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ABSTRACT. The geomctry of the thermodynamic surface of lhe liquid-vapor coexistence is studied
in a spacc whose coordinates are dt'llsitics of mass, cncrgy, and entrapy. ~laill cmphasis is given
to the vicinity of the critical point. Gcolllctric a.'iSlIlIlptioIlSlIlade are the asymptotic behavior of
thermodyuamic derivativcs without a priori corrcctioll to scaling hypothcsis. Allalysis of the results
leads to the proposal thal the leading correction exponent is 1 - (l - (J = -y + (J - J.

RESU~IEN. Se estudia la geometría de la superficie termodinámica de la coexistencia vapor-líqllido
en un espacio cuyas coordenadas 5011 las densidades de masa, energía y entropía. Se pone el mayor
énfasis en la vecindad del punto crítico. Se acepta como hip6tesis geométrica el comportamiento
asintótico de las derivadas termodinámicas sin ninguna hipótesis a priori sobre las corrccciones al
escalamiento. El análisis de las consecuencias nos lleva a proponer que el exponente dominante de
corrección es I - o - (3 = -y + (J - 1.

PAes: 05.70.Jk; 02.40.l!w

l. INTHO()UCTIO:"

The repn'sentatiou of therrnodynamic properti('s by geometric surfaces has a well-knowu
history aud mauy first rauk scieutists ha,'c u'l'd geometrie representatious of thermody-
namics for differeut purposes [1.21.

Thc use of these geolI1ctric sllrfan's llceds 110 IIlOfe jllstification than the obviollS qllal-
itative insight OBe obtaills f1'ol11graphic 1'cp1'l'sPIltatioIl of an)' physical fUllction.
The physicaI system considered herc is an urdiuary real fluid wilh twu phases, liquid

and vapor. Onl)' stable thermodynamic cquilibriulll is takell into aCCOllIlt.
The geometry used iu this papel' is ordiuary c1assical differelllial geumetry 13]. A dif-

ferent geometry propused by Ti,za I.l) aud based ou the facl that rigid motious iu a
thermod.ynamic space llave no ph)'sical mcanillg, statcs tltat affiuc trallsformations are
more adaptablc to thprIllodYllaIllics. Ho\\'cvcr, amue gcomctry is not as illt.uitivc, and the
matrices "sed by Tisza to specify his geomelry are not well-defined at the critical point.
Also, the ordinary graphics of thenuodynamic relatious cau not be easily incorporated
into this gcolllctry.
An Euclideau space is adapted here usiug mass deusity, euergy deusity, and entropy

density as rectangular coordinat('s. This choice of coorciinatf's is hased OIl thc incrca.<;;('d

. Also at Instituto Tt'cnológico de :\Iontcrrey, campus Estado de !\léxico.
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symmetry observed near the critical point when these thermodynamic variables are used
to express the observed thermodynamic relations graphical!y [5].
Thermodynamic equilibrium states are represented in this space by points Iying on a

surface. This surface expresses the thermodynalllic relations between coordinates.
The geometry used in this papel' to represent the physical systelll is closely related to

Gibbs' geometry [1]. Gibbs used entropy, energy and volullle as orthogonal coordinates in
space. Points in thermodynamie equilibrium form a particular surface in this space, which
corresponds to the particular fluid it represents. Pressure and temperature determine
the orthogonal direction to the snrface. Liquid and vapor coexistence in equilibrium is
represented in Gibbs' space by two points with different coordinates and one plane tangent
to each of the two points. For a one-component fluid, any thermodynamic variable at co-
existence is a function of only one independent variable, and in this work, the temperature
was chosen as the independent variable at coexistence.
As the temperature changes, the plane tangent to the two coexistence points rol!s on

the surface, touching two branches of the coexistence curve. This curve, formed by the
two coexistence points when the temperature is varied, has two branches, liquid and vapor
which are connected at the critical point. The envelope of the family of planes formed
as they rol! on the coexistence curve produces the thermodynamic two-phase surface.
This is a developable surface formed by rulers connecting the two coexisting points on the
liquid and vapor coexistence curves, respectively. Al! these geometric arguments have been
expressed in Gibbs' papel' 111. A generalization of these same ideas for any thermodynamic
system has been presented by Buckingham [6].
Working in Gibbs' space, Piila and ~Iata [71 studied the developable surface formed by

the rulers connecting coexisting points. These rulers are tangent to the edge of regression
which is present in a developable surface. Piila and Mata have expressed the equation of
this particular edge of regression as a function of the vapor pressure and the chemical
potential at coexistence.

In this papel', the geometric properties previously obtained in Gibbs' space are not
only reproduced with I¡ttle change in the different space presented here, but the geo-
metric ideas are further elaborated, and geometric objects not previously considered in
thermodynamics are explicitly calculated, with main emphasis on the critical point.
Some thermodynamic information at the critical point is necessary to attain this

objective. This information is givcn in quantitative form, assuming the accepted expo-
nents [8,9,10] for some thermodynamic quantities. A survey of the thermodynamic basis
is presented in the next section. Griffiths and Wheeler [11] found using field variables
(pressure, temperature, chemical potential) a preferred direction along the coexistence
curve.
Although the coordinates used in this papel' are diffcrent fram those of Griffiths and

\Vhccler, it was fouucl useful thcir suggestion for studying thc prefcrred dircction along the
coexistence curve. This geometric praperty has an analogue in the conjugated coordinates
which are the densitics of the extcnsivc variables used in our study.
Looking for physical!y meaningful resu1ts, the common features of the behaviour of

geometric objects wil! be stressed as the critical point is approached.
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2. TlIERMODYNA~lIC I'ROPErlTIES

The thermodynamics of a definite qnantity of apure substance is expressed here in the
variables used by Ley-Koo aud Green [81.

By using critical pressure, temperature and volumen (Pe, Te and Yc), quantities can
be expressed as physically dimension!ess. The fundamental coordinates 1 use are mass
density, energy density and entropy density and these are defned as fllnctions of the
volume ¡r, the energy U, and the entropy S by the equations

¡re
P= ¡r'

\Ve also have Gibbs relation

U
1L=V'Pe

STe
S = VPe' (1)

and Gibbs-Dnhem relation

ds = -Tdu - jídp,

di> = pd¡, + udT,

(2)

(3)

where P, T, and jí are the Sengers and Sengers [91 variables, which are defined by

- TeT=--,
T

_ I,Te
I'=TP.V.'e e

• ?Te
P=-TPe'

(4)

where P, T, Il are the pressure, temperature, and chemical potential, respectively.
These quantities are related by eqllation

i> = PI' + uT + s. (5)

Asymptotic properties near the critical point are represented by critical exponents
associated with the leading term of any quantity expressed as a function of temperature
deviations éJ.T = 11 + TI,

(
ají )at p = q¡

(aaTu')p= 1 •pT2C
y
= q2éJ.To

(al') 1 •- = -- = Q3éJ.T'
ap T Tp2"T

(finite),

(n ~ 0.1),

(-y ~ 1.2),

(6)

(7)

(8)

where q¡ are coefficients, having a finite value at the limit éJ.T = O,Cy is the heat capacity
at constant volllme and "T is the isothermal compressibility.
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On the coexistcllC(, curn~, t he diffefcllcc ill liquid and vapor densitics is a fUIlction oC the
temperature differencl's !!.'T ",il h an l'xponl'nl {J. This is found by taking the derivative of
the density ",ilh resl)('cl to lhe tl'mperalure T calcnlated on the coexistence curve. This
dl'rivative has a diwrgl'ncl' ",ilh an exponent .8 - 1:

dp('T) . J-I
-.- = '14!!.T ({J ~ 0.325).

dT
(9)

Exponents ami codliril'nls '1i lila)' bl' a fnnction of lhe path one follows to atta;n the
critica! point. E<¡nalions (G-9) lllay bl' l'xact l'<¡nations, if lhe '1i'S are nol constants. The
hehavior of many ot Iu'r t hel"modYllamie variah!<'s is det('nnined by the prcviol1sly assumed
dl'pendl'nce of thl'sl' fom <¡nanlilil's (G-9).
For example. lhl' olhl'!' ninl' partial dni,'ali,'''s )'('!aling lhe variables p, u, 1', ¡1, become

(01') (DI') (OP) _ '13 "T'o-o-. + - -- - (jI + --,:" ,OT p Dp '[' OT " '11'12

(011) (01')Op T = - OY p = -'11,

(Of~) = _ (O~) (Ol~) = _'11 !!.1'-o,OT l' 01' '[' OT p '13

(011) = (O~) = _'!.!-!!.y-o,
01'.,. OT p '13

( O'~) = (O'~) + (~") .. (Of~)OT l' OT p P I OT p

= ~!!.i'-o+ '1¡ !!.'T-o,
'12 '1:1

(~~)" = - (~;,) J~~)'['= 'II'I2!!.'T°,

(01' )
OY "

(001') = (O,'F.') (OoY) = '1¡'n!!.T" + '1J!!.'To,
{Ju DTu (Ju

(~") = _ (Ol~) .
P l' OT"

(OF') = (OT) .
D" Op

p "

(10)

(11)

(12)

(13)

(14)

(15 )

( lG)

(17)

(18)



GEO~IETHV 01' TIIE VAPOIl-L1QlIIDCOEXISTEXCE XEAH TIIE CHITICAL POIXT 3ü!J

Divergencies wil h "XPOIICllt -() are associated with the derivatives o[ por 1l with rcspect
to T 01' li, kecpillg cOllstall1 Ihe othcr p 01' Il ,.ariahle. Diver&encies with expollellt -'Y are
associatcd with the derivati,",'s of por Il with respect to I' 01' li, keepillg cOllstallt the
other T 01' li ,.ariahll'. Fillite '1llalltitil'S are d"rivatives o[ T with respecl to li., 01' p with
fCSpcct to ll, or the rorn'spoll<!ing ¡lln'rse dt'rivativt's.

Same <icri\'atin's sllO\\' COlT{'('tillg l'XPOIH'lIts }ike

01'

(1 a)

(~Il)
P "

(!J-)~ ='11
!JI' u (1 + .J2....6.T1-0) .

q?r¡'!. (20)

TIJese lta\'c tltt.' (,olT('('tiug t'XPOIl('llt -, - n <tud lhe (,oLTl'cting cOl'ffici('llt qJ/qfq2 fr¡>rated.
This observatioll is lIo1 tri\'ial becallse it lila)' he n'latcd lo corrections to scaling {9J.

110\\,('\"('[,lile eXpOlll'llt f' - o is nol a 107.tio1'i tIIl' first corrt'cting cxpollent. A lo\\'t'[
correcting expollent could be illdudl'd in lhe (Ji qWUltitil'S lo aCCouIlt [or dcviatioIlS from
the finite limiL lf that is Ihe ease, it is illlnestillg lo lIole that Ihis implies that the

coef!icielll [01' expOIll'llts lo\Ver thall 'Y - () IIIIlSt hl' l hc satlle [01' the deri'.atives (~) p

aud (fi¥) u sillcc lIJe differPllcc has oHI)' a ,- o (,XPOll(,llt. Furth('flllore this is not the
ouly cxalllple lo 1)(' [ouud.

Correctiolls-to-scaling with 10\\'C'1'exponcnts SC'{,1llnC'c{'ssaryif \Ve considef thermody-
namic variables 011an.y brauch or the coexistplIc(, ('Il1'n~.

ily chain rule tJ¡p derivati\'c (lf the clit'llli('ai pOf('lItial at cOl'xistcJlce becolllcs

Substitutioll o[ (G-a) glH'S

di; (i)

dI'
= (!Jli)

iJi p + (
!Jli) dp(!)
!Jp T dI' (21 )

dli (T) • +13 I
---- = 'JI + 'IJ'I,.6.To -.
dI'

A sccond dl'rivaf ive illlplies

(22)

d2¡i (T)
dT2

d'JI d'lJ'J.' "7-'0+13-1-. + -----'.>
dI' dI' + 'IJ'J.lh + {3- 1).6.To+13-2 (23)

This derivative is asslIllIl'd fiuit" at the critical poiut [8,a,lOj alld .6.T1+13-2 b"colllcs
divcrgcnt. Tlllls we are fo1'('('<Ilo introduce a ('orrectioll-to-scaling cocfficicllt of! + (3 _ 1
iu '11 lo amid Ihal divngl'uce. Ou t 1](' 01her haud it is a uice property, accordillg to Ihe
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Essam-Fisher conjecture [12]' the exponent ,+(3- 1 is half the exponent ,- a previously
considered in the partial derivatives:

, + (3 - 1 = 1 - a - (3= (¡- 0.)/2. (24)

This is assumed to be true in this papero
Using only asymptotic behavior and the condition that jJ." should be finite at the

critical point, leads one to suggest that the correction exponent might be (24). This
same suggestion was also made in a different way by Creen, Cooper, and Sengers [10]'
who assumed extended scaling and the existence of the preferred direction intraduced by
Criffiths and Wheeler [111.
The leading term of the density diameter divergence [8,91 also suggests the same cor-

rection exponent 1 - a - (3 for the expression (9) in the form

q4 = N + Fc.yl-n-~ + ... ,

dp(!) = Nc.y~-l+ Fc.y-n + ...
dT

The deriva ti ve of the energy density at coexistence, also obtained fram chain rule, is

(25)

du(Y)

dT
= (a~) + (au) dp(!)

8T p ap T dT

= 2-c.y-n - qlq4C.y~-1.
qz

(26)

Once again the correcting exponent 1 - a - (3appears and a parallel formal expansion on
the R.E.S. of Eqs. (25), (26) is found.
\Ve will see that these exponents appear in connection with any geometric object, a

fact that will be stressed at the conc1usion.

3. TlIE GEOMETRY OF TlIE ONE PIIASE REGION

\Ve choose an Euc1idian space of ortllogonal coordinates p, u, and s. The position vector
in this space is r:

r = (p, u, s) (27)

Eqnilibrium thermodynamic states are represented in tllis space by a surface represent-
ing the relation between tlle mass, energy, and entropy densities of any pure substance

s = s(p, u). (28)
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FIGURE l. Thermodynamic surface representing the functional relation among the densities of
entropy, mass, and energy.

This surface will be described using the language and ll1ethods of classical differential
geoll1etry as found in standard treatises on this snbject [3). (See Fig. 1).

The therll1odynall1ic surface is parall1etrized with ll1ass density p and energy density u
as coordinates in the form

r = (p, u, s(p, u)). (29)

Derivatives of the function s(p, u) have physical ll1eaning according to the Gibbs rela-
tion (2):

T= _ (as)au '
p

(30)

Tangent vectors to the surface along the coordinate curves p and u are obtained by (29)
differentiating the position vector with respect to the p and u variables:

ep = (::) u = (1,0, -1')
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and

( Dr) -c" = D" = (0,1, -7').
p

The cross product betW(,(,1l tllese \'('ctor5 is a \'('ctor perpendicular lo t1lc surface

Cp x c" = (Ji,f,l)

(31 )

(32)

and thc chcmical pOtí'Iltia! and tIle tempcrature givc liJe oricnlatioIl of t1lc planc tangcnt
lo tI", surface.

Important objects are lile lllctric malrix 01' firsl fundamental fortu illtro<inccd with
ordinary scalar producls

¡if )
1+ f2

(33)

and lhe unitary vector g in the direction orthogonal to the surface (32)

g=
(Ji,f,l)

(1 + Ji2 + f2)1/2 .
(34)

Derivatives of the vectors (31) with respect to the coordinates, are projected onto the g
direction to give the symmetric lllatrix called the S('COIH! fundamental form of the surface

(

!Jeg.7if
TI - p

g.~

~)g. Du

g.~ B"

(35)

This is proportional to the stiffness form introduc('d by Tisza [41. The second fundamental
form (35) is a s)'mllletric lllatrix as th(' r('sult of a w('ll-kuown :-'laxwell r"'alion. At the
critical paint, an)' component of this matrix g<)('S lo zera with an cxpollPnt o.

Au)' tangcnt directioll n lo tite surface lllay be writ.tcll as a liBrar com1>ination of thc
vectors (31):

\'.;herc (np,1lu) are the contravariant cOmpOllCllts of vcctor n. 1\orIllal surface cUfvalurc
in thc n direction is defilled by tIte qllotiellt

nDü
),= nA '-1 ' (37)
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where the tilde deuotl's the trauspose vector

Ji = (,,")
Hu

(38)

Extremal values of the cun'ature (37) are the priucipal cun'atures A, aud A2 aud the
corrcsponding direct.iollS nI and 112 are lhe principal directions. TIJese are solutiollS to
thc characteristic ('<¡uatíon

(i=I,2), (:19)

and tite principal din'ctiollS 111 anll H2 are orthogonal \\'ith rcspcct lo t}¡c mctric A,

(.10)

Although Gaussiau curvatme conld be delined ouly in tenns of matrix A, it is here
introduced dividing the detenniuaut of matrix TI by the detenninaut of matrix A. This
is also the prodnct of the two principal curvatmes Al and A2:

A,A2= 1 _ (Di') (D1i) .
(1 + ¡i2 + T2)2 Du " Dp T

(41 )

This quautity is positive almost everywhere in thermodyuamics. lu the oue-phase re-
giou, it becomes zero ouly at the critical point with au exponeut Q + l' determiucd by the
expouents of the partial derivatives iu the uumerator of this l''1nation. Positiveul'ss of that
Ganssian curvatme shows that both principal curvatmes have the same 5igu and that the
surface is of the elliptic class haviug both cun'atmes on the same side of the surface.
This property is rclated to the stability of the system as discussed in any textbook on
thcrmodynamics. Gaussian cun'aturc in tite lwo-phasc regíon is cOllsidcred illllcxt sectioll.
The coexistence cnn'e is the boundary between the oue-phase regiou and the two-phase
smface. It belongs to both surfaces aud the normal curmtme has two dilfereut values
according lo which surface is cOllsidcred, thc olle-phasc Dr two-phasc, rcspecti\'cly.
The meau cmvature II is deliued as half the SUlll of the principal cmvatures, and also

half the trace of t}¡c prouuct uctwecn mat.rix n alld ill\'C'l'sC matrix A -1:

1 (Di')211 = A, + A2 = - _ _
(1 + ¡i2 + T2)3/2 Du p

This mean Cllrvatllrc has a zero lilllit at the critiral poillt with an ('xponcnt 0'. The fart
that the prod uet of the priucipal cmmt mes (.11) has au exponent a + l' and the sllm has
an exponcnt 0:, shows that one principal Cllf\'aturc has a zero lilllit with the large cxponcnt
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/ and the other with a smaller exponent Q. This is a scalar property independent of the
direction by which the critical point is reached.

The principal cnrvatures may be written as series in the correcting exponent / - Q, the
difference between the principal curvature exponents.

To the lowest order in 6.y,-a, the principal curvatures are

(43)

and

(44)

where

(45)

and the corresponding principal directions to zero order in 6.T,-a are

and

(
- -2 (Djí) 2 - (Djí) )

n2 = -liT + (1 + T) at p' 1 + jí - jíT at p •

The principal direction vectors have been selected with the same magnitude:

(46)

(47)

Corrections to the principal curvatures or the principal directions near the critical point
may be calculated to any power of 6.y,-a. An exact solution may also be obtained but
this does not seem to offer any useful information.

7'\ormal curvature (37) ror any direction n is expressed as a function of the principal
curvatures by the Enler eqnation [3]:

(48)

where <p is the angle between the particular direction n and the principal direction ni.
Kote that curvature Al reaches zero faster than the curvature A2 as the critical point is
approached. Therefore, as long as <p is a finite angle, A goes to zero with the exponent



GEOMETRY OF THE VAPOR-L1QUID COEXISTENCE NEAR TIIE CRITICAL POINT 375

Q corresponding to the principal curvature '\2' Only when the directo n n is parallel to
the principal direction ni and the angle 1> is zero, does the normal curvature ,\ have a
different exponent -y.
A similar conclusion was reached for a fluid in a temperature, pressure and che m-

ical potential-space, and generalized to any thermodynamic system by Griffiths and
Wheeler [11) who predicted the existence of a direction singled out by the nature of
the phase transition. According to Griffiths and Wheeler, this direction is the tangent to
the coexistence curve. In Sect. 5 of this paper where the coexistence curve is studied, we
found that the principal direction ni and the tangent to the coexistence curve become
parallel at the critical point in accord with this geometric hypothesis.

4. TIIE GEOMETRY OF TlIE T\VO PIIASE REGION

Liquid and vapor phases coexist in stable equilibrium at the same chemical potential ¡,
and temperature T with different values of density, energy and entropy. A coexisten ce
state of phase equilibrium is represented in P, u, s space by two different points on the
thermodynamic surface, one corresponding to the liquid with the large density and the
other to the vapor with the smaller density:

and
(liquid)

(vapor).

(49)

(50)

Both points have the same temperature and chemical potential and therefore the tan-
gent planes, as determined by the direction g at these two points, are parallel or coincident.
In addition, phase equilibrium requires that both phases have the same value of pressure

P at coexistence. Then Eq. (5) implies

P = PL¡' + uLT + SL = Po + uoT + so.

According to vector notation this equation shows

is orthogonal to the vector perpendicular to the surface

t>r' g = O.

(51 )

(52)

(53)

It follows that at coexistence, the plane tangent touches the surface at the two points
which represent the coexisting phases and the plane contains the straight line joining the
two points.
A point on this line between the t\Vo coexistence points represents the two-phase state

with a proportion of liquid and vapor determined by the ratio of the lengths of the
segments into which the point divides t>r.
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The six components (49) and (50) and the three quantltles 1',11, Pare functions of
only one independent variable, according to Gibbs' phase rule. The temperature l' is here
chosen as the independent variable at coexistence: the vapor pressure P (1') and the vapor
chemical potential ¡i(T). The t\Vo positions (49) and (50) are functions of the temperature
and \Vhen the temperatnre changes, each triad represents a branch of a curve called the
coexistence curve. Liquid and vapor branches of the coexistence curve meet at the critical
point \Vhere discontinuity of the coordinate ceases to exist.
As temperatnre changes, the tangent plane rolls on the t\Vo points (49) and (50) on

the coexistence curve. The straightlines connecting the t\Vo coexisting points form a ruled
surface. This surface is the envelope of the one parameter fal1lily of planes obtained \Vhen
rolling on the eoexisting curve. Sueh a surfaee is a developable or parabolie surfaee \Vith
zero Gaussian eurvature [31.

Changing our eoordiuates do es not alter in any \Vay the geol1letrie properties obtained
a eentury ago by Gibbs [11 in the volurne, energy, entropy spaee.

A developable surface is tangent to a t\Visted curve called the edge of regression. This
curve is deterl1lined by the parameter family of planes tangent to the surfaee at eoexistenee
curve and is given as a funetion of temperature in the form

p(T) = PII(T) + 111' + s. (54)

An edge of regression in Gibbs' spaee \Vas obtained by E. Piña and O. ~Iata [7J. The
orthogonal eoordinates of this curve in our (p, 11, s) spaee are

(
P"(!) -I'(T)p,,(!) + p'(T) [Ti'(T) - 1(1')] p."(!) + p(T) - TP'(T)), (55)
II"(T)' 1 II"(T) ,1 1 II"(T)

\Vhere a prime denotes a derivative \Vith respeet to ternperature T.
\Vhen the edge of regression beco mes a point or the point at infinity, t he developable

surface is a eone or a eylinder, respeetively. These particular cases are not eonsidered here
beeause a real fluid eould not have this simple surfaee filling the t\Vo-phase region. A eone
or a eylinder imply physically linear combinations of temperature, chemieal potential and
sOl1letimes pressnre. From this property it can be shown that the experimental evidenee
does not support these part ieular cases.
The tangent to the edge of regression touehes the thermodynamie surface at the eoex-

isting points. This tangent has the direetion

(1, -11'(1'),1',1'(1') - 11(1')), (56)

\Vhieh should be parallel to the vector L'.r (52). This result is equivalent to the Clausius-
Clapeyron equation.
Note that the tangent directioll (56) has, with re'pect to the base (31), the component,

(1, -11'(7')),

which \Vill be used in the next seetion.

(57)
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The normal vector to the edge of regression has the direction

and the binorma! vector coincides with the g vector, orthogona! to the surface [31.
The curvature " and torsion T of the edge 01' regression have been calculated by the

Frenet equations [3]:

/;"(T)[1 + T2 + ¡i(T)p/2
1\, = -----_~---

3 d i"'ci)
R dT ~"(T)

and

1
T = ~2.2. d j'm(i') 1

[1 + T + /' (T)I dT ~"(T)
(60)

where 11 in (59) is the magnitnde of the vector (56) with the same behavior as that of
quantity (45):

(61 )

According to pl'('S('nt knowledge of critical behaviour the second derivative /;"(T) of
the chemical potenlial is assumed to he finite at the critica! point. In such a case P"(T)
should he divergent with an exponent _Q.

This follows fmm the Gibbs-Dnhem relation (3)

(A=L,G). (62)

Taking the second derivative of this eqnation one obtains

(63)

The values of the d,'ri\'ati\'es Ji' and ,,' on the right hand side of Eq. (63) were expressed
by <;hain rule in Eqs. (21) and (26).
Substitution in (63) gi\'es

The most divel'gent tel'ms, the middle tel'lllS on the right hand side, are exactly zero
by a IIlaxwell I'elalion and (6.1) })('('omes

(65)
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Each term on the right hand side of this e<¡uation has the critical exponent -Q amI
this is the exponent of the term P"(T) oll the Idl if ¡;"(1') is fillite. fll this calculalioll
partia} derivativcs are cvalnatcd 011 él part.icular brallch of thc coexistcncc curv(', taking
lhe partial derivatives from the olle-phasc side of the coexistellce Cllrve.
Assuming lhese properlies, compollellts of the edgc of regressioll gro\\' \\'ithollt limil

in lhe tangent direction (56) as lhe crilical temperatnre is approached. This is a \\'eak
divergence wilh an exponent -Q.

Using lhe same argumenl, lhe curvalnre and the lorsioll go lo zero as ~Tl+o.
Sinee lhe developable, lwo-phase regioll is a parabolie smfaee [3], it follo\Vs lhal one

oC its principal curvatllrcs is zera. Thc nOIl-zefa principal curvaturc is dctcnnincd by thc
curvaturc and torsion oC its cdge oC rcgrcssion. QIle has [3]

"1 = O, (66)

where d is lhe distance from the poinl Oll lhe surfaee to lhe edge of regression along lhe
tangent slraighl line passing al lhis poillt. As lhe posilioll of lhe edge of regression goes
to infinily at lhe crilical lelllperalure, lhe prillcipal curvalure "2 becollles zero wilh an
exponent Q eoming from a clivergellce in distance d. This resull re<¡uires thal T / K be finite,
whieh is possible provicled ¡;"(T) is also finite.
Distanee d is calculated along the tangellt to the edge of regression up to lhe poillt

wilh critical clensity 1. It becollles

(
P"(T))d=R -1+--_-
1'"(T)

as expected.

5. TttE GEOMETHV OF TttE COEXtSTENCE CUHVE

(67)

The coexistence eurve has been Illentioned Illany limes in lhe previous section, furlher
cliscussion of its geolllelric properties is offerecl.
Every branch of lhe coexislence eurve is touched by the tangenl lo the eclge of regressioll

along the vector (56) or (52). Furlhennore, we nole that the divergenl parl of lhe edge
of regression is parallel to this langent direction (see Fig. 2).
Position (49) or (50) of one braneh of lhe cllexistellce curve is lhus expressed by lhe

nOll clivergenl parl of the edge of regression plus a vector ill the langelll clirectioll (56)

fA = (PA,UA,SA) = (O, P'(T), P(T) - T{)'(T))

+ PA(l, -¡¡'eh Y¡l'eT) - jl(Y)) (A = L,G). (68)

The positioll of a POilll Oll lhe coexislellce curve is expressed as functions of vapor
pressnre, chemical polenlial and densily at coexislence. In a change of brandl, density is
lhe only functioll lo be challged.
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FIGUHE 2. Gcollletric reprcscntatioll oC the phase coexistence. The straight lines callneet thc
coexistence liquid and vapor statcs 011 the coexistence curve. Thcsc liJles are tangcnt to the cdgc
oC regrcssion alld fOfm a dcvelopaiJlc surCace.

Taking lhe dl'rivalive wilh rl'specl lo ll'mperalure T of lhe posilion \'Cclor (68) one
finds

drA [-" -) -"(-] )-- = P (T - PAI' T) (O,I,-TdT

+ P~(T) (1, -1;' (i'), TI;' (T) - 1;(T)). (69)

This is a veclor langenl lo lhe coexislellce curve. Accordillg lo (63), lhis veclor is expressed
wilh respecl lo lhe base (31) ill lhe form

(iO)
Calculating lhe normal curvalure AC of lhe tallgelll direclion lo lhe coexislence curve by

replacing lhe veclor n, in lhe definition (3i) of normal curvature, by the componl'nls (iO)

(il)

Dominant tcrms il! this ('xpr('ssion go to zera with an exponent T' shm.....ing tltat the
langenl lo lhe coexislence cnrve mllsl be parallel lo lhe principal direclion nI as was
slated al lhe end of lhe Secl. 3.
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This ('onciusioll verifies Griffith alld \\"hl'l'll'r's slIggestioll [11] tllat t1le preferred direc-
tion with a largest di\'ergcllcC' is tangent to tlle coexis1('llcl' Cltr\"C.
Furthermore, the Euler e<¡ualion (~8) lila)" be used in a more <¡uautitati,'e fOrlu 10

express the angle <;lc between the tangeut to the coexistence curve and the priucipal
direction 111:

(72)

As this square becollles zero at the critical point, ÓC lila)" be substituted for sin óc,
and A2 can be a uegligible curvature as COlllpared to A2 iu the denomiuator to obtaiu the
relevant beha,.ior of the augle <;lcal the critical poiut

(73)

This angle disappears with t>.T according to the correctiou to scaling exponent 1 - Q - {J.
Both branches of the coexistence cun'e join smoothly at the critical point. The evidence
of this is that 1 - Q - /3 is positive with a value dose to 1/2 near the critical point. Both
branches become parallel to the principal direction 111 at the junction.
The tangent to the edge of regression which connects the two coexistence points can

be also expected to become parallel to the principal direction 11 t.
Calculating the normal curvature Ay, using (37), along the tangent directiou (57):

(¥A) y + (p~)2 (;; ): ( %f):
Ay = - - ,

[1 + ¡L2 + T2j1/2 HZ

"t is the dominant exponent as expected.
The angle Óy between t>.r aud lit is deduced in a manner similar to that

and to lower order:

1 I (D¡i) [ -2 -211/2</iy = -p - 1+ ¡L + TH2 A Dp y ,

(7~)

used for Óc

(75 )

which has a 2ero limit with exponent "t + /3 - 1.
These two directions are coupled by a geometric property. They are conjugated di-

rections [31 in the sense that they are orthogonal directions with respect to the second
fundamental matrix B:

( ')./ PA(1,1,)D =0.
u~

Coujugated directions have the characteristic property [31

tan<;lctauOy = Al/AZ,

(76)

(77)
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FIGURE 3. The tallgent lo lhe coexistC'llce curve te in lhe plane of lhe tangent t and normal 11
lo lhe edge of regression form the anglc I..P betwecn tangents.

which giy('s a COllsistency relatioll between allgles and principal CUfyatures. The trigollo-
metric tangent may be snbstituted by the angle when it is smalI.
One more cOlllpatibility test was obtained by noting that the \'t'ctor tangent to the

edge of regressiou anu the direction tangent (G9) to the coexistence cur\'C fonn the angle

(78)

OIl the plane tangellt lo the surCare.
The \'Cctor tangent to the coexistence curve (G9) is a di\'Crgellt yector at the critical

point. A paralIel finite yector is found by diYiding by P~, which is also din'rgent.
This tangcnt \"cctor dctt'rminC's [3) lIJe Clll'Vature ""C oC the co('xistencc curve alld to

lower arder it is

1 ( - 2 - o) Ij" d [( ," -" / '1"C = !I> , 1+ T + IL' '-- PAIL - P ) P" .
PA dT (79)

which is zera al the critical point with lhe asymptotic (,xpolwnt A, - 1.
Thr unit \'cetor te, tallgellt lo the coexistrllcc cun'e (OIl aH)' brallch), IS 1Il the plane

formed by unit \"('ctor5 taugcllt t and llormalll associated witlt tite (\dge of regressioll in
directions (5G) and (58), rpspectiyely.
From Fig. 3 it is eyident that direction g = b. orthogonal 10 both t and n, is also

perpendicular to te.
The CO('xi5tcnce cun'c also dct('rmines two lIuit ycctors Be and be, Hormal and binormal

to the cun'e in correspondillg order. The three y('ctor5 te, lIe and be £01'111an orthonormal
basis associated with the coexistellce curye in thc salll(' way tilat v('ctor 11,t, and b = g
corespolld to the cdge of regressioll,

Since v('ctor b = g is in tlle plallc orthogonal to te, it is in the plallc cOlltaining w'ctors
n and be. Let O dl'note the angle bet\l'een thl' directions g and be (see Fig. 4).

The Cllrvature I\C of the coexist('lH'e Clll'\'Cis a fllllCtioll of lhe Hormal Cllrvatllrc Ae and
the allgle B by t11(' )'leusnil'r theorclIl [:3J

(80)
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cotlll.lstence
,"r,.~

b = g

FIGUHE 4. The normal ne anu billormal he to thc coexhitence curve are in the same plallc as
the normal to the surCare g. This is cqual to thc billofmal to the cuge of regressioll. 8 is the angle
bctwC'Cn binormals.

Note that .xc is smaller than "e near the critical point this theorem can oe used to
determine how the angle O goes to zero. Therefore,

n '2 2 d-O = (1+T +i¡ )-,In
dT [(DI;) P~+ ~ (DI:) ]

DI' T PA DT p

(81 )

which shows O approaches zero as D.T.
Note this is aH integcr cxponcnt in a one componcnt systcm, found [or a non classical

system.
It is interesting to note that ang!es <p and O are the Eu!er ang!es which rotate the t, 11, o

frame into the te, ne, be frame. The third Eu!er angle is zero. In this form it is possib!e
to calculate (he torsion of the coexistence curve up to the re1evant ter m

which has an exponent 1 - (3 associated with it. This ends the calculations made of the
geometric properties of the coexistence curve.

Some of the aeeepted geometrie properties are oased on the finiteness of the second
derivative of the ehemieal potential at coexistenee. This seeond derivative may be written
in terms of diseontinuities on the liquid and vapor branehes of the coexistenee curve.

The Clausius-Clapeyron equation follows from parallelism between the direetions (52)
and (56):

-,
l' = Pe - Pa

(83)

Thc s('cond dcri\'ativc of this fllIlct.ion lIla)' be \\'riUcn as

ji" = -[(,,~ - ,,~)+ (P~ - p~)ji'lI(/lL - Pa). (84)
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The snm ,,' + P'," on the righl hand side of this eqnation was seell ill (63) and is also
"qnal to (65):

, + ' _,_ (Oi',,) (')2 + (ou,,)
U" P"li - O P" ,-

P T oT p
(A=G,L), (85)

where the snbindex A denotes tI", braneh on whieh the partial derivative has been calcu-
lated, Snbstitntion of this eqnation in (84) givrs

li" = _ 1 {[(DliL) (p;Y _ (OliG) (p~)2]
Pi. - PG op T op T

and after rearranging this eqnation it follows that

(87)

The expollent of the density differellee is e:.yiJ and the derivative of the density diameter
has a e:.y-o limil. Helle,,, the last term on the right hand side of Eq. (87) has the relevant
expollent "Y - a - l.
Other terms on t he right hand side eonld have a divergence with exponent -a - {3

if di!ferent valnes for the partial ,"'rivativrs eonld be obtained on each branch of the
coexistenee cnrve at the critical poin!.. Assnming that the hehavior of li" is finite at the
critical point leads to some cancellation whieh implics that the relevant eontribution of
the partial dcrivatives shonld he the same, independent of which brandl is followed to
reach the crit iral point.
If a correction to scaling (,xpollPlll 1 - Q - f3 is assuIlled, lhe resulting cxponent for the

first term on the right hand side is 1 - 2(> - 2{3 whieh eqnals the exponent "Y - a - 1 fonnd
in last term. A finite seeond d,'rivativr also predicts that this exponent is 2ero, or that
SOIIlC callcellat iOIl of t ('rms should orclIr.

In the last seetion the beha,'ior of geometric objeets near the eritical point is reassessed.

6. DIscusslO;-';

A geometric stndy of the vapor liqnid phase eqnilibrium was nndertaken with dassical
diffcrcntial geolllctry in tIte Pl 11, S .spacc similar lo Gibbs' spacc.
The one-phase region is an elliptic snrfaee expressing the stability of the system. The

two-phasc regíon is a devclopable surfarc, tallgeut to its cdgc of regrcssioIl, dctcrmincd
only by the vapor pressnre and the ehemieal potential at eoexistence. I30th the one-phase
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and the two-phase surfaces are in tangent contact at the coexisten ce curve formed uy
two branches, the liquid and the vapor, \Vhich join smoothly at the critical point. Frenet's
equations of the edge of regression and the coexistence curve \Vere considered in detail and
curvatures and torsions \Vere calculated nI' to relevant terIns near the critical temperature.

At the critical point all the curvatures and torsions invoh'ed become 2ero. Tangents to
the coexistence curve and the edge of regression beco me parallel to a principal direction
on the surface. This direction is associated \Vith the Hatest one and also with an exponent
1 in agreement with a Criffiths and Whecler suggestion.

At the beginning, a deviation from Tisza's prescription for the association of an affine
geometry with thermodynamics was made. At the end of the calculations the geometric
results can be listed to see ir they are in agrecmcnt with a gcncralizcd gcometr.y.

Same relevant rcsults are cxprcssed in tcrllls oC affinc invariant propcrtics like tangcIlcy,
parallel direction, Hatness, etc. The concept of orthogonality bet\Veen the g \'ector and
the tangent directions precluded by affine geometry \Vas seen to be important.

Most of the results could be obtained using an affine geometry. llo\Vevcr, the classical
differential geometry, \Vas a particular class of afRne geometry because the results are
easier and the language more intuitive.

Using only the chain rule for partia! differentials, 1- o \Vas found as the correction
exponent. The same corrcctioll cxpollcnt v..'as also fOllud WhCIl principal curvature and
direetions \Vere considered ueyond the first relevant termo

Half the value of this exponent \Vas obtained as the correction exponent \Vhen the chain
rule was applied lo ealculate Uf al' ,1.', In additioll, it was also obtaincd whell ji" was a
finile quantity al lhe critical tcmperature. Tite salllC corrcctioll cXpOIlcnt was cOIlsistcnt
with the divergenee of the derivative of the density diameter. This exponent \Vas assumed
to ue the eorreetion to scaling exponent uy Creen, Cooper and Sengers using Criffiths
and \Vheelerts suggcstion. This CXPOIlCllt is importanl \\'hcn gcomctricalIy reprcscnting
the critical bebaviour for the augles <Pe, <?T and <:>, \Vhich express parallelislll among
the coexistence curve, the tangent to the edge of the regression and the Hatest principal
direction.

Thc principal CUfvaturc >'2 has an cxpoucnt Q alld lile curvaturc Al an associatco ex-
ponent 1. 130th cun'atures may be considered \Vith an exponent o and adding corrections
\Vith exponent 1- O.

These argumeuts strongly suggest that the correction to scaling exponents s!Jould be

1-a
1-0-,6=1+,6-1=-- 2

(SS)

or a nmltiplc of this number.
The corrected exponents 0i, ,6"and 1i, introduced by Sengers and Sengers [a] in revised

and extended scaling, obey the equations

Oi+ ,6i= o + ,6,

1i + ,6i= 1 + ,6,

"Y¡ - Oí = ,- Q,

(sal
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in agreement with the idea that the correcting exponent (88) could be valid with e/fective
exponents [8).
The exponents of the curvatures found were "Y, 0,1 + o and "Y - 1. The exponent 1 - {3

associated with torsion on the coexisten ce curve is the average of these exponents of
curvaturcs

(90)

The integer exponent I associated to angle ()was a surprise for a non classical behaviour.
By returning to Gibbs' coordinates V, S and U, many results can be recovered. The

main change is the replacement of p, u and P by V,P and /l, respectively. Geometrically,
the most relevant di/ference is that the edge of regression remains !inite at the critical
temperature.
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