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AnSTHACT. A microscopic model used to derive the generalized Langevin equation for a brownian
particle in a heat bath with time depcndellt telllperature is improved to construct alld solve the
corresponding Fokker-Plallck equatioll.

RESUMEN. Utilizando un modelo microscópico se obtiene la ecuación de Langevin generalizada
para el caso de una partícula browniall:t sumergida en un baño térmico con dependencia temporal
en la temperatura. Con dicha ecuación se construye y resuelve la ecuación de Fokker-Planck
correspondiente.

PACS,05.40.+j; 02.50.+5

1. INTRODUCTION

Recently I3rey and Casado have deri,'ed a generalized Langevin equation (GLE) to de-
scribe the time evolution of a I3ro\\'nian particle \\'hich is in a heat bath with time de-
pendent temperature [1]. The model corresponding to a constant temperature has been
studied far a long time and it consists of a one dimensional chain of oscillators of masS m
to simulate the bath. Those are coupled with a particle of mass M » m which is going
to simulate the system [2-5]. [t is well kno\\'n that in this problem the bath coordinates
and moml'nta are eliminated to obtain the evolution of the system. The stochasticity of
such a model coml'S when the initial conditions for the bath particles are assumed to be
distributed canonically \\'ith a constant templ'rature T, \\'hereas the initial conditions for
the system are fi"ed. I3rl'Y et al. in fact modified the bath equations to consider canonical
equilibrium with a time dependent temperature T(t), \\'hich is imposed by extl'rnalml'ans.
The corrl'sponding GLE contains this tl'mpl'l'ature besides tlll' charactl'ristie properties
of the system.

\Ve rl'call that in the ¡imit of a great number of oseillators in the bath, thejr normal
fl'{'quencies can be distributl'd according to difIerent models [G,7]. In faet a Debyl' type of
frl'qUl'IICYdistribution drjves to a Langevin equation with time dl'pendent coefficients. A
Lor(,lltzian distribution can he llsed to silIllIlate tlle hydrodYllamic mudes in a fluid and
this case ddves to an Ornstein-Uhlenbeck noise for the system, \\'ith the corresponding
GLE. In this \\'O!'k \\'e shall consider the LO!'l'ntzian distribution fO!' the bath modes to-
geth{'l' \\'ith a time dependent t('mlH'ratme. The GLE beeomes a non-:-'Iarkovian l'quation
\'.;liieh will be writtell in an en!argt'd spact' of variables in urder to derive tite corresponding



GENERALlZED FOKKER-PLANCK EQUATION. .. 359

Fokker-Planck e'Iuation. In the last step \Veshall solve it for a given set of initial conditions
for the bro\Vnian partide.

2. GENERALlZED LANGEVIN EQUATION

To start with our treatment we will write the e'Iuations corresponding to the bath par-
tides, which in fact are not derivable from a Hamiltonian as it is usual in this kind
of treatments. Instead they are modified in order to allow the time dependence in the
external temperature, those e'Iuations \Vere proposed in the literature and have dissipative
contributions coupled \Vith the generalized coordinates and momenta of partides in the
thermal bath [1]:

d Pi( t)
-1 qi(t) = - + O(t)qi(t),(t 1ni

d 2 ( Q(t))dtPi(t) = -mi"'i qi(t) -,. ",2 + O(t)pi(t),

(1)

(2)

q.(t) and Pi(t) are the coordinates and momenta of the bath partides, mi their mass, "'i
the fre'Iuencies, Q( t) the coordinate of the Bro\Vnian partide, ,i are the coupling functions
bet\Veen the partide and the bath and o(t) = t1, In T(t) contains the temperature of the
bath, which is a well behaved function of time.

E'Iuations (1-2) are constructed in such a way that the bath partides are al\Vays in a
canonical e'Iuilibrium associated with the time dependent temperature, allo\Ving for con-
tinuous cooling 01' heating of the system. Notice shonld be made that the initial conditions
in the bath partides imply a Gaussian distribution function for these 'Iuantities, with a
temperature given by T(O). Then the time dependent temperature T(t) is lighted on and
the bath follo\Vs it in a canonical \Vay. The resulting equations are easily sol\'ed in terms
of the initial conditions for the bath, in such a way that they can be substituted in a
direct way into the equations of motion for the Brownian partide:

dQ(t) P(t)
di = M' (3)

1

dP(t) = -UI(Q) _ f' ((t _ ti) (T(t)) , (P(t
l

) _ O(t)Q(t')) dt' + :F(t). (4)
dt Jo T(t') M

Here P(t) is the generalized momentum of the partide, U(Q) the externa! potential acting
on it, ((t - t') depends on the coupling functions ,. and the normal fre'Iuencies "'i,

i=N 2

((1 - t') =¿mi 2~COS["'i(l - t')].
i=l I

(5)
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Lastly :F(t) can be wrilten in terms of the initial eonditions, namely

I [ " ]
T(t) 2 ' Q(O) 1',(0)

:F(t) = (T(O)) ~ 1im, (Qi(O) - 1i w; ) eosw,t + -('~ s<'nwit (6)

Equations (3-6) give us the generalized Langevin deseription for the I3rownian particle,
where ((t - t') plays the role of the dissipation and :F(t) is the fluetuating force, whose
statistical properties corrcsponds lo a Gatlssian noisc amI its nontrivial avprages are given

by

(:F(t)) = n,
I

(:F(t):F(t')) = I\B[T(t)T(t')j2((t - t').

(7)

(8)

When we a,sume the numher of oscillators ,V is wry large, we can go lo the eontinuous
limit and introduce a distribution of frequeneies. Iu faet if this distribution is a;;sumed to
be a LOfclltzian OIlC, wc llave a simulatioll of hydrodynamic molles in a fluid [GL

2N 1
g(w)=-( 2 -2).

'TrT W + T
(a)

IIcrc we han> tak(,ll aH lIIasscs of oscillaturs equal to m and T represents liJe relaxation
time of the eorresponding hydrodynamie mode, giving us a euto!f frequeney. In this ease
the coupling functions must depend on the frequeney and the number of oseillators N, in
arder lo have a finite (,orI"clatioll in lile lilIlít ~V- 00 namely,

(10)

With these assumptions lh ••eorrelation of lhe f!ueluating force beeOlnes an exponential
funetion eharaeterislic of a Gaussian Ornst ••in-Uhl,'nbeek noise:

, 16 (11 - 1'1)((t-t)=m-:;exp --T- .

The GLE eorresponding to the I3rownian particle is then wrilten as follows:

dl'(1) = -U'(Q) _ f' ((t _ t') (.!!..- R(I.') Q(t')) dt' + :F(t),
dt Jo dt' R(t)

(11)

(12)

I

(
"1"(0)) ,where R(I) = "1"(/) •

lt is obviQtls that this problcm is a non-~Iarko\'iall ane [8) and thc construction of a
Fokker-Planck equation lll11st be done in an indircct way.
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3. GENERALIZED FOKKER-PLANCK EQUATION

First of al! let us define a new space of variables to study the behavior of the Brownian
partide, this space wil! be composed of the coordina te, momentum and an extra variable
with the meaning of a force (Q, P, S). The new variable is chosen in such a way that the
new set of Langevin type equations will contain a Gaussian delta correlated noise, namely

dQ(t) P(t)
"""di = !v! '

d~;t) = -U'(Q) + S(t), (13)

dS(t) = m'Y50(t)Q(t) _ 'Y5 mP(t) + (o(t) _ ~) S(t) + r(t), (14)
dt T T M T

where r(t) is the new noise and its statistical properties are the fol!owing ones:

(r(t)) = O, (r(t)r(t')) = 2mI<n;(th5 ó(t - t').
T

(15 )

(16)

Equation (15) shows how the intensity of the noise contains the time dependent tem-
perature, among other parameters of our problem.
This set of eqnations is now ready to be the starting point in the derivation of the

Fokker-Planck eqnation, since the drift and diffusion coefficients are immediately identi-
fied:

O r PO, O
OtH (Q, P, S; t) = - M OQ \V(Q, P, S; t) + [U (Q) - SI OP \V(Q, P, S; t)

+ :S ([ "~'Y5 ( -o(t)Q + J~)+ ( -o(t) + {:) S] \V(Q, P, S; t))

mI<nT(th5 0
2 I'(Q P S. )+ T2 OS2 I '" t .

1\olice should be made thal lhe exlerna! force is an arbilrary one and lhe Fokker-
Planck equalion is inftnenced by the characteristics of lhe heal bath throngh m and T,

lhe conpling of the bath wilh lhe Ilrownian partide lhrongh 'Yo and lhe lime dependent
temperalnre T(t). This special characteristic has driven ns lo an eqnation wilh lime
dependent coefficicnls. However if we recal! that our original noise is a Gaussian one,
we hope a Gaussian solulion for \V(Q, P, S; t) becansc al! conplings and lransformalions
we have made are linear ones [91. Then for a set of specified inilial conditions for the
Ilrownian partide we can wrile lhe fol!owing solution:

\V(Q, P, S; t) ~ exp [ - !L:: I\lij(t)(x; - ai(t))(Xj - aj(t))] ,
'.]

i,j = Q, P, S; (17)
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where Mij is a symmetric positive defillite matrix represelltillg the f!uctuatiolls of the
variable alld ai(t) are their correspolldillg averages. The values of these quantities satisfy
the following equations: :ta;(t) - L A;j(t)aj(t) = O, (18)

j

:tMk/(t) +L 2A;dt)Mi/(t) +L B;j(t)Mi/(t)Mjdt) = O, (19)
. iJ

where matrices A and B can be identified from Eq. (lG) when it is written in its canonical
form,

a L a 1L a
2w-aW(Xl,X2, ... ,Xn,t)=- Aij-a(XjW)+z B;ja a ;t x. X. X.. . 1 .. 1 J

tJ lJ

then the nonzero elements of matrices A and B are given as follows:

(20)

Aps = 1,

1
Ass=a--,

T
(21 )

T(t) 2
Bss = 2[(U-2-m10'

T
(22)

Substitution of Eqs. (21-22) in Eq. (19) allows a solutioll for matrix M, which can be
written as follows:

where

1, [1" 4[(uT(t"hJrnc (")d 11 2t'] d'g(t) = bo exp - 2 sp t t + - t,
o o T T

(23)

(24)

and all Ck/(t) functions can be written in tenns of Csp(t) which satisfies a cubic equation
given by

( 1) [( 1)212m] 12my3 + 2 a _ _ y2 + a _ _ + _0_ y - _0_ = O,
T T T1I1 1I1T2

where the variable y is given by
2[( uT(t)1TqJ C ()

y = 2 sp t ;
T

all other quantities are given in the Appendix.

(25)

(2G)
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Just as an example of how the elements of matrix 1\1100k like, we give here the explicit
value of 1\1ss(t) which represents the width corresponding to the new variable S:

where it is seen explicitly the role played by the time dependent temperature.

T2
Mss(t) = ,

2nl"¡6hnT(t)

exp [- ~ J~T(t')Csp(t') dt']

J~(exp[- 4/~II,JJ~'T(tll)Csp(tll)dtll]) exp( _ 21';"1) dt"

(2i)

4. CONCLUDING HE~IAHKS

The modcl proposed in this work as well as its solntion in terms of a Gaussian distribution
function, can be studied for several limiting cases. First of all we can find the Markovian
limit when the relaxation time associated with the noise is taken to be zero, then Elrey
and Casado's equation is obtain"d. The solution of the Fokker-Planck equation for this
particular case can aIso be obtained by the method used in this papero On the other
hand, the case where the mass ratio ~; « 1 simplifies the solution to a certain extent
by means of a perturbatjve solution of Eq. (25) (see fieL 110]). The solution as jt stands
describes a non-I\[arkovian problem in terms of an extended space of variables which
carries the influence of the external time dependent temperature. Its application to a
particular problem will depend on the specific function of time chosen 1.0heat or cool the
systcm hy external IllCilIlS.
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ApPENDIX

The matrix C,j(t) is symmetric and all its elemenls can be wriHen in tenns of Csp(t),
which is the quantity we have chosen to work with. They are given by

C (t) = 'O[O(t)jZ
QQ 2/(BT(t)m

o( t)T
CQs(t) = 2/(J3T(t)m

[y+(o-~)r

[y+ (0- ~)r'Cpp(t) = yCsp(t),

T2
Css(t) = 2'

2IínT(t)m,o
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