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ABSTRACT. The geometry of the thermodynamic surface of the liquid-vapor coexistence is studied
in a space whose coordinates are densities of mass, energy, and entropy. Main emphasis is given
to the vicinity of the critical point. Geometric assumptions made are the asymptotic behavior of
thermodynamic derivatives without a priori correction to scaling hypothesis. Analysis of the results
leads to the proposal that the leading correction exponent is 1 —a — 3 = Y+ 0-1.

RESUMEN. Se estudia la geometria de la superficie termodindmica de la coexistencia vapor-liquido
en un espacio cuyas coordenadas son las densidades de masa, energia y entropia. Se pone el mayor
énfasis en la vecindad del punto critico. Se acepta como hipdtesis geométrica el comportamiento
asintético de las derivadas termodindmicas sin ninguna hipétesis a priori sobre las correcciones al
escalamiento. El andlisis de las consecuencias nos lleva a proponer que el exponente dominante de
correccibnes l —a—-3=~v+3-1.

PACS: 05.70.Jk: 02.40.Hw

1. INTRODUCTION

The representation of thermodynamic properties by geometric surfaces has a well-known
history and many first rank scientists have used geometric representations of thermody-
namics for different purposes [1,2].

The use of these geometric surfaces needs no more justification than the obvious qual-
itative insight one obtains from graphic representation of any physical function.

The physical system considered here is an ordinary real fluid with two phases, liquid
and vapor. Only stable thermodynamic equilibrium is taken into account.

The geometry used in this paper is ordinary classical differential geometry [3]. A dif-
ferent geometry proposed by Tisza [4] and based on the fact that rigid motions in a
thermodynamic space have no physical meaning, states that affine transformations are
more adaptable to thermodynamics. However, affine geometry is not as intuitive, and the
matrices used by Tisza to specify his geometry are not well-defined at the critical point.
Also, the ordinary graphics of thermodynamic relations can not be easily incorporated
into this geometry.

An Euclidean space is adapted here using mass density, energy density, and entropy
density as rectangular coordinates. This choice of coordinates is based on the increased
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symmetry observed near the critical point when these thermodynamic variables are used
to express the observed thermodynamic relations graphically [5].

Thermodynamic equilibrium states are represented in this space by points lying on a
surface. This surface expresses the thermodynamic relations between coordinates.

The geometry used in this paper to represent the physical system is closely related to
Gibbs’ geometry [1]. Gibbs used entropy, energy and volume as orthogonal coordinates in
space. Points in thermodynamic equilibrium form a particular surface in this space, which
corresponds to the particular fluid it represents. Pressure and temperature determine
the orthogonal direction to the surface. Liquid and vapor coexistence in equilibrium is
represented in Gibbs’ space by two points with different coordinates and one plane tangent
to each of the two points. For a one-component fluid, any thermodynamic variable at co-
existence is a function of only one independent variable, and in this work, the temperature
was chosen as the independent variable at coexistence.

As the temperature changes, the plane tangent to the two coexistence points rolls on
the surface, touching two branches of the coexistence curve. This curve, formed by the
two coexistence points when the temperature is varied, has two branches, liquid and vapor
which are connected at the critical point. The envelope of the family of planes formed
as they roll on the coexistence curve produces the thermodynamic two-phase surface.
This is a developable surface formed by rulers connecting the two coexisting points on the
liquid and vapor coexistence curves, respectively. All these geometric arguments have been
expressed in Gibbs' paper [1]. A generalization of these same ideas for any thermodynamic
system has been presented by Buckingham [6].

Working in Gibbs’ space, Pifia and Mata [7] studied the developable surface formed by
the rulers connecting coexisting points. These rulers are tangent to the edge of regression
which is present in a developable surface. Pina and Mata have expressed the equation of
this particular edge of regression as a function of the vapor pressure and the chemical
potential at coexistence.

In this paper, the geometric properties previously obtained in Gibbs’ space are not
only reproduced with little change in the different space presented here, but the geo-
metric ideas are further elaborated, and geometric objects not previously considered in
thermodynamics are explicitly calculated, with main emphasis on the critical point.

Some thermodynamic information at the critical point is necessary to attain this
objective. This information is given in quantitative form, assuming the accepted expo-
nents [8,9,10] for some thermodynamic quantities. A survey of the thermodynamic basis
is presented in the next section. Griffiths and Wheeler [11] found using field variables
(pressure, temperature, chemical potential) a preferred direction along the coexistence
curve.

Although the coordinates used in this paper are different from those of Griffiths and
Wheeler, it was found useful their suggestion for studying the preferred direction along the
coexistence curve. This geometric property has an analogue in the conjugated coordinates
which are the densitics of the extensive variables used in our study.

Looking for physically meaningful results, the common features of the behaviour of
geometric objects will be stressed as the critical point is approached.
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2. THERMODYNAMIC PROPERTIES

The thermodynamics of a definite quantity of a pure substance is expressed here in the
variables used by Ley-Koo and Green [8].

By using critical pressure, temperature and volumen (P, T. and V), quantities can
be expressed as physically dimensionless. The fundamental coordinates I use are mass
density, energy density and entropy density and these are defned as functions of the
volume V', the energy U, and the entropy S by the equations

Ve U 5T,
VTR T 2
We also have Gibbs relation
ds = —T du - jidp, 2)
and Gibbs-Duhem relation
dP = pdji + udT, (3)

where P, T, and /i are the Sengers and Sengers [9] variables, which are defined by

PT,
: s ==, (4)
T TPV TE

where P, T, u are the pressure, temperature, and chemical potential, respectively.
These quantities are related by equation

P=pji+uTl +s. (5)

Asymptotic properties near the critical point are represented by critical exponents
associated with the leading term of any quantity expressed as a function of temperature
deviations AT = |1 + T,

9i
(ﬁﬂ) — (finite), (6)
P
8T) 1 = .
s — —2—=q2AT (0’=0-1)a (7)
(au , pT*Cy
ap 1 - .
a

where g; are coefficients, having a finite value at the limit AT = 0, Cvy is the heat capacity
at constant volume and k7 is the isothermal compressibility.



On the coexistence curve, the difference in liquid and vapor densities is a function of the
temperature differences AT with an exponent 3. This is found by taking the derivative of
the density with respect to the temperature T calculated on the coexistence curve. This
derivative has a divergence with an exponent 3 — 1:

- =5ATT L (f=10.525). (9)

Exponents and coefficients ¢; may be a function of the path one follows to attain the
critical point. Equations (6-9) may be exact equations, if the ¢;’s are not constants. The
behavior of many other thermodynamic variables is determined by the previously assumed
dependence of these four quantities (6-9).

For example, the other nine partial derivatives relating the variables p, u, T, ji, become
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Divergencies with exponent —a are associated with the derivatives of p or u with respect
to T or A, keeping constant the other p or u variable. Divergencies with exponent —v are
associated with the derivatives of £ or u with respect to T or ji, keeping constant the
other T or i variable. Finite quantities are derivatives of 7' with respect to ft, or p with
respect to u, or the corresponding inverse derivatives.

Some derivatives show correcting exponents like

2 -~ b -~
(9ﬁ> = L paf- (1+ - A.T’“") (19)
arj, 4 4192

du 8[1 qs3 Sy )
=) = () C (14 Boafr-a) 20)
(ap)“ (BT)u ! ( i :

These have the correcting exponent 5 —a and the correcting coefficient q;;/q'fqg repeated.

This observation is not trivial because it may be related to corrections to scaling [9].
However, the exponent v — a is not a fortiori the first correcting exponent. A lower
correcting exponent could be included in the ¢i quantities to account for deviations from
the finite limit. If that is the case, it is interesting to note that this implies that the

or

coefficient for exponents lower than ¥ — @ must be the same for the derivatives (gﬁi)
P

Sy : . -
and ((%ﬁ,i) since the difference has only a v — a exponent. Furthermore this is not the
u
only example to be found.
Corrections-to-scaling with lower exponents seem necessary if we consider thermody-
namic variables on any branch of the coexistence curve.
By chain rule the derivative of the chemical potential at coexistence becomes

B - (2 (%) ) o)
dT orf, \9p)s dT

Substitution of (6-9) gives

Il

di(T -
—“fT Lo Gt + @ AT (22)
(

A second derivative implies

Cu(T)  dg  dgsgs - :
T = o= = AT gy + B - AT, 23
dT? dT dT )
This derivative is assumed finite at the critical point [8,9,10] and AT7*5-2 hecomes
divergent. Thus we are forced to introduce a correction-to-scaling coefficient of Y+ 8-1
in ¢ to avoid that divergence. On the other hand it is a nice property, according to the
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Essam-Fisher conjecture [12], the exponent v+ 3 —1 is half the exponent v — a previously
considered in the partial derivatives:

y+B-1=1-a-B=(y-a)/2 (24)

This is assumed to be true in this paper.

Using only asymptotic behavior and the condition that i” should be finite at the
critical point, leads one to suggest that the correction exponent might be (24). This
same suggestion was also made in a different way by Green, Cooper, and Sengers (10],
who assumed extended scaling and the existence of the preferred direction introduced by
Griffiths and Wheeler [11].

The leading term of the density diameter divergence [8,9] also suggests the same cor-
rection exponent 1 — a — 3 for the expression (9) in the form

ga=N+FAT' P 4 ...,

d—”(.—) = NATA- '+ FAT % +... (25)

dT

The derivative of the energy density at coexistence, also obtained from chain rule, is

du(T)_(a_u) +(a_u) dp(T)
daf ~\oT/), \0p)p dT

1 = 2
= -q—ﬁT_a — Q1Q4AT’6_1. (26)
2

Once again the correcting exponent 1 — o — 3 appears and a parallel formal expansion on
the R.H.S. of Egs. (25), (26) is found.

We will see that these exponents appear in connection with any geometric object, a
fact that will be stressed at the conclusion.

3. THE GEOMETRY OF THE ONE PHASE REGION

We choose an Euclidian space of orthogonal coordinates p, u, and s. The position vector
in this space is r:

r=(p,u,s) (27)

Equilibrium thermodynamic states are represented in this space by a surface represent-
ing the relation between the mass, energy, and entropy densities of any pure substance

s = s(p,u). (28)
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l(e'u)

FIGURE 1. Thermodynamic surface representing the functional relation among the densities of
entropy, mass, and energy.

This surface will be described using the language and methods of classical differential
geometry as found in standard treatises on this subject [3]. (See Fig. 1).

The thermodynamic surface is parametrized with mass density p and energy density u
as coordinates in the form

r = (p,u,s(p,u)). (29)

Derivatives of the function s(p,u) have physical meaning according to the Gibbs rela-

tion (2):
% ds . Os
--(&), (). o

Tangent vectors to the surface along the coordinate curves p and u are obtained by (29)
differentiating the position vector with respect to the p and u variables:

ar =
e, = (5‘;) 2(150! —',Ul)
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and

ey = (%) =0, 1:~T% (31)
P

The cross product between these vectors is a vector perpendicular to the surface
e x ey = (1, T,1) (32)

and the chemical potential and the temperature give the orientation of the plane tangent
to the surface.

Important objects are the metric matrix or first fundamental form introduced with
ordinary scalar products

e, €, €p-e 1+ iT
A=< P P P u):( 1 ~) (33)
€, €y €y ey T 1+T?

and the unitary vector g in the direction orthogonal to the surface (32)

_ (fL,T,l)
S s+

(34)

Derivatives of the vectors (31) with respect to the coordinates, are projected onto the g
direction to give the symmetric matrix called the second fundamental form of the surface

de de
ap ad
ey ey
ng_ 8 Tu

L (&), -,
= = = i i . (35)
A+ p2+THV2 | _ (m‘) B (aT)

Jp Em

This is proportional to the stiffness form introduced by Tisza [4]. The second fundamental
form (35) is a symmetric matrix as the result of a well-known Maxwell relation. At the
critical point, any component of this matrix goes to zero with an exponent a.

Any tangent direction n to the surface may be written as a linear combination of the
vectors (31):

n = nge, + nyey = (N, M), (36)

where (n,,n,) are the contravariant components of vector n. Normal surface curvature
in the n direction is defined by the quotient

nBn
A= ——, 37
nAn (37)
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where the tilde denotes the transpose vector

fir= (;‘P) (38)

Extremal values of the curvature (37) are the principal curvatures A; and Ay and the
corresponding directions n; and n, are the principal directions. These are solutions to
the characteristic equation

n,—B = /\,‘niA (i = 1, 2), (39)
and the principal directions n; and n» are orthogonal with respect to the metric A,
nyAf, = 0. (40)

Although Gaussian curvature could be defined only in terms of matrix A, it is here
introduced dividing the determinant of matrix B by the determinant of matrix A. This
is also the product of the two principal curvatures A; and \;:

1 aT i
Ao = = -— -_— " 41
142 (1+ 42 +T2)2 (8“),9 (3p)T (41)

This quantity is positive almost everywhere in thermodynamics. In the one-phase re-
gion, it becomes zero only at the critical point with an exponent a + v determined by the
exponents of the partial derivatives in the numerator of this equation. Positiveness of that
Gaussian curvature shows that both principal curvatures have the same sign and that the
surface is of the elliptic class having both curvatures on the same side of the surface.
This property is related to the stability of the system as discussed in any textbook on
thermodynamics. Gaussian curvature in the two-phase region is considered in next section.
The coexistence curve is the boundary between the one-phase region and the two-phase
surface. It belongs to both surfaces and the normal curvature has two different values
according to which surface is considered, the one-phase or two-phase, respectively.

The mean curvature H is defined as half the sum of the principal curvatures, and also
half the trace of the product between matrix B and inverse matrix A—!:

1 aT
2H:Al+)‘2:_ - = (—)
(14 a2+ T2)3/2 \ Ou 2
. O . oi\? (o du
x 1+[:,2—2;1T(—‘[f) +(1+T [ (L) £ (22} (o . (42)
T ), or), \oe)r\oT/,

This mean curvature has a zero limit at the critical point with an exponent a. The fact
that the product of the principal curvatures (41) has an exponent o 4+ v and the sum has
an exponent «, shows that one principal curvature has a zero limit with the large exponent
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~ and the other with a smaller exponent . This is a scalar property independent of the
direction by which the critical point is reached.

The principal curvatures may be written as series in the correcting exponent v — a, the
difference between the principal curvature exponents.

To the lowest order in AT?~?, the principal curvatures are

A =— . (8—“) ~ AT (43)

RY(1+ T2+ i2)l/2 \ Op
and
, i
Ay = — i 9T\ . afe, (44)
(14 T2+ j?)%2 \Ou/
where
2
- [ O - (L
R*=1+i%-2iT (—‘”) +(1+T2)(?-”T) ; (45)
or ), T/,

and the corresponding principal directions to zero order in AT are

n = (1472 + a?)'/? (1, = (g—;—) ,,)
i = (—ﬁT+(1+T2) (g—g)p,uﬁkﬁ‘ (g%)p) (46)

The principal direction vectors have been selected with the same magnitude:

and

nlAﬁl = ngAflg (47)

Corrections to the principal curvatures or the principal directions near the critical point
may be calculated to any power of AT?~%. An exact solution may also be obtained but
this does not seem to offer any useful information.

Normal curvature (37) for any direction n is expressed as a function of the principal
curvatures by the Euler equation [3]:

A=A cos?é+ Aasin? ¢ = Ap + (A2 — Ap)sin® @, (48)

where ¢ is the angle between the particular direction n and the principal direction nj.
Note that curvature A; reaches zero faster than the curvature A as the critical point is
approached. Therefore, as long as ¢ is a finite angle, A goes to zero with the exponent
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a corresponding to the principal curvature Ay. Only when the directon n is parallel to
the principal direction n; and the angle ¢ is zero, does the normal curvature A have a
different exponent -.

A similar conclusion was reached for a fluid in a temperature, pressure and chem-
ical potential-space, and generalized to any thermodynamic system by Griffiths and
Wheeler [11] who predicted the existence of a direction singled out by the nature of
the phase transition. According to Griffiths and Wheeler, this direction is the tangent to
the coexistence curve. In Sect. 5 of this paper where the coexistence curve is studied, we
found that the principal direction n; and the tangent to the coexistence curve become
parallel at the critical point in accord with this geometric hypothesis.

4. THE GEOMETRY OF THE TWO PHASE REGION

Liquid and vapor phases coexist in stable equilibrium at the same chemical potential /i
and temperature 7' with different values of density, energy and entropy. A coexistence
state of phase equilibrium is represented in p,u,s space by two different points on the
thermodynamic surface, one corresponding to the liquid with the large density and the
other to the vapor with the smaller density:

(pryuc,s.)  (liquid) (49)

and
(PasUg, Sa) (vapor). (50)
Both points have the same temperature and chemical potential and therefore the tan-
gent planes, as determined by the direction g at these two points, are parallel or coincident.

_ In addition, phase equilibrium requires that both phases have the same value of pressure
P at coexistence. Then Eq. (5) implies

}szbﬁ+uL’1~“+sL=pG+qu"+sG. (51)
According to vector notation this equation shows
Ar = (pL = pg, Uy — Ug, S — Sa) (52)
is orthogonal to the vector perpendicular to the surface
Ar-g=0. (53)
It follows that at coexistence, the plane tangent touches the surface at the two points

which represent the coexisting phases and the plane contains the straight line joining the
two points.

A point on this line between the two coexistence points represents the two-phase state
with a proportion of liquid and vapor determined by the ratio of the lengths of the
segments into which the point divides Ar.
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The six components (49) and (50) and the three quantities T, i, P are functions of
only one independent variable, according to Gibbs’ phase rule. The temperature T is here
chosen as the independent variable at coexistence: the vapor pressure P (T) and the vapor
chemical potential ji(T"). The two positions (49) and (50) are functions of the temperature
and when the temperature changes, each triad represents a branch of a curve called the
coexistence curve. Liquid and vapor branches of the coexistence curve meet at the critical
point where discontinuity of the coordinate ceases to exist.

As temperature changes, the tangent plane rolls on the two points (49) and (50) on
the coexistence curve. The straightlines connecting the two coexisting points form a ruled
surface. This surface is the envelope of the one parameter family of planes obtained when
rolling on the coexisting curve. Such a surface is a developable or parabolic surface with
zero Gaussian curvature [3].

Changing our coordinates does not alter in any way the geometric properties obtained
a century ago by Gibbs [1] in the volume, energy, entropy space.

A developable surface is tangent to a twisted curve called the edge of regression. This
curve is determined by the parameter family of planes tangent to the surface at coexistence
curve and is given as a function of temperature in the form

P(T) = pji(T) + uT + s. (54)

An edge of regression in Gibbs' space was obtained by E. Pina and O. Mata [7]. The
orthogonal coordinates of this curve in our (p,u,s) space are

PP BT | e i st PUE L e o ) __
=il 4 W 4 P/, [Ti/(T) - (T =2 4 Pl TR ), (58
(ﬁ,,(T) F By + PO, [T - D) o + PO -TP@)) - 69)

where a prime denotes a derivative with respect to temperature 7

When the edge of regression becomes a point or the point at infinity, the developable
surface is a cone or a cylinder, respectively. These particular cases are not considered here
because a real fluid could not have this simple surface filling the two-phase region. A cone
or a cylinder imply physically linear combinations of temperature, chemical potential and
sometimes pressure. From this property it can be shown that the experimental evidence
does not support these particular cases.

The tangent to the edge of regression touches the thermodynamic surface at the coex-
isting points. This tangent has the direction

(1, =@'(T), TE(T) = (1)), (56)
which should be parallel to the vector Ar (52). This result is equivalent to the Clausius-
Clapeyron equation.

Note that the tangent direction (56) has, with respect to the base (31), the components

(1; —E(T)); (57)

which will be used in the next section.
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The normal vector to the edge of regression has the direction
(=1 +T2&(T) + TIU(T), -1+ @(D)] + TR@E D), T+ i(T)' (), (58

and the binormal vector coincides with the g vector, orthogonal to the surface [3].
The curvature & and torsion 7 of the edge or regression have been calculated by the
Frenet equations [3]:

g = BN +T2 4 §(T))/2

R34 PU(D) -
T @1
and
1
T= oy (60)
-~ . ~ d PH T
1+ 72 + (D)) 4 2D

where R in (59) is the magnitude of the vector (56) with the same behavior as that of
quantity (45):

R=[1+3" - 2T + ()21 + 7)) 2, (61)

According to present knowledge of critical behaviour the second derivative ;l”(ff“) of
the chemical potential is assumed to be finite at the critical point. In such a case P"(T)
should be divergent with an exponent —a.

This follows from the Gibbs-Duhem relation (3)

P(T)=pu'(T)+us  (A=L,G). (62)

Taking the second derivative of this equation one obtains
P"(T) = pait"(T) = pl i (T) + . (63)
The values of the derivatives i’ and ' on the right hand side of Eq. (63) were expressed

by chain rule in Eqs. (21) and (26).
Substitution in (63) gives

BI(T) = puil"(F) = (g—;) [p;(f)1?+p;<f)[(%) +(§—’;) J+(§—T) C (64)
T P T P

The most divergent terms, the middle terms on the right hand side, are exactly zero
by a Maxwell relation and (64) becomes

P'(T) - pujt"(T) = (g—;) (A (D)) + (g—;) - (65)
& P
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Each term on the right hand side of this equation has the critical exponent —a and
this is the exponent of the term P"(T) on the left if fi"(T) is finite. In this calculation
partial derivatives are evaluated on a particular branch of the coexistence curve, taking
the partial derivatives from the one-phase side of the coexistence curve.

Assuming these properties, components of the edge of regression grow without limit
in the tangent direction (56) as the critical temperature is approached. This is a weak
divergence with an exponent —a.

Using the same argument, the curvature and the torsion go to zero as Ao,

Since the developable, two-phase region is a parabolic surface (3], it follows that one
of its principal curvatures is zero. The non-zero principal curvature is determined by the
curvature and torsion of its edge of regression. One has [3]

/\1 = 0, /\2 = T/h‘d, (66)

where d is the distance from the point on the surface to the edge of regression along the
tangent straight line passing at this point. As the position of the edge of regression goes
to infinity at the critical temperature, the principal curvature A2 becomes zero with an
exponent « coming from a divergence in distance d. This result requires that 7/« be finite,
which is possible provided ji"(T') is also finite.

Distance d is calculated along the tangent to the edge of regression up to the point

with critical density 1. It becomes

i=r(-1+ 28 (67)
a"(T)

as expected.

5. THE GEOMETRY OF THE COEXISTENCE CURVE

The coexistence curve has been mentioned many times in the previous section, further
discussion of its geometric properties is offered.

Every branch of the coexistence curve is touched by the tangent to the edge of regression
along the vector (56) or (52). Furthermore, we note that the divergent part of the edge
of regression is parallel to this tangent direction (see Fig. 2).

Position (49) or (50) of one branch of the coexistence curve is thus expressed by the
non divergent part of the edge of regression plus a vector in the tangent direction (56)

Ta = (pAauA,SA) = (Oa ﬁ'(T)7 P(j:‘) - Tpl(j:'))
+pa(l, —@(T), TH(T) - (T))  (A=L,G). (68)
The position of a point on the coexistence curve is expressed as functions of vapor

pressure, chemical potential and density at coexistence. In a change of branch, density is
the only function to be changed.
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thermodynamic surface
]
h

critioal point

deveiopable
surface

coexistence
curve

edge of
regression

v

FIGURE 2. Geometric representation of the phase coexistence. The straight lines connect the
coexistence liquid and vapor states on the coexistence curve. These lines are tangent to the edge
of regression and form a developable surface.

Taking the derivative with respect to temperature 7 of the position vector (68) one
finds

fir—ff = [P"(T) = pait"(1)](0,1,-T)

+Pu(T) (1, =i (T), TR!(T) - (T)). (69)

This is a vector tangent to the coexistence curve. According to (63), this vector is expressed
with respect to the base (31) in the form

d
# = phe, +uhe, = (P, uly). (70)

Calculating the normal curvature Ac of the tangent direction to the coexistence curve by
replacing the vector n, in the definition (37) of normal curvature, by the components (70)

1 B 1 du
Ao = — . = +—{ = : i

Dominant terms in this expression g0 to zero with an exponent -, showing that the
tangent to the coexistence curve must be parallel to the principal direction n; as was
stated at the end of the Sect. 3.
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This conclusion verifies Griffith and Wheeler’s suggestion [11] that the preferred direc-
tion with a largest divergence is tangent to the coexistence curve.

Furthermore, the Euler equation (48) may be used in a more quantitative form to
express the angle ¢c between the tangent to the coexistence curve and the principal
direction nj:

Yo Ny

. 2
sin® gc = ———.
n‘ oc =%

(72)

As this square becomes zero at the critical point, ¢c may be substituted for sin ¢c,
and A, can be a negligible curvature as compared to Ag in the denominator to obtain the
relevant behavior of the angle ¢¢ at the critical point

1 = L
éc = L4 T2 4 o yHe (-) . 73
c p,ARQ( A7) o7 ), (73)

This angle disappears with AT according to the correction to scaling exponent 1 —a — B.
Both branches of the coexistence curve join smoothly at the critical point. The evidence
of this is that 1 — a — 3 is positive with a value close to 1/2 near the critical point. Both
branches become parallel to the principal direction n; at the junction.

The tangent to the edge of regression which connects the two coexistence points can
be also expected to become parallel to the principal direction nj.

Calculating the normal curvature Ar, using (37), along the tangent direction (57):

. . 2 =y 2
(3), + oo (3). (%)
Ar = — = . #a (74)
[1 LR ﬁ? +T2]1/'2R2

~ is the dominant exponent as expected.
The angle ¢ between Ar and nj is deduced in a manner similar to that used for ¢c
and to lower order:

1 dji L9 A211/2 -
oT = =50 (—) [14 4%+ T%)%, (75)
R?"*\0p ) 1

which has a zero limit with exponent v+ 3 — 1.

These two directions are coupled by a geometric property. They are conjugated di-
rections [3] in the sense that they are orthogonal directions with respect to the second

fundamental matrix B:
/
(1, i)B (p,‘) -0, (76)
uA

Conjugated directions have the characteristic property [3]

tan ¢c tan o = A1/ A2, (77)



GEOMETRY OF THE VAPOR-LIQUID COEXISTENCE NEAR THE CRITICAL POINT 381

te

o
t

FIGURE 3. The tangent to the coexistence curve tc in the plane of the tangent t and normal n
to the edge of regression form the angle ¢ between tangents.

-
—

which gives a consistency relation between angles and principal curvatures. The trigono-
metric tangent may be substituted by the angle when it is small.

One more compatibility test was obtained by noting that the vector tangent to the
edge of regression and the direction tangent (69) to the coexistence curve form the angle

¢ =0¢c+or (78)

on the plane tangent to the surface.
The vector tangent to the coexistence curve (69) is a divergent vector at the critical
point. A parallel finite vector is found by dividing by p/,, which is also divergent.
This tangent vector determines [3] the curvature k¢ of the coexistence curve and to
lower order it is
1+ T2 + g4H)1/2

A5 = (paft" = P")/pl], (79)

1 ( d (
Rép), dT
which is zero at the critical point with the asymptotic exponent v — 1.

The unit vector tc, tangent to the coexistence curve (on any branch), is in the plane
formed by unit vectors tangent t and normal n associated with the edge of regression in
directions (56) and (58), respectively.

From Fig. 3 it is evident that direction g = b, orthogonal to both t and n, is also
perpendicular to tc.

The coexistence curve also determines two unit vectors nc¢ and be, normal and binormal
to the curve in corresponding order. The three vectors tc, n¢ and be form an orthonormal
basis associated with the coexistence curve in the same way that vector n,t, and b=g
corespond to the edge of regression.

Since vector b = g is in the plane orthogonal to tc, it is in the plane containing vectors
n and be. Let f denote the angle between the directions g and b¢ (see Fig. 4).

The curvature x¢ of the coexistence curve is a function of the normal curvature Ac and
the angle # by the Meusnicr theorem (3]

Ac = ke sind (80)
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FIGURE 4. The normal nc and binormal be to the coexistence curve are in the same plane as
the normal to the surface g. This is equal to the binormal to the edge of regression. § is the angle
between binormals.
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Note that Ac is smaller than xc near the critical point this theorem can be used to
determine how the angle 8 goes to zero. Therefore,

R - o d i 1 du
=L B | — f+— | —= . 81

which shows 6 approaches zero as AT,

Note this is an integer exponent in a one component system, found for a non classical
system.

It is interesting to note that angles ¢ and 8 are the Euler angles which rotate the t,n,b
frame into the tc, nc, be frame. The third Euler angle is zero. In this form it is possible
to calculate the torsion of the coexistence curve up to the relevant term

1 d d dji i o 1 Bu)
= - 1+ — |1/ —1 = + — | — s 82
s p;(1+T2+;12){ a7 /dT "((ap)j«p" A (8T ,,)H (82)

which has an exponent 1 — 3 associated with it. This ends the calculations made of the
geometric properties of the coexistence curve.

Some of the accepted geometric properties are based on the finiteness of the second
derivative of the chemical potential at coexistence. This second derivative may be written
in terms of discontinuities on the liquid and vapor branches of the coexistence curve.

The Clausius-Clapeyron equation follows from parallelism between the directions (52)
and (56):

PL — Pc

i U, — Ug

The second derivative of this function may be written as

~ I

i = —[(ul, — ul) + (= P/ (L = p)- (84)
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The sum ' + p'i’ on the right hand side of this equation was seen in (63) and is also
equal to (65):

o Ofin Pl du
: il = | — : A=G,L), 85

where the subindex A denotes the branch on which the partial derivative has been calcu-
lated. Substitution of this equation in (84) gives

ﬁH:_ 1 [(dﬁb) (p!)‘z__(aﬁ(l) (p.r )2:’__ (a_uyE) _(au__)
L= Pa dp fo " 9 ) ° of J, \Nafj.|]’

(86)

and after rearranging this equation it follows that

- 1 3[1[_ Oﬁ(; 1 142 ) (3T£L) (auc)
= — = = + ~ =2l ~f=8
ji P K % )T ( " )1] 5 (6L + (06)?] o7 ), " \a7),
RICARNC AN T
[(3_9-)7« T ( op )TJ 2(/’:, +pG)dT In(pr, = pa). (87)

The exponent of the density difference is AT? and the derivative of the density diameter
has a AT~ limit. Hence, the last term on the right hand side of Eq. (87) has the relevant
exponent v — a — 1.

Other terms on the right hand side could have a divergence with exponent —a —
if different values for the partial derivatives could be obtained on each branch of the
coexistence curve at the critical point. Assuming that the behavior of i" is finite at the
critical point leads to some cancellation which implies that the relevant contribution of
the partial derivatives should be the same, independent of which branch is followed to
reach the critical point.

If a correction to scaling exponent 1 —a — 3 is assumed, the resulting exponent for the
first term on the right hand side is 1 — 2a.— 28 which equals the exponent v — a — 1 found
in last term. A finite second derivative also predicts that this exponent is zero, or that
some cancellation of terms should occur.

In the last section the behavior of geometric objects near the critical point is reassessed.

6. DIsScussiON

A geometric study of the vapor liquid phase equilibrium was undertaken with classical
differential geometry in the p,u, s space similar to Gibbs’ space.

The one-phase region is an elliptic surface expressing the stability of the system. The
two-phase region is a developable surface, tangent to its edge of regression, determined
only by the vapor pressure and the chemical potential at coexistence. Both the one-phase



and the two-phase surfaces are in tangent contact at the coexistence curve formed by
two branches, the liquid and the vapor, which join smoothly at the critical point. Frenet’s
equations of the edge of regression and the coexistence curve were considered in detail and
curvatures and torsions were calculated up to relevant terms near the critical temperature.

At the critical point all the curvatures and torsions involved become zero. Tangents to
the coexistence curve and the edge of regression become parallel to a principal direction
on the surface. This direction is associated with the flatest one and also with an exponent
~ in agreement with a Griffiths and Wheeler suggestion.

At the beginning, a deviation from Tisza's prescription for the association of an affine
geometry with thermodynamics was made. At the end of the calculations the geometric
results can be listed to see if they are in agreement with a generalized geometry.

Some relevant results are expressed in terms of affine invariant properties like tangency,
parallel direction, flatness, etc. The concept of orthogonality between the g vector and
the tangent directions precluded by affine geometry was seen to be important.

Most of the results could be obtained using an affine geometry. However, the classical
differential geometry, was a particular class of affine geometry because the results are
easier and the language more intuitive.

Using only the chain rule for partial differentials, v — a was found as the correction
exponent. The same correction exponent was also found when principal curvature and
directions were considered beyond the first relevant term.

Half the value of this exponent was obtained as the correction exponent when the chain
rule was applied to calculate u' or fi’. In addition, it was also obtained when " was a
finite quantity at the critical temperature. The same correction exponent was consistent
with the divergence of the derivative of the density diameter. This exponent was assumed
to be the correction to scaling exponent by Green, Cooper and Sengers using Griffiths
and Wheeler's suggestion. This exponent is important when geometrically representing
the critical behaviour for the angles ¢¢, ¢r and ¢, which express parallelism among
the coexistence curve, the tangent to the edge of the regression and the flatest principal
direction.

The principal curvature A, has an exponent a and the curvature A1 an associated ex-
ponent . Both curvatures may be considered with an exponent a and adding corrections
with exponent v — a.

These arguments strongly suggest that the correction to scaling exponents should be

l-a-f=q+8-1=1+ (88)

or a multiple of this number.
The corrected exponents a;, B;, and 7, introduced by Sengers and Sengers [9] in revised
and extended scaling, obey the equations

ai + i =a+ b,
7+ B =+ 8, (89)

Yi— i =7 - a,
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in agreement with the idea that the correcting exponent (88) could be valid with effective
exponents [8].

The exponents of the curvatures found were v, ,1 + a and v — 1. The exponent 1 — 3
associated with torsion on the coexistence curve is the average of these exponents of
curvatures

T+a l1+at+y—1
g 2 ’

1-8= (90)

The integer exponent 1 associated to angle 6 was a surprise for a non classical behaviour.

By returning to Gibbs’ coordinates V, S and U, many results can be recovered. The
main change is the replacement of p, u and P by V, P and K, respectively. Geometrically,
the most relevant difference is that the edge of regression remains finite at the critical
temperature.
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