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Mechanics of self-affine cracks
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ABSTRACT. In this work mechanics of self-affine cracks is analyzed. The asymptotic behavior
of stresses in the vicinity of the crack tip for cracks with self-affine surface (or/and profile)
are derived for two and three dimensional problems. These asymptotics differ from stress field
asymptotics for smooth crack as well as for monofractal cracks. Moreover, our results also differ
from results which were derived for self-affine cracks in the works of Mosolov [15] and E. Bouchard
and J.P. Bouchard [16]. The relations between micro and macro fracture toughness are also derived
for ductile and brittle materials. The theoretical results are discussed with respect to recent
experimental observations.

RESUMEN. En este trabajo se analiza la mecénica de las grietas auto-afines. Se deriva la asintética
de los tensiones en la vecindad de la punta de grieta con superficie y/o perfil auto-afin para
problemas bi y tridimensionales. Estas asintéticas difieren de las asintéticas de campo de tensiones
para grietas tan lisas como monofractales. Mds aiin, nuestros resultados difieren también de aquéllos
obtenidos para grietas auto-afines en los trabajos de A. Mosolov [115] y de E. Bouchard y J.P.
Bouchard [16]. También se derivan las relaciones entre la tenacidad a la micro y a la macro fractura
para materiales frdgiles, asi como para dictiles. Los resultados tedricos se discuten respecto a las
observaciones experimentales recientes.

PACS: 05.90.+M; 46.30N; 62.20M

The fracture process in real materials is characterized by the high extent of spatiotem-
poral non-uniformity which results in the complex morphology of fracture surfaces and
crack shape [1]. Starting from the pioneer work of Mandelbrot et al. [2] there have been
numerous works focusing on statistical characterization of the roughness of cracks (see,
for example, Refs. [3-5] and references therein). Now it is well established experimentally
that crack faces in solids are self-affine objects.! Many of these experiments aimed at
establishing a correlation between fractal dimension of fracture surface and mMacroscopic
fracture parameters, such as fracture toughness Kjc, the impact energy measured during
Charpy tests, etc. Mecholsky and Mackin [6], and Mecholsky et al. (7] showed that the
fracture toughness increases as the fractal dimension of fracture surface, Dp, increases.
This result was explained by consideration of fractal crack growth in the number of

'Many different materials have been investigated with different fracture behavior, from ductile to
brittle, at very different scales, from nanometric scale using atomic force or scanning tunneling
microscopy, micrometer to centimeter scale using profilometry measurements on a variety of mate-
rials, image analysis technique, or other techniques, meter to kilometer scale for geological faults,
and up to 1000 kilometer scale for geophysical phenomena [35].
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works [8-11]. It was also shown [9-12]? that the acceptance of the fractal structure of the
crack leads to a change in the asymptotic behavior of the stress field ¢;; in the vicinity of
the crack tip. Instead of the standard relationship o;; ~ Ki//r, the following equation is
valid for a statistically self-similar (mono)fractal crack in linearly elastic materials:

Oij NI\’{X—QC}B,'J'(Q,U), X = —?:-, 6= d_DF, (])
£y 2

where £y is a microscopic cutoff (for example, plastic zone size) below which the stress
field saturates, r is the distance from the crack tip, Ky is the stress intensity factor for
fractal crack (instead of common stress intensity factor Ki), ¢;;(8,v) is a dimensionless
function of angle # between directions of observation and crack propagation and Poisson’s
ratio v; d is the dimension of the problem, and Dy is the metric (fractal) dimension of
crack (d — 1 < Dg < d). Moreover, in our works [10,13] it has been emphasized that
change in the spatial distribution of the stress fields in the vicinity of fractal crack tip
leads to a possibility of the fractal crack growth in the direction of uniaxial compression
of the brittle solid (columnar fracture?).

However, it must be pointed out that the above-mentioned results were derived with the
assumption that the crack face is isotropic monofractal which is characterized by unique
fractal dimension.? In fact, as noted above, crack faces in real materials are characterized
by self-affine geometry, and obey the property of statistical self-similarity only in the
limiting range of length scales L : Ly < L < Lp,.

The problem of self-affine crack propagation in brittle solids was recently analyzed by
Mosolov [15], and E. and J.P. Bouchard [16]. Although in both works the same Griffith
criterion of fracture was used,® the authors of these works have derived diametrically
opposite results. According to the last work [16], the stress field singularity in the vicinity
of crack tip involves an exponent

azDF—-(d—l)

- @)

instead of the exponent given by the same relation valid for monofractal cracks [$:85
Eq. (1)), which was derived in Ref. [15] for the plane problem (d = 2) of self-affine crack
propagation in a direction perpendicular to the applied longitudinal tensile stress.

Although we disagree with both calculations, it should be emphasized that the relation
(2) is associated with an unphysical effect:® a more singular stress field (larger «) is related
to a more rough crack (larger D).

“In Ref. [12] was realized invalid result a@ = 2 — Dy for two dimensional problem (1 < Df < 2).
3Later, in works [14,15], the same result was derived for cracks with self-affine profile.

*In some cases this assumption is valid, but only for a limited range of spatial scales.

°It is pertinent to note that actually even in the case of brittle fracture the elastic energy release
associated with removal of the load on rough surface [17] must be also taken into account.

¢ According to Eq. (7) in Ref. [16] the area of a rough crack face, S;c LA, increases with increasing
average crack length L more slowly than the area of a smooth crack face, Sec o [le-lg. ie.
B < d — 1; this error is a consequence of the application of Eq. (5) in [17] which is not valid for

non-differentiable self-affine surfaces.
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The difficulties associated with consideration of self-affine crack propagation occur
because of the compexity of self-affine structures. Instead of self-similarity of fractal
structures, self-affine objects are statistically invariant under an affine transformation. For
a surface with a mean plane parallel to plane (z,y) the affine transformation is written
in terms of the horizontal distances = and y, and the vertical distance z: 2’ — A;z,
y' — Ayy, 2’ — A.z. Requiring that such transformations be combined, a group structure
is implied. As a consequence A, and A; have to be homogeneous functions of, say, A;; both
scale as Ay = A2, A, = A%, but the exponents vy and v, are in general different. If so,
then Z = Y¥ where the Hurst exponent H is given by the relationship H = vy /v.. The
fractal dimension of self-affine structures is not uniquely defined. Moreover, even in the
simplest case a self-affine structure is characterized not only by the roughness exponent
H, but also by a characteristic correlation length £. It was shown by Mandelbrot [18] that
for self-affine fractal records we must distinguish between the local (L <« £) and global
(L > &) fractal dimensions. The last one is always equal to the topological dimension
of self affine structures, t.e., Dp = d — 1, while in the local limit the fractal dimension
D¢ > d— 1. Moreover, the relation between Dy and the Hurst exponent H depends on the
definition of fractal dimension. We summarize the relationships between the Hurst expo-
nent and various fractal dimensions discussed in literature in Table 1.7 It should be noted
that different dimensions are related to different phenomena and different experimental
techniques of estimation of the fractal dimension.

Unfortunately, we cannot even formulate the problem of crack propagation with self-
affine (non-differentiable) profiles (surfaces) within the framework of the classical theory
of elasticity, because the boundary conditions on the crack face are formulated for the
stress components normal and tangential to the surface. To determine these components
we must know the unit vector normal to the surface, which is in turn expressed by means
of the spatial derivatives of the surface form. In the case of a non-differentiable self-affine
surface it is impossible to introduce the vector normal to the surface because the spatial
derivatives are undefined. Hence, before dealing with the problem of self-affine crack
propagation within a framework of the elasticity theory we must first of all formulate new
boundary conditions on a self-affine surface.® However, we can derive the asymptotic for
the stress field distribution in the vicinity of the crack tip using balance energy analysis.

Energy conservation requires that the total kinetic and potential energy release associ-
ated with crack propagation should be spent partially on the formation of the new surface
and partially dissipated:

AW = AUg + AT = —AT + AUp, (3)

where AT and AUfg are, respectively, the kinetic and potential energies, AT = 2ASy
is the incremental surface energy acquired, AS is the increment of the area of fracture
surface, v is the surface tension; and AUp is the dissipation associated with irreversible
processes (such as plastic deformations, etc.). The roughness of the crack faces leads to

"Notice that for self-similar fractals all these dimensions are equal to the metric (Hausdorff-
Besicovitch) dimension.
*This topic will be the subject of forthcoming paper.
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TABLE I _Relationships between the roughness (Hurst) exponent and various fractal dimensions
of self-similar and self-affine fractals with topological dimensions equal to d — 1 embedded in
d—dimensional Euclidean space.

Self-affine fractals

elf-similar

Dimension Local limit Global limit ractals
Similarity, Dg — — (d-1)/H
Hausdorff-
Besicovitch, Dy d—H d-1 (d-1)/H
Box-counting, Dg d—H d-1 (d-1)/H
Divider, Dp Latent fractal dimensions:
(comass, rule) (d-1)/H,if H > (d-1)/d; d-—1 (d—1)/H
d,if H<(d-1)/d.
Contour (d = 2), D, 2/(1+ H)V d—1 1/H
(single coastline) 1+(1-H)/(v+1)?
Gap dimension,?) Dg log N/logb* — (d-1)/H
Mass,*) Dy log,, (N /') logy, (Nb' /b") (d-1/H

1) Mean field approximation. 2) v is the correlation length exponent from percolation theory. 3 N
is the number of similar parts, r; is the concern length of each part in i-direction, and b* =
(rir9 - 14)}/? is the effective base (for a self-similar fractal all r; equal to 7). ¥ b’ = maxr; and
b” = minr; are the largest and smallest base of the self-affine transformation (for a self- similar
transformation b’ = b").

an increase in the area of the fracture surface and to re-radiating of path of the energy
which flows toward the crack boundary. As a result, the effective surface energy of a plane
cut model of real rough crack increases.

Let us first consider a problem of quasistaic (AT = 0) crack growth with mean plane
perpendicular to the longitudinal tensile stress applied to the elastic solid. Then, the
elastic-energy release can be estimated by noting that the stress field is essentially relaxed
on scales 7 < AL (AL is the crack length increment) and unperturbed on larger scales:

AU, f Ud(z:) d'a, (4)
V(AL)

where U, =~ (0%(z;))/2E is the mean density of the elastic energy in the unloading volume
V(AL) near the crack tip, E is the elastic modulus of the material; : = 1,2, diz; = dxdy
for a two dimensional problem, and ¢ = 1,2,3, d3z; = dxdydz for a three-dimensional
problem. We assume that in the vicinity of the crack tip the stress field is characterized
by a power law asymptotic behavior

o(r) ~ 0 X “9(0), where X = 1/{.
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Then the equation for the released elastic energy may be written in the form

L d—2a
pto? [° PPo2el (AL) (5)

—2a,.d-1 0 =
AUECK———ZE N X r dT_———(d_2a)E fo

When the crack path is regular, the increment of the surface energy is proportional to
AT o 2v(AL)?=1. At the onset of fracture, AT and AUg should be of the same order of
magnitude. This implies that a = 1/2, K ~ o/T¢(8), and Kic ~ v/7.E, which are the
classical results of fracture mechanics based on theory of elasticity [19].

In the case of self-affine cracks, the increment of the crack surface AS corresponds
to a crack length increment AL as AS o« (AL)P. If AL < ¢, then after almost literal
repetition of the operations of Ref. [17] we derive the expression for exponent Bs in the
following forms:

6=l 5 Cl<H<,
Bo=¢ H , (6)

d, ifo<H< !

t.e.; the increment of the crack surface area is governed by the local latent fractal di-
mension of the crack face. Notice that we may measure this dimension by the divider
(compass, or rule) method.

It immediately follows from Egs. (5) and (6) that in the vicinity of the crack tip,
ly < 7 < &, the exponent of the stress field singularity is

W L=d1—H) 1-dDy—(d-1)

2H 2(d — Dg) ' ™
if H>(d-1)/d (Dp < (d* —d+1)/d), or a = 0, and
a(r) = a(by) = a(£) = const., (8)

if H < (d —1)/d. Thus if the box-counting dimension?® of the crack face is greater than
or equal to its critical value (Dg > 1.5 for a two dimensional problem, and Dg > 7/3 for
a three dimensional problem), the stress field does not depend on the distance from the
crack tip in the interval £y < r < ¢, while at larger distances from the crack tip we always
have the classical asymptotic behavior

a(r) =~ J—K—I Tk, (9)

7

where Kj is the standard stress intensity factor.

°It is precisely the box-counting dimension of crack faces the more commonly estimated dimension
in metallographic experiments {1]; in the case of monofractal cracks we have Dg = 1/H and

Eqs. (7), (8) are identical to Eq. (1).
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These results are in good agreement with recent experimental observations by Ivanova
et al. [20].

The case of H < (d —1)/d is associated with ductile fracture [1] for which, making use
of the nanofracture approach [21] and Eqgs. (5)-(9) we derive the following equation for
macroscopic fracture toughness:

Kic =2/ Gbrg \/g, (10)

where G is the shear modulus, b is the absolute value of the Burgers vector of the elemen-
tary dislocation, and 7 is the friction force (Shmid’s constant).

In the case of brittle (quasi-brittle) fracture, the box-counting dimension of the frac-
ture surface Dg < 2.33, and it follows from Egs. (5)-(9) that the macroscopic fracture
toughness of the brittle material equals to

= [De-1[¢€Y _(d-1)A-H) _(d-1)[Dp —(d-1)]
Kie = vE7\ T"p, (eg)’ ‘= °H - 2(d — Dg) - (1)

The critical value H = (d — 1)/d corresponds to ductile-brittle transition, which was
experimentally investigated in Ref. [22]. Equations (10) and (11) agree well with experi-
mental observations in Refs. [6,7,20,22-24].

Experimental data provide an evidence that in compression a solid can undergo a
brittle fracture. In such case, the nature of the fracture is columnar, and separation of
the solid occurs into vertical columns produced by the crack growth in the direction of
the uniaxial compression. For this casel® we derive the following expression for the stress
field asymptotic behavior in the vicinity of the tip of a self-affine crack:

d-1)(1-H)  _, T _(d-1)(H*+H-1)
H £ g WS 2H? ‘

which also differs from the result of Ref. [15]. From this relation is follows that a self-affine
crack can grow in the direction of uniaxial compression only if (B —1)/2 = & e« 0,618 <
B = 1M

We have thus shown that the morphology of the fracture surface governs the stress
distribution in the vicinity of the crack tip and relations between micro and macro fracture
toughness of the solid material.

o(X) x (12)
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1Tn the case of columnar fracture, elastic energy is released only because of unloading of the rough
surface [17].
11t is interesting to note that the critical value H, is equal to the golden mean $*.
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