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ABSTRACT. A microscopic model used to derive the generalized Langevin equation for a brownian
particle in a heat bath with time dependent temperature is improved to construct and solve the
corresponding Fokker-Planck equation.

RESUMEN. Utilizando un modelo microscépico se obtiene la ecuacién de Langevin generalizada
para el caso de una particula browniana sumergida en un bafio térmico con dependencia temporal
en la temperatura. Con dicha ecuacién se construye y resuelve la ecuacién de Fokker-Planck
correspondiente.

PACS:05.40.4j; 02.50.+s

1. INTRODUCTION

Recently Brey and Casado have derived a generalized Langevin equation (GLE) to de-
scribe the time evolution of a Brownian particle which is in a heat bath with time de-
pendent temperature [1]. The model corresponding to a constant temperature has been
studied for a long time and it consists of a one dimensional chain of oscillators of mass m
to simulate the bath. Those are coupled with a particle of mass M > m which is going
to simulate the system [2-5]. It is well known that in this problem the bath coordinates
and momenta are eliminated to obtain the evolution of the system. The stochasticity of
such a model comes when the initial conditions for the bath particles are assumed to be
distributed canonically with a constant temperature T, whereas the initial conditions for
the system are fixed. Brey et al. in fact modified the bath equations to consider canonical
equilibrium with a time dependent temperature T'(¢), which is imposed by external means.
The corresponding GLE contains this temperature besides the characteristic properties
of the system.

We recall that in the limit of a great number of oscillators in the bath, their normal
frequencies can be distributed according to different models [6,7]. In fact a Debye type of
frequency distribution drives to a Langevin equation with time dependent coefficients. A
Lorentzian distribution can be used to simulate the hydrodynamic modes in a fluid and
this case drives to an Ornstein-Uhlenbeck noise for the system, with the corresponding
GLE. In this work we shall consider the Lorentzian distribution for the bath modes to-
gether with a time dependent temperature. The GLE becomes a non-Markovian equation
which will be written in an enlarged space of variables in order to derive the corresponding
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Fokker-Planck equation. In the last step we shall solve it for a given set of initial conditions
for the brownian particle.

2. GENERALIZED LANGEVIN EQUATION

To start with our treatment we will write the equations corresponding to the bath par-
ticles, which in fact are not derivable from a Hamiltonian as it is usual in this kind
of treatments. Instead they are modified in order to allow the time dependence in the
external temperature, those equations were proposed in the literature and have dissipative
contributions coupled with the generalized coordinates and momenta of particles in the
thermal bath [1]:

Zai() = 2 4 o)), )
%Ps(t) = —mw] (qz‘(f) - ’n%(:—)) + a(t)pi(t), (2)

gi(t) and p;(t) are the coordinates and momenta of the bath particles, m; their mass, w;
the frequencies, Q(¢) the coordinate of the Brownian particle, ; are the coupling functions
between the particle and the bath and a(t) = %% InT(t) contains the temperature of the
bath, which is a well behaved function of time.

Equations (1-2) are constructed in such a way that the bath particles are always in a
canonical equilibrium associated with the time dependent temperature, allowing for con-
tinuous cooling or heating of the system. Notice should be made that the initial conditions
in the bath particles imply a Gaussian distribution function for these quantities, with a
temperature given by 7'(0). Then the time dependent temperature T(t) is lighted on and
the bath follows it in a canonical way. The resulting equations are easily solved in terms
of the initial conditions for the bath, in such a way that they can be substituted in a
direct way into the equations of motion for the Brownian particle:
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Here P(t) is the generalized momentum of the particle, U(Q) the external potential acting
on it, {(t — t') depends on the coupling functions +; and the normal frequencies w;,
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Lastly F(t) can be written in terms of the initial conditions, namely
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Equations (3-6) give us the generalized Langevin description for the Brownian particle,
where ¢(t — t') plays the role of the dissipation and F(t) is the fluctuating force, whose
statistical properties corresponds to a Gaussian noise and its nontrivial averages are given
by

(F(t)) =0, (7)
(F()F(H)) = Kg[T(6)T(¢))3¢(t — t)). (8)

When we assume the number of oscillators N is very large, we can go to the continuous
limit and introduce a distribution of frequencies. In fact if this distribution is assumed to
be a Lorentzian one, we have a simulation of hydrodynamic modes in a fluid [6],

2N il
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Here we have taken all masses of oscillators equal to m and 7 represents the relaxation
time of the corresponding hydrodynamic mode, giving us a cutoff frequency. In this case
the coupling functions must depend on the frequency and the number of oscillators NV, in
order to have a finite correlation in the limit N — oo namely,

w
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With these assumptions the correlation of the fluctuating force becomes an exponential
function characteristic of a Gaussian Ornstein-Uhlenbeck noise:

(10)
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The GLE corresponding to the Brownian particle is then written as follows:
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It is obvious that this problem is a non-Markovian one [8] and the construction of a
Fokker-Planck equation must be done in an indirect way.
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3. GENERALIZED FOKKER-PLANCK EQUATION

First of all let us define a new space of variables to study the behavior of the Brownian
particle, this space will be composed of the coordinate, momentum and an extra variable
with the meaning of a force (Q, P, S). The new variable is chosen in such a way that the
new set of Langevin type equations will contain a Gaussian delta correlated noise, namely

dQ(t) _ P(t)
dt M’
L0 - _vi@ + s, (13)
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where I'(t) is the new noise and its statistical properties are the following ones:

2mKpT(t)2
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Equation (15) shows how the intensity of the noise contains the time dependent tem-
perature, among other parameters of our problem.
This set of equations is now ready to be the starting point in the derivation of the

Fokker-Planck equation, since the drift and diffusion coefficients are immediately identi-
fied:

B P 9 , ] _
5" (Q P.Sit) = =31 55W(Q P.Sit) + [U'(Q) - 5|55 W(Q, P, Sit)

2
& (28 (004 £) () wianis)

| MBI &
T2 052

W(Q,P,S:t). (16)

Notice should be made that the external force is an arbitrary one and the Fokker-
Planck equation is influenced by the characteristics of the heat bath through m and r,
the coupling of the bath with the Brownian particle through 4o and the time dependent
temperature T'(t). This special characteristic has driven us to an equation with time
dependent coefficients. However if we recall that our original noise is a Gaussian one,
we hope a Gaussian solution for W(Q, P, S;t) because all couplings and transformations
we have made are linear ones [9]. Then for a set of specified initial conditions for the
Brownian particle we can write the following solution:

W(Q,P,s;t)~exp[—%ZMaj(t)(x,-—aift)xzj—aj(t))], i,j=Q,PS; (17)
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where M;; is a symmetric positive definite matrix representing the fluctuations of the
variable and a;(t) are their corresponding averages. The values of these quantities satisfy
the following equations:

—a,(t) ZA,J(t a;(t) = (18)
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where matrices A and B can be identified from Eq. (16) when it is written in its canonical
form,
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then the nonzero elements of matrices A and B are given as follows:

1
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Substitution of Egs. (21-22) in Eq. (19) allows a solution for matrix M, which can be
written as follows:

d
M(t) = Cr(t) 7 Ing(t), (23)
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given by
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where the variable y is given by

QKT (t)my}
y = 2T ¢ ), (26)

all other quantities are given in the Appendix.
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Just as an example of how the elements of matrix M look like, we give here the explicit
value of Mgs(t) which represents the width corresponding to the new variable S:
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(27)
where it is seen explicitly the role played by the time dependent temperature.

4. CONCLUDING REMARKS

The model proposed in this work as well as its solution in terms of a Gaussian distribution
function, can be studied for several limiting cases. First of all we can find the Markovian
limit when the relaxation time associated with the noise is taken to be zero, then Brey
and Casado’s equation is obtained. The solution of the Fokker-Planck equation for this
particular case can also be obtained by the method used in this paper. On the other
hand, the case where the mass ratio 17 < 1 simplifies the solution to a certain extent
by means of a perturbative solution of Eq. (25) (see Ref. [10]). The solution as it stands
describes a non-Markovian problem in terms of an extended space of variables which
carries the influence of the external time dependent temperature. Its application to a
particular problem will depend on the specific function of time chosen to heat or cool the
system by external means.
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APPENDIX

The matrix C;;(t) is symmetric and all its elements can be written in terms of Cgp(t),
which is the quantity we have chosen to work with. They are given by

Caa(t) = X[+ (o= 1)), conty - ADECrO 1, (1))
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