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ABSTRACT. A generalization of the Papacostas-Xanthopoulos solution is obtained by applying to
it a Harrison transformation. It describes the collision of two plane gravitational waves with non-
collínear polarization supporting an electromagnetic field. For a particular range of the parameters,
no curvature singularities occur in the generalized solution.

RESUMEN. Aplicando una transformación de Harrison se obtiene una generalización de la solución
de Papacostas-Xanthopoulos. Dicha solución describe la colisión de dos ondas planas gravitaciona-
les con polarización no colineal portando un campo electromagnético. En la generalización obtenida
no se presentan singularidades en la curvatura en un intervalo particular de los parámetros.

PACS: 04.20.Jb

l. INTRODUCTION

In recent years the study on colliding plane gravitational waves has increased greatly. For a
complete review on the topic see the book by Griffiths [1]. The interest in these systems is
related to the nonlinear elfects that manifest when two plane-fronted gravitational waves
collide. After the collision, it can occur both, a Cauchy horizon or a curvature singularity.
In vaCuum and for constant polarization the avoidance or evolution of the singularity
depends on the relation between the amplitudes of the two incoming plane waves [2J. For
electrovacuum the result is not so conclusive, beca use in this case the interaction between
the electromagnetic and gravitational fields makes it more involved. In this last case, it is
hard to establish results of general character. Thus to obtain an insight in what happens in
the collision of two plane gravitational waves supporting electromagnetic fields one resorts
to the analysis of concrete colliding gravitational waves possessing interesting peculiarities.

The spacetimes describing the interaction regio n produced after the collision of plane
gravitational waves contain two commuting spacelike Killing vectors and there exist sev-
eral generating techniques to obtain solutior,s with these symmetries. AIl the techniques
that have been developed for stationary axisymmetric spacetimes (one spacelike and one
timelike Killing vector fields) can be applied, with slight modifications, to generate cylin-
drically syrnmetric spacetirncs, in particular, colliding planc wavcs.

In this paper we give the explicit expressions of the metric and electromagnetic field for
a generalization of the colliding gravitational plane wave solution studied by Papacostas
and Xanthopoulos [31. The generalization is obtained via a Harrison transformation [4]'
which incorporates to the seed solution two electromagnetic flcld parameters. The seed
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solution is a five parameter family of solutions of the Einstein-Maxwell equations and
exhibits no curvature singularities in the extended space-times for a particular range of
the free parameters.
In Sect. 2 the new metric and its electromagnetic field are explicitly given. Section 3 is

devoted to the analysis of the behaviour of the Weyl curvature coefficients in the colliding
region. Section 4 deals with the extension of the spacetime regions where the collision
takes place to regions before the collision event, and here also the characterization of the
polarization in such regions is accomplished. Sorne concluding remarks are given in the
last Sect. 5.

2. TIIE GENERALlZATION OF TIIE PAPACOSTAS-XANTIlOPOULOS SOLUTION

Papacostas ami Xanthopoulos [31started their research from the metric (2.1) below, which
occurs to be a speeial case of a Carter [51solution with two commuting spacelike Killing
fields, derived also by Plebanski [61. Papaeostas and Xanthoupolos showed that this metric
corresponds to an Einstein-Maxwell spacetime, which describes the interaetion of two
plane fronted gravitationa! and electromagnetie waves.
We shall briefly give the steps followed in generating a solution starting from the

Papacostas-Xanthopoulos solution. The seed metrie is given in the form

\\'here

{
dp2 dq2 } P 2 2 Q 2 29 = Cl. P -Q + Cl. (d", - q da) + Cl. (d", + P da) , (2.1 )

(2.2)

Cl.=p2+l,

p = 1-1(e2 + b2) + 2np - <p2,

Q = -1 -1(e2 + b2) + 2mq - <'12,

with the additional conditions that P ~ O, Q ~ O, in order to fix the signature. The
five parameters that eharacterize this solution are 1,n, m, f and 2v2 = e2 + b2. The
eleetromagnetie field is determined by the vector potential

1 pq
AM = 2 + 2 (eq - bp)ó~ + 2 2 (el' + bq)ó;.

l' '1 P +'1
(2.3)

This metric strueture may develop the formabon of hori7.0ns, with an external spaeetime
exhibiting two-dimensional spaeelike or timelike curvature singularities, or no singularities
at all. This faet is established in Ref. [31. To arrive, from (2.1), at the metrie in Ref. [3)
one aecomplishes the following eorrespondenees:

p~l. q~=. ",~y, a~x. p~E2, Q~H2,
2< ~ (1, 2n ~ b. 1 - v2 ~ r, 2m ~ j, -1 _ v2 ~ g,

with an additional change in the signature: from (-, +, +, +) to (+. _. _, _).

(2.4)
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Choosing the Killing vector as a linear combination of the KiIling directions ü and ü
according to <P •

W = QÓ~ + f3ó~, (2.5)

the metric (2.1) can be rewritten in the form

(2.6)

(2.9)d<p' = {3d<p - Q da,

f = ](1'](1' = ~ {p(Q - {3q2)2 + Q(Q + {3p2)2} =: ~ > O, (2.7)

1
W = D(Q2 + {32) {P(Q - {3q2)({3 + Qq"2) + Q(Q + {3p2)({3 - QP2)}, (2.8)

da' = 2 1 {32[Q d<p + {3da].
Q +

with

In these coordina tes the components of the electromagnetic scalar potential are

Ij¡ = A., + iA, (2.10)

where
1A., = 6 {eq(Q + {3p2) - bp(Q - {3q2)},

A = ~ {Q(ep + bq) + {3pq(bp - eq)}.

(2.11 )

Einstein-l\laxwell's equations for a spacetime with two Killing vectors can be formulated
equivalently in terms oí the Ernst potentials in the form of the well known Ernst eqnations.
The Ernst equations possess an intrinsic 3U(2, 1) symmetry which allows transformations
that generate new solutions from known ones [7]. Li and Ernst [81 and also GarCÍa [91 have
proved that when 3U(2, 1) transformations are executed, such transformations will always
yield bona fide colliding wave solutions when bona fide colliding seed metrics are employed.
In the present work, we have applied the so called Harrison charging transformation to
the solution corre~ponding to the line element (2.6). The e!fect of this transformation is to
incorporate into the seed metric two additional parameters, E and B, interpreted in terms
of electromagnetic fields. This Harrison transformation occurs to be not quite relevant in
the case of generation of new useful stationary axisymmetric fields becanse under such a
transformation asymptotic flatness is not always preserved.
The 3U(2, 1) transformations operate on the level ofthe Ernst potentials q, and E. These

potentials can be evalnated from the relations

dlj¡ = -i](Jw, dE = i[((d[( + .d[() - 21>dq" (2.12)
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where [{ = [{,.dx", w is the electromagnetic two-form, J denotes the s~ep product and •
is the Hodge's star operation (see details in Re£. [10]). The Ernst potentlals correspondlllg
to the seed metric (2.6) are

and

[e+ib] .</> = i --o (o: - l{3pq),
P + lq

E = -/ - 2v2,6.-1(0:2 + {32p2q2)

- 2i{ mp[,6. -'(o: + {3p2)2 - {3(30: + {3p2)J

-nq[,6.-I(o: - {3q2)2 + {3(30: - {3q2)J

+ o:{3<pq+ {32-ypq + {3v2,6.-lpq[20: + {3(p2 - q2)J},

(2.13)

(2.14)

where 2v2 = e2 + b2•
To "magnetize" a given metric one applies the Harrison transformation to the Ernst

potentials according to the rules

,¡, = 1 - 2(E - iB)1> - ÓE,

ti> = ,¡,-' [1> + (E + iB)£],

ó=E2+B2,
(2.15)

where E = const., B = consto are the added electric and magnetic field parameters. The
tilde is used to denote the new quantities.
To carry out this procedure for the metric (2.6) it is convenient to write it in the form

(2.16)

with the definitions

(2.17)

\Ve can recognize the metric (2.16) as the one for a spacetime that may possess
cylindrical symmetry. The result of the Harrison transformation in (2.16) amounts to
transform [111 the functions / and ¡V as follows:

Thus, the generated metric amounts to

w~ ¡V. (2.18)
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with the electromagnetic field given by the two-form

(2.20)

where the new IV function oughts to fulfill the equation

The structural functions P, Q and ~ are given by formulas (2.2), the function f Is defined
in (2.7). The complex factor function 1/1 Is given in terms of the Ernst potential <P and é

in (2.15).
Integrating IV in (2.21), we obtain

IV(E, Bla, (3) = \V(O, Ola, (3) + rI(E, Blo, (3),

where \V(O, Ola, (3) = \V as in (2.8). The ftlnction rI(E, Blo, (3) amotlnts to

(2.22)

DrI(E, Bla, (3) = -4E(+)(a - {3q2)qP - 4E( - )(a + {3p2)pQ

_ Mv2 [(a2 _ {32q4)p _ (a2 _ {32p4)Q]

_ 46E( +)M + 46E( -)A! + 62 {Al' + 6Q + HPQ}, (2.23)

with E( +) = Ee + Bg, E( -) = Eg - Be and where the polynomials A, 6, H, M and A!
are

A = _a4(2m2 + 2n2 - 4m'q + ,2q2) - a3{3l(8n2 + 4'1 + ,2l)

_ 2a2{32q2 [(-y _ v2)(2(-y + v2) _ 6mq + ,l) - (m2 + 3n2)q2]

+ a{33q4 [2(-y _ v2)v2 + 4n2l- (-y - v2)(6m - ,q)q] + (34(-y - v2)2l,

B = 04(2m2 + 2n2 _ 411"1'+ ,21'2) - a3{3¡?(8n2 - 4'1 + ,21'2)

+ 202 {32p2[(-y + v2)(2(-y _ v2) +6np _ '1'2) - (n2 +3m2)¡/]

_ a{33p4 [2(-y + v2)v2 _ 4m2p2 _ (-y+ v2)(6n - '1')1'] - {3"(-y+ v2)2p6,

M = (o - (3q2)[om(o + {3'/) - {32(-y - v2)q3 - 02,q] l' - mn(o + {3i)(a - 3{3p2)Q

+ {3q[20(0 + {3¡l) + {3p2(n - (3q2)]1'Q,

A! = -(n + (3¡l) [nn(a - [31'2)+ {32(-y+ 1J
2)p3 - a2,p]Q + nn(a - [3'/)(0 + 3{3q2)p

+ {3¡,[2a(n _(lq2) - {3'/(o + {3¡l)] l'Q,
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H = -8c,J(3(mq + np) + 12a2¡J2(nq - mp)pq

- 3a¡J3pq [q( - 2pQ - 4Epq2 - 2nl + 3Ep3) - p( -2qP + 4Eqp2+ 2mp2 - 3Eq3)]

(2.24)

3. TIIE CURVATUIlE QUANTlTlES IN REGlON 1

To establish the behaviour of the spacetime on the focussing surface, one evaluates the
\Veyl complex coefficients c(a), a = 1, ... ,5 in null coordinales (u, ,,). To carry out the
transformation from (2.19) to null coordinates, one performs an intermediate coordinate
transformation

Ep - n = Cr¡, Eq - m = Al', (3.1 )

'1 = 1I~ + ,,¡¡=-;;2 = uV + "U

l' = u~ - ,,¡¡=-;;2 = uV - vU.
Under these transformatious the line element (2.19) becomes

(3.2)

To calculate lhe \Veyl coefficieuts c(a), \Veuse the null tetrad formalism [121 and choose
the uull tetrad as

(3.4)

\\'ith respect to this basis, lhe \\'eyl coefficienls are [111

c(1) = d1)N-I + 1e-20N-2{ N" [u + U2(2," - j"r1)]

- U2[N"" - 2N,;N-I - J2(u)N-1 + 2ijll'"J(u)K-1]}

+ ~e-2°N-2{ ;.I(u)[11 + U2(2," - j"r1 + 3N"N-1)]

+ U2 [2jll'uNuK-I - iD"J(u)]}, (3.5.a)
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+ 2¡-1(N"f" + N"f,,) + 4,cl (vN" + uN,,) + 2ifllV"J(v) - lV"J(u)]}

- ~UVe-20 N-2{ J(V)(f,,¡-l - N"N-1) + J(U)(f,,¡-l - N"N-1)

+ 2K-1[uJ(V) + vJ(U)]- ifK-1(lV"N" -lV"N,,)}, (3.5.b)

where N = 1,p12 and J(x) = ,po,,p' - ,p'o,,p, x = !l, v. The sllbscript s ¡abels the seed
Sollltion and the sllbscripts II and v denote 8" and 8", respectively.

The expression for C(5) is obtained from the one for C(l) making u-v. Besides,

C(2) = O = C(4). (3.6)

(3.7)

On the other hand for an electromagnetic field determined by a vector potential (A~) =
(O, O, A"," Aa'), the nonvanishing nllll tetrad components of the electromagnetic tensor
F~v. F~v = o~Av - ovA~, are

. -o
le { . Z }'2F13 = VJ7j!zU <P"+ (E + ID)e" + b (e<p"- <Pe,,) = 2F23,

. -o
2F14 = :fl,p2 V {1J" + (E + iD)e" + b2(e<p"- <Pe,,)}= 2Fi.j,

where <p and e are the cOlllplex Erast potentials of the seed soll1tion, given by expres-
sions (2.13) and (2.14).

From the definition of the traceless Ricci tensor one gets the nonvanishing components.

fCn = e-20UV <p,,<p~= fC2Z' fC33 = _e-20U2<p,,<p~. fC41 = -e-20V2<p,,<p~. (3.8)

In the interaction regio n the seed metric I1sed (2.1) is of Petrov type O (see Refs. [3,6],
with only cj3) # O. With respect to the nllll tet rad (El, E2

, E3
, E1

)

{~~ = ~{ jf,dP:t:ijf(d<P-'/da)}.

{~: = ~{~(d<P+p2da):t:~d!j},

the expression for Cj3) is

(3) _ 3
3C, - - 62 {pPp - !jQq}

2Q { 2 2 1 } 2/' { 2 Z 1 }- 63 2(2'1 - P ) - 6- + 63 2(2p -'1 ) - 6-

3i {l -I}+ 6:1 (Q'I6 - - 4!jQ)+ (Pp6 - 4pP) ,

(3.9)

(3.10)
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while the invariant of the electromagnetic field is

e2 + b2
FPV F,," = (2 2)2' (3.11)

P +q

In addition to the singularities in the seed metric (2.1), analyzed in detail in ReL [31,
from expressions (3.5) we note that new singularities could arise when N = 1,p12= O
which amounts to ,p,p' = O, more precisely to

(3.12)

however, this quantity can only be zero if Re,p = O = Im,p, but in this case the trans-
formation (2.15) is meaningless. The seed metric (2.1), when P = O or Q = O, seems to
be singular. Nevertheless, Papacostas and Xanthopoulos [31have proved that the surfaces
P = O and Q = O correspond to regular surfaces. There arises the question, Has the
metric (2.19) or (3.5) singularities on the surfaces P = O or Q = O (or equivalently K = O)?
The analysis shows that the answer is negative -there are no curvature singularities. For
C(1) the suspicious terms are IVuK-1 and IVvK-1; these terms are well-behaved since IVv
and IV" are proportional to K (see Eq. (12) in ReL [9]). On the other hand, in C(3), we
have the terms u~~~" K-1(vNu + uNv) and -U2j::,.'> K-l[vJ(ll) + uJ(v)], which may be
gathered as

(3.13)

The expression in brackets is

(WPv + v</>,,)16° {-E + i8 + 26</>' + (E - iB)ÓE'} +

(",p~+ v</>:)H E + i8 - 26</> - (E + i8)6£} +

(ll£v + v£,,)~ { -6 + 2(E + i8)6</>' + 62£,} +

(1l£~ + v£:)H 6 - 2(E - i8)6<1>- 62£}, (3.14)

where E, B and 6 are the parameters introduced by (2.15), while £ and </> are given
in (2.13) and (2.14). Each term possesses the generic factor =: := llXv + vXu. lf this
generic factor is proportional to K, i.e., =: = K¿" where ¿, is a nondiverging term, then a
solution generated from abona fide non singular solution by a Harrison transformation,
does not possesses new singularities at least at the level of the 'Veyl curvature quantities.
In our particular case, with X = X (p( u, v), q( u, v)), the evaluation of the generic term =:
yields

=: = u(XpPv + Xqqv) + v(XpPu + Xqqu)

= (upv + vPu)Xp + (llqv + vqu)Xq

z z{C A }= (1 - u - v) U,,(uF + vU)Xp + --(vU - uF)Xq .
< , <UF (3.15)
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From the last expression it is apparent that for each term in (3.14) the factor (1-u2 _v2)
arises. Since

(3.16)

the K. in the denominator in C(3) cancels out, therefore, the whole expression does not
diverge. So, it turns out that no singularity appears at P = O neither at Q = O for the
derived new solution.

4. EXTENSION .0 TIIE REGIONS BEFORE TIIE COLLlSION

The line element (2.19) describes a colliding wave metric structure if one can match this
spacetime with the corresponding ones of the incoming waves. Since the solution (2.19) was
obtained via a SU(2, 1) symmetry transformation, by Refs. [81 and [9]' it is guaranteed that
this solution represents a colliding plane gravitational wave situation. The extension to the
regions before the collision can be performed from the me trie written in null coordinates
(u, v) as in (3.3). The regio n I of interaction is constrained to O .,; u < 1, O .,; v < 1. One
extends the metric (3.3) to regio n 1I, u < O, v > O; region III, u > O, v < O and regio n IV,
u < O, v < O, by subjecting u and v to the so-called Penrose extension [131:

u -> uH(u), v -> vH(v), (4.1)

where H is the Heaviside unit step function. Singularities or discontinuities may arise from
the substitution (4.1) along the null boundaries u = O and v = O separating the different
regions. To determine the behaviour of the C(n,s on the null boundaries we use the
relations given by Chandrasekhar and Xanthopoulos [141. They define ¡(x) = f(xH(x))
and by using a Taylor expansion, it can be obtained that

lim j'(x) = f'(O)H(x), lim j"(x) = j"(O)H(x) + j'(O)<5(x), (4.2)
x-o x-o

where <5(x) is the Dirac delta function. For short we shall use <5,H and e for "<5function
singularity", "Heaviside function discontinuity" and "continuous function", respectively.
If, for instance, a quantity L exhibits an H and <5behaviour we shall write simply L(H +<5).
In accordance with this rules, when crossing from regio n I to region II on u = O we have

On the boundary v = O separating regions I, III we have

while when passing fram II to IV on v = O one has

(4.5)
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and finally when crossing from III to IV on " = Oone has,

(4.6)

To interpret the parameters appearing in the metric (2.19) defined for lulIullIulV we
follow Ref. [7], 321.5, where for plane waves (regions II and I1I) with e;;bcd = 21)1.VabVed,
1)1.= 11j1.leiB; there it is proposed to call 11)1.1the amplitud e and associate!J with the
polarization in a similar manner to the interpretation given to <1>2= Fe"" of a null
electromagnetic field Fa~ = 2<1>2Vab. In these expressions V~v = 2k[~mvl'
For the vector basis (3.4) one identifies in regio n III (see Ref. [15])

k - e3p. - p.'

and in regio n II

(4.7)

(4.8)

In order to analize the polarization of the incoming waves, which is directly related
with IV in (2.19), we calculate the \Veyl tensor e(a), a = 1, ... ,5 in region lIl, v < O,
" > O. For regio n II the situation is symmetric. \Ve pass from (2.19) to regio n III with
the transformations

e n
p-+ -1l+-,

f f

A m
q - -"+-.

f f
(4.9)

(4.10)

In regio n III all functions depend just on " and we have besides (3.6), e(5) = O= e(3).
Then only e(1) # O, and it is given by expression (3.5.a), with

u2 {6uu 26~ Du (6u 2") D~ - Duu}+ -6- - -6- + -D- -6-+ -1-_-,,-2 + --D-2-

+iL{-W (" 3U26u_U2)_U2(AuuD-ADuu)}
IC u + 6 D2(a2 + (J2) ,

where A = P(a - (3q2)({3+ aq2) + Q(a + (3p2)({3_ ap2).
The imaginary part of C(1) in principie defines the gravitational polatization in re-

gion III.
To determine the spacetime polarization plane V(I) one proceeds as follows: The bivec-

tor \~w,which determines the bivector basis in regio n III (e+ = 21)1.VV) is related with
the "spacetime propagation direction", k~ = e~, according to V~v= 2et,e~l;both, k~ and
V~voccnr to be covariantly constant ( k~,v = O= V~v,~).This bivector can be decomposed
in two parts, V = V(I) + V(2), where V(1) is just the spacetime polarization planeo
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Introducing the orthonormal tetrad ea',

(4.11)

one obtains

(4.12)

Labeling (xO,xl,x2,x3) as (u,v,<p',a'), the only nonzero components are

(4.13)

On the other hand, with re'pect to an observer moving along the direction e4' one
defines the electric intensity as E~ = - F(.et' which explicitly amounts to

this vector E~ determines the direction of polarization of the electromagnetic field. One
can represent F3l = Fe'>/>, and consider the direction of the vector el' as the direction
of polarization and <p as the polarization angle. The polarization direction el' is also the
polarization direction of the gravitational wave.

5. CO¡';CLUDlj\;G REMARKS

Applying a Harrison transformation we have obtained a generalization of the Papacostas-
Xanthopoulos [3] solution which describes the collision of two plane gravitational waves
supporting an electromagnetic field. No new singularities arise due to the electric and
magnetic fields incorporated, as shows the analysis of the behaviour of the \Veyl coeffi-
cients. The singularities that appear are the same oues as those of the seed metric. \Ve
conclude then that for a particular range of the free parameters, no curvature singularities
occur in the generalized Papacostas-Xanthopoulos solution.

The solution derived here is a natural generalization of the Chandrasekhar-Xantho-
poulos solution of Ref. [16] in the following sense: The algebraically general solution
determined in this paper is an electromagnetic generalization of the Papacostas-Xantho-
poulos [3] type O solution; the Papacostas-Xanthopoulos solution corresponds, for space-
times with one spacelike and one timelike Killing vectors, to the Plebanski-Demianski [6]
solution. The Plebanski-Demianski solution is in turn a generalization of the Kerr-Newman
solution. The Chandrasekhar-Xanthopoulos solutioIl [161 is a type O solution derived from
thc same potentials, flllfilling thc Ernst equatiou, that are uscd to derive the Kerr-Newman
field. In fact these two spacetimes are isometric in the regio n where the Kerr-Newman
has two spacelike Killing vectors (interior to its ergosphere).

It is noteworthy to point out the following fact: Taking the Ernst potential given by
E = pr¡ + iq¡J., p2 + q2 = 1, when X and w are considered as the metric functions, one
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arrives at the Nlltkll-Halil [171 solution. While when X and w are taken as the potentials,
with El = P'1 + iqJl, p2 + q2 = 1, it is obtained a type O sollltion [18] which is the
stric! analoglle of the Kerr solution and which is locally isometric to the Kerr spacetime
in the regio n interior to its ergosphere, where Kerr spacetime has two spacelike Killing
vectors. It is in this sense that the solution derived in this paper can be considered as
a generalizatioll of all type O solutions for colliding plane waves obtained from a single
Ernst potential El being common to the Kerr, Kerr-Newman and PlebaIÍski-DemiaIÍski
solulion. These statements can be put in a more transparent form with the following
diagram:

Solutions with two
spacelike Killing vectors

Nutku-Halil 171
E = P'1 + iqJl

Chandrasekhar-
Xanthopoulos [181
El = P'1 + iql'

1
Chandrasekhar-
Xanthopoulos [161

J
Papacostas-

Xallthopoulos 131

J
yáñez-13retón-GarCÍa

Solutions with two
spacelike Killing vectors

Kerr

1

Kerr-Newman

1

Plebañski-Demiañski

I

I

In this diagram it is shown the relationship between the type O solutions and the so-
lution derived in this papee. All of the sollltions are of the Petrov type O except the
Natku-Halil alld Yáñez-13retón-GarCÍa ones. On the left hand side are shown the colliding
plane wave solutions and on the right hand side are the stationary axisyrnmetric solu-
tions. The lines between the blocks join the solntions corresponding to the same Ernst
potentials. Each arrow starts at one solution and points to its corresponding generaliza-
tion.
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