, the entropy production may be expressed as

T! J“ B J1 Jl

1 1 2

—— - Vu + — Vin1
7 ko { kyT " [LBI A — Ay \mm mgnz) =

1 I 1 1
— & +——ﬁJ%-d21}. (51)

e —— 12
miny Ay — Ay mans A — Az

4. CoMPATIBILITY wWiTHl LIT AND THE ONSAGER RECIPROCITY RELATIONS

As we know from the literature [20], the entropy production may be written in alternative
forms provided these expressions present the same structure given by Eq. (40) for the new
forces X] and fluxes Jj. Indeed one has that

o= JoX =) JoX.
{ 1

It is important to point out that the derivation of Onsager’s reciprocity relations within
the framework of kinetic theory may not be straightforward in any representation whatso-
ever. In the case of a binary mixture, it is not entirely clear that the reciprocity relations
between the cross effects coefficients, that is, the thermal diffusion and Dufour coefficients,
hold in the concentration representation [20].

In the case of mixtures, it has been shown, both from the kinetic point of view starting
from the Boltzmann equation [22] as well as from the macroscopic version of the the-
ory [23], that the diffusive force d;; is the most adequate thermodynamic force conjugate
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to the corresponding mass flux J;. In the case of a dense binary mixture in the context of
the present paper we will show that indeed d;; is compatible with Onsager requirements.
Since we are interested in proving the symmetry of the cross effects of a vectorial
character, for sake of simplicity, we shall ignore in these calculations the contributions
due to the stress tensor T in (,‘)11
The solutions (26) to Egs. (20) may be written in this case as

Q} —A, -VlIlT—ﬂDl'dlg, (52)

(,5‘]! =—-A>-VInT — nD; -dy;. (53)

Using well known arguments on tensorial homogeneity [1],

Aj(er) = ai(er)ey, (54)
Aj(c2) = az(ceg)ey, (55)
Di(c1) = dy(cy)ey, (56)
Dj(cy) = da(cs)ea, (57)

where Ay, Az, Dy, Dy, satisfy the integral Eqs. (27)-(28).
In order to find the validity of Onsager's reciprocity relations we must first write down
the expressions for the mass and energy fluxes. The mass fluxes may be written as

J1 = —%T?llff?(nc¥ d61V]IlT“ %11m1/f10d1(_‘%dc1 dlg, (58)

Iy = —%nlg /fgagcg desVInT — é?l.??’tg ffgdgcg deo doy, (59)

and the energy flux

k ‘.]
II”_ 1 5™B 1 5

ks T

1
ma

my
{/f{)alcf(%kcl?)dcl+/f§a2c%(%—(,’§)dc;g}VlnT

T
{ / il (3 - ) dcl} oy

1koT /f{’ndlcf(g —C}) de, } da;. (60)

1
3

78
s

L=

=—‘A

'B
ky
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Equations (58)-(60) may be rewritten, using the integral equations, Egs. (27)-(28),
and after symmetrizing the integrands read as

Ji

Iz

2
= —éman{x?j f/f[(A; +Aj - A} — A})- (D + D;j - D} - D})fPf?
i=1

(851 -k)ofj dk dc; de] }VInT - -ljnml /f{)dlcf dcy dya,

2
= —%mznZ{x% f//[(Az 4+ A;— Ay~ A)-(Dy+D; — Dy ~ D513
i=1

(gj2 - k)o3; dk dcy dcj]}vad %nmgffgdgcgdq ds,

1 _%kHT{ffPa,cf(%—Cf)dcl+ffga2c§(%—cg)dcz}V1nT

2
1 '
= %A-BTHKI-E {x‘fj ///[(Al +A;-A|—A))- (D, +D; - D} - D))
=1

£ 12(gj1 - k)oi; dk dey de;] }dm
1 2
- L Tng- Z{xg, f//[m 4 A — &l — A%} (Dy 4Dy = Dy D)
g=1

fgf?(gjz . k)O'gj dk dCz dcj] }dzl.

Equations (61)-(63) may then be expressed as

Ji = 'fnllquVIHT + L1 dyo,

J} = maly, VInT + Lpaday,

kT kT
Y. i el —d ad
Jg LggVInT + K Lgidiz + K, Lg2das,

where we can clearly see that

2

Lig =Ly = ‘%”Z{X?;‘ /f/[(Al +Aj— A} — A})- (D1 +D; — D} - D))

=1

£ (g - K)ot dkdey dc; },

(61)

(62)

(67)
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=l

E’Zq:lflq:-

2
nZ{xgj///[(Ag+Aj—A;,—A;-)-(D2+Dj—D’z—D;)
7=1

121%(gs2 - K)o, dicdes dcj]}. (68)

Thus, the Onsager reciprocity relations hold true and this case of the linear SET is
compatible with linear irreversible thermodynamics. We must emphasize here that this
compatibility is incomplete since the non negative property for the entropy production
has not yet been proved. This question has been partially examined in the literature both
for SET [24] and RET [25-29]. We shall come back to it in a future publication.

5. CONCLUDING REMARKS

We have proved in a simple and straightforward way that the present version of the
linear standard Enskog theory is consistent with linear irreversible thermodynamics. It
is important to emphasize that we obtain results that do not depend on the specific
dependence of the function Xij on the density. In this sense, this result superseeds and
corrects the statement made by Barajas et al. [5] twenty years ago in the sense that
Thorne’s and Tham and Gubbins’ versions of the theory was not compatible with LIT.
The statement was based on a comparison between the diffusive force given in irreversible
thermodynamics by Hirschfelder [23] and an expansion up to terms of second order in
density of the force given by Thorne [1]. It is important to point out that we have chosen
the thermodynamic fluxes and forces that are derived directly from the definition of the
entropy production in terms of the single particle distribution function only and which
coincide with those of linear irreversible thermodynamics. Besides, this representation is
compatible with Onsager’s theory. Although in the past Karkheck and Stell [28] proved
that SET is compatible with LIT, it is important to stress that they used a principle of
maximization of entropy which is not equivalent to our present work. It is necessary at this
point to discuss some important features. As we are considering a form for the entropy
which depends only on the distribution function of a single particle we do not obtain
the collisional contributions to the fluxes. In order to obtain these contribution we should
consider other kind of presentation where the starting point would be the entropy up to the
distribution function of two particles. Also, we are dealing with a system which is defined
in the Euler regime. If we consider an expansion for the original kinetic equation [Eq. (1)]
up to the second order in the gradients we would now be dealing with the Navier Stokes
regime and surely this presentation would be totally modified. At this point we have not
yet proven an H-Theorem. We should stress that in our results the function y;; is at this
point left unspecified. The question still remains concerning the explicit determination of
such a function and whether it is or not unique. This problem was brought up by Pina [30]
but the complete answer to this question has not been given yet. As it will be shown in a
future work, one can give an answer to this question provided that other restrictions are
imposed on the y;; function [31]. In this case, the definition of the entropy ps will require
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an additional contribution arising from the correlations between two particles represented
by a term depending on the two particle distribution function.

As it has been mentioned above, the diffusion force in SET exhibits a dependence
on the arbitrary point y;; where y;; is evaluated. Nevertheless, the Onsager transport
coefficients are independent of this choice. This fact leads to the conclusion that the
reciprocity relations hold true for an infinite number of diffusion forces.

Furthermore, this work also brings into the fore a deeper question. Revised Enskog
theory [8] was devised, among other things, to correct a failure now shown not to exist
taking x;; as the local equilibrium pair distribution function for a non-uniform state of a
gas mixture expanded in terms of Mayer graphs. The question that may be raised concerns
the existence of a relationship between the two approaches pointing out their common
views and disagreements as well as the reasons showing why both, being different, are
compatible with LIT. And, furthermore, one could ask if there is a more general way of
modifying Enskog’s equation on the basis of assuming a specific functional dependence of
Xij with the density as in RET, or if it can be done for a general unspecified functionality.
This will be discussed in a future paper.
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