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ABSTRACT. In this work mechanics of self-affine cracks is analyzed. The asymptotic behavior
of stresses in the vicinity of the crack tip for cracks with self-affine surface (or/and profile)
are derived for two and three dimensional problems. These asymptotics di!fer from stress field
asymptotics for smooth crack as well as for monofractal cracks. Morrover, our results also differ
from results which were derived for self-affine cracks in the works of Mosolov [151and E. Bouchard
and J.P. Bouchard [16J.The relations between micro and macro fracture toughness are also derived
for ductile and brittle materials. The theoretical results are discussed with respect to recent
experimental observations.

RESUMEN. En este trabajo se analiza la mecánica de las grietas auto-afines. Se deriva la asintótica
de los tensiones en la vecindad de la pnnta de grieta con snperficie ylo perfil auto-afín para
problemas bi y tridimensionales. Estas asintóticas difieren de las asintóticas de campo de tensiones
para grietas tan lisas como monofractales. ?vlásaún, nuestros resultados difieren también de aquéllos
obtenidos para grietas auto-afines en los trabajos de A. Mosolov [1151y de E. Bouchard y J.P.
Bouchard [16J.También se derivan las relaciones entre la tenacidad a la micro y a la macro fractura
para materiales frágiles, así como para dúctiles. Los resultados teóricos se discuten respecto a las
observaciones experimentales recientes.

PACS: 05.90.+M; 46.30N; 62.20M

The fracture process in real materials is characterized by the high extent of spatiotem-
poral non-uniformity which results in the complex morphology of fracture surfaces and
crack shape [1). Starting from the pioneer work of Mandelbrot et al. [21 there have been
numerous works focusing on statistical characterization of the roughness of cracks (see,
for example, Refs. [3-51 and references therein). Now it is well established experimentally
that crack faces in solids are self-afline objects.I Many of these experiments aimed at
establishing a correlation between fractal dimension of fracture surface and macroscopic
fracture parameters, such as fracture toughness [(le, the impact energy measured during
Charpy tests, etc. Mecholsky and Mackin [61, and Mecholsky et al. [7) showed that the
fracture toughness increases as the fractal dimension of fracture surface, DF, increases.
This resuh was explained by consideratiún of fractal crack growth in the number of

'~lany <li!ferent materials have been investigated with di!ferent fracture behavior, from ductile to
brittle, at very different seales, from nanometric scale using atomie force or seanning tunneling
microscopy, micrometer to centimeter seale using profilometry measurements 00 a variety of mate-
riaIs, image aoalysis teehnique, or other techniqups. meter to kilometer seale for geological faults,
and Uf> to 1000 kilometer seale for geophysical phellomena [5j.
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works [8-11]. It was also shown [9-12)2 that the acceptance of the fractal structure of the
crack leads to a change in the asymptotic behavior of the stress field aij in the vicinity of
the crack tipo Instead of the standard relationship aij ~ [(I/,¡r, the following equation is
valid for a statistically sclf-similar (mono )fractal crack in linearly elastic materials:

v r
-' = Eo'

d- DF
Q=---

2
(1)

where Eo is a microscopic cntoff (for example, plastic zone size) below which the stress
field sat urates, r is the distance from the crack tip, [(f is the stress intensity factor for
fractal crack (instead of common stress intensity factor [(1), <Pij(IJ, v) is a dimensionless
function of angle IJ between directions of observation and crack propagation and Poisson 's
ratio v; d is the dimension of the problem, and DF is the metric (fractal) dimension of
crack (d - 1 :'S DF :'S d). Moreover, in our works [10,131 it has been emphasized that
change in the spatial distribution of the stress fields in the vicinity of fractal crack tip
leads to a possibility of the fractal crack growth in the direction of uniaxial compression
of the brittle solid (columnar fracturé).

However, it must be pointed out that the above-mentioned results were derived with the
assumption that the crack face is isotropic monofractal which is characterized by unique
fractal dimension.4 In fact, as noted aboye, crack faces in real materials are characterized
by self-affine geometry, and obey the property of statistical self-similarity only in the
limiting range of length scales L : Lo « L « Lm.

The problem of self-affine crack propagation in hrittle solids was recently analyzed by
Mosolov [15], and E. and J.P. Bouchard [16]. Although in hoth works the same Griffith
criterion of fracture was used,5 the authors of these works have derived diametrically
opposite results. According to the last work 116], the stress field singularity in the vicinity
of crack tip involves an exponent

a=
DF - (d - 1)

2
(2)

instead of the exponent given by the same relation valid for monofractal cracks [¡.e.,
Eq. (1)]. which was derived in ReL [15] for the plane problem (d = 2) of self-affine .crack
propagation in a direction perpendicular to the applied longitudinal tensile stress.

Although we disagree with hoth calculations. it should be emphasized that the relation
(2) is associated with an unphysical effeet:6 a more singular stress field (larger a) is related
to a more rough crack (larger DF).

'In ReL [12] was realized invalid result Q = 2 - DF for two dimensional problem (1 ~ DF ~ 2).
'Later, in works 114,15], the same reslllt was derived fOl cracks with sclf-affine prolile.
"In sorne cases this assumption is valid, but ooly for a limited raoge oC spatial seales.
~It is pertinent lo note that actually even in the case oC brittle fracture the elastic energy release
associated with removal uf the load on rough surface (17) must be also taken iuto account.
'AccOlding to Eq. (7) in ReL (16]the arca of a rollgh crack face, 5« ex L6. increases with illcreasing
average crack length L more slowly than the area oC a smooth crack face, Ssc o:: L(d-1lS, i.e.,
(3< d - 1: this error is a consequellce of the application of Eq. (5) in 117] which is not valid for
non-differentiable self-affine surfaces.
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The difficulties associated with consideration of self-affine crack propagation occur
because of the compexity of self-affine structures. Instead of self-similarity of fractal
structures, se1f-affine objects are statistically invariant under an affine transformation. For
a surface with a mean plane parallel to plane (x, y) the affine transformation is written
in terms of the horizontal distances x and y, and the vertical distance z: x' ~ AxX,
yl ~ Ayy, Z' ~ A,Z. Requiring that such transformations be combined, a group strueture
is implied. As a consequenee Ay and A, have to be homogeneous funetions of, say, Ax; both
seale as Ay = A~', A, = A~'. but the exponents lJy and lJ, are in general different. Ir so,
then Z = yll where the Hurst exponent H is given by the relationship H = lJy/lJ,. The
fractal dimension of se1f-affine struetures is not uniquely defined. Moreover, even in the
simplest case a self-affine strueture is characterized not only by the roughness exponent
H, but also by a eharaeteristie eorrelation length~. It was shown by :-'Iandelbrot [181 that
for self-affine fractal records we must distinguish between the local (L « O and global
(L » O fractal dimensions. The last one is always equal to the topological dimension
of self affine structures, i.e., DF = d - 1, while in the local limit the fractal dimension
D¡ ~ d - 1. :-'loreover, the relation between D¡ and the Hurst exponent H depends on the
defiuition of fractal dimensiono \Ve summarize the relationships between the Hurst expo-
nent and various fractal dimensions discussed in literature in Table 1.7 It should be noted
that different dimensions are related to different phenomena and different experimental
techniques of estimation of the fractal dimensiono
Unfortunately, we cannot even formulate the problem of crack propagation with self-

affine (non-differentiable) profiles (surfaces) within the framework of the classical theory
of elasticity, because the boundary conditions on the crack face are formulated for the
stress components normal and tangential to the surface. To determine these components
we must know the unit vector normal to the surface, which is in turn expressed by means
of the spatial derivatives of the surface formo In the case of a non-differentiable self-affine
surface it is impossible to introduce the vector normal to the surface beeause the spatial
derivatives are undefined. Hence, before dealing with the problem of self-affine crack
propagation within a fralllework of the elasticity theory we must first of all formulate new
boundary conditions on a self-affine surface.8 However, we can derive the asymptotic for
the stress field distribution in the vicinity of the crack tip using balance energy analysis.
Energy conservation requires that the total kinetic and potential energy release assoei-

ated with crack propagation should be spent partially on the formation of the new surface
ami partially dissipated:

6W = 6UE + 6T = -6r + 6Un, (3)

where 6T and 6U E are, respectivelY' the kinetic and potential energies, 6r = 2651
is the incremental surface energy acquired, 65 is the increment of the arca of fracture
surface, 1 is the surfaee tension; and 6Un is the dissipation associated with irreversible
processes (such as plastic deformations, etc.). The roughness of the crack faces leads to

7Noticc that for seU-similar fractals aH thcse dimcnsions are equal to the metric (Hausdorff-
Besicovitch) dimensiono
8This topie will be the subject oC forthcoming papero
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TABLE I. Relationships between the roughness (Hurst) exponent and various fractal dimensions
of self-similar and self-affine fraetals with topologieal dimensions equal to d - I embedded in
d-dimensional Euclidean spaee.

Self-affine fractals

Dimension

Similarity, Ds
Hausdorff-

Besicovitch, Dn

Box-counting, D8

Divider, Do
(eomass, rule)

Contour (d = 2), De
(single eoastline)

Gap dimension,") Da

Mass,') DM

Loeallimit

d-H

d-H

Latent fractal dimensions:
(d -I)/H, if H > (d - l)/d;

d, if H:-;: (d-I)/d.

2/(1 + H)I)
1+ (1 - H)/(v + 1)2)

logNjlog b'

10gb,(Nb"/b')

Global limit

d-I

d-I

d-I

d-l

10gb, (Nb' /b")

Self-similar
fraetals

(d-I)/H

(d - I)/H

(d-I)/H

(d-I)/H

l/H

(d-l)/H

(d - l/H

1) Mean field approximation. 2) v is the correlation length exponent froID pcrcolation theory. 3) N
is the number oC similar parts, TI is the concero length oC each part in i-direction, and b- =
(TI T2 ... Td)l/d is the effeetive base (for a self-similar fractal all Ti equal to T). ') b' = max Ti and
b" = min Ti are the largest and smallest base of the self-affine transformation (for a self- similar
transformation b' == bU).

an inerease in the area of the fracture surface and to re-radiating of path of the energy
which lIows toward the crack boundary. As a result, the effective surface energy of aplane
cut model of real rough crack increases.
Let us first consider a problelll of quasistaic (t:.T = O) crack growth with mean plan e

perpendicular to the longitudinal tensile stress applied to the elastic solido Then, the
elastic-energy release can be estilllated by noting that the stress field is essentially relaxed
on scales l' < t:.L (t:.L is the crack length inerement) and unperturbed on larger seales:

(4)

where Ue "" (a2(x¡)/2E is the mean density of the elastic energy in the unloading volume
V(t:.L) near the crack tip, E is the elastie 1Il0dulus of the material; i = 1,2, ddxi = dx dy
for a two dimensional problem, and i = 1,2,3, d3xi = dxdydz for a three-dimensional
prohlelll. \Ve assume that in the vicinity of the crack tip the stress field is eharacterized
by a power law asymptotie behavior

a(1') "" <7ooX-°4>(8), where X = rIfo.
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Then the equation for the released elastic energy may be written in the form

</J2a2 rt.L -20 d-l </J2a2£g (t:.L)d-20
t:.UE ex: 2E Jio X r dr"" (d _ 2a)E f;; (5 )

When the crack path is regular, the increment of the surface energy is proportional to
t:.r ex: 2,(t:.L)d-l. At the onset of fracture, t:.r and t:.UE shonld be of the same order of
magnitude. This implies that a = 1/2, [(¡ ~ a,¡T</J(O), and [(le"" ,¡;:¡;E, which are the
classical results of fracture mechanics based on theory of elasticity [191.
In the case of self-affine cracks, the increment of the crack surface t:.S corresponds

to a crack length increment t:.L as t:.S ex: (t:.L)IJ•. If t:.L « e then after almost literal
repetition of the operations of Re£. [171 we derive the express ion for exponent {J, in the
following forms:

{~(3 - H',-
d,

if d-l < H < 1-r - _ 1

if O < H < d-l
- d

(6)

,.e., the increment of the crack surface area is governed by the local latent fractal di-
mension of the crack face. Notice that we may measure this dimension by the divider
(compass, or rule) method.
It immediately follows from Eqs. (5) and (6) that in the vicinity of the crack tip,

eo « r « e the exponent of the stress field singularity is

1 - d(1 - H) 1 - d[Ds - (d - 1)]a - ----- - __ ~ ~
- 2H - 2(d - Da) ,

if H ::::(d - 1)ld (DB ~ (d2 - d + 1)ld), or a = O, and

a(r) = ateo) = atO = const.,

(7)

(8)

if H < (d - 1)ld. Thus if the box-counting dimension9 of the crack face is greater than
or equal to its critical value (Ds ::::1.5 for a two dimensional problem, and Dn ::::713 for
a three dimensional problem), the stress field does not depend on the distance from the
crack tip in the interval eo ~ r ~ ~, while at larger distances from the crack tip we always
have the classical asymptotic behavior

[(1
o-(r) "" ,¡T'

where [(¡ is the standard stress intensity factor.

r» e (9)

'H is precisely the box-connting dimension of crack faces the more commonly estimated dimension
in metallographic experiments tI]; in the case oC monofractal cracks we have Do ::::1/ H and
Eqs. (7), (8) are identicallo Eq. (1).
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These results are in good agreement with recent experimental observations by Ivanova
et al. [20].

The case of H < (d - l)ld is associated with ductile fracture [1] for which, making use
of the nanofracture approach [21] and Eqs. (5)-(9) we derive the following equation for
macroscopic fracture toughness:

[(IC = 2JGbro fT,Veo
where G is the shear modulus, bis the absolute value of the Burgers vector of the elemen-
tary dislocation, and ro is the friction force (Shmid's constant).

In the case of brittle (quasi-brittle) fracture, the box-counting dimension of the frac-
ture surface Dn ::; 2.33, and it follows from Eqs. (5)-(9) that the macroscopic fracture
toughness of the brittle material equals to

- ~ ~(~)'Alc = V'YeE V ~ £0
(d - 1)(1 - H) (d - l)[Dn - (d - 1)]

( = ------ = ---~----~
2H 2(d - Dn)

(11 )

The critical value H = (d - l)ld corresponds to ductile-brittle transition, which was
experimentally investigated in Ref. [221. Equations (10) and (11) agree well with experi-
mental observations in Refs. [6,7,20,22-24].

Experimental data provide an evidence that in cornpression a solid can undergo a
brittle fracture. In such case, the nature of the fracture is columnar, and separation of
the sol id occurs into vertical columns produced by the crack growth in the direction of
the uniaxial compression. For this case10 we derive the following express ion foc the stress
field asymptotic behavior in the vicinity of the tip of a self-affine crack:

(
V) J(d - 1)(1 - H) v-Q

a.' (X l! .', Q=
(d - 1)( [{2 + H - 1)

2H2
(12)

which also differs from the result of Ref. [15]. From this relation is follows that a self-affine
crack can grow in the direction of uniaxial compression only if (v'5 -1)/2 = <1>":::= 0.618 <
H < 1.'1

\Ve have thus showu that the morphology of the fracture surface governs the stress
distribution in the vicinit.y of the crack tip and relat.ions between micro and macro fracture
toughness of the solid materia!.
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1010 the ca..~eof columnar fracture, elastic cncrgy is re!ea5ed olll}' beca use of l1nloading oí the rOl1gh

surface [17J.
¡lIt is intpfcsting lo nole tltat tll(' critica1 vahlf' l/e is <'qual to the goldpTl IOpan I}) ••
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