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ABSTRACT. The distortions of the wavefront in the Earth’s atmosphere are discussed. The ap-
proximation of the distortions of the wave localized in a thin layer is considered. A model to
construct random realizations of the field with a given structure function is suggested. In the first
approximation the role of the thickness of the atmosphere is described by a linear diffraction equa-
tion which gives an estimation of the dislocations of the wavefront of the initial plane wave. It
is shown that for this case the density is less than 1 dislocation per 100 square meters, at least
for good seeing conditions. This indicates the possibility of correcting wavefronts with a flexible
mirror.,

RESUMEN. Se discuten las distorsiones del frente de onda en la atmésfera de la Tierra. Se considera
la aproximacién de la distorsién de la onda localizada en un estrato delgado. Se sugiere el modelo
para construir al azar la realizacién del campo con la funcién de estructura. La ecuacién lineal
de difraccién describe la importancia del espesor de la atmésfera. Para las condiciones de buena
calidad de la imagen del objeto, la estimacién de la densidad de dislocaciones es menor a 1 en 100
metros cuadrados. Es posible la correccién del frente de onda con un espejo flexible.

PACS: 95.75.Qr; 94.20.Bb; 94.10.Lf

1. INTRODUCTION

Atmospheric turbulence is the main factor which limits the resolution of optical telescopes
on the Earth [1-7]. The possibility of improving the resolution by partial correction of the
wavefront using adaptive optics has been demonstrated in Refs. [3-11]. One fundamental
limit of this method may be connected with the points in which the amplitude of the field
is zero and the phase is indefinite. Such points are not so important, because the position
of the mirror surface at such points has no influence on the quality of the corrected image.
But, unfortunately, usually the phase in the vicinity of the zero-point is also indefinite. (It
changes by 27 on the contour around the zero-point.) In 3-dimensional space such zero-
points define lines. In analogy with crystallography such lines may be called “dislocations”
of the wavefront. In the surface of the adaptive mirror of the telescope these lines could
define points of the dislocations. An example of a field with such dislocations is presented
in Fig. 1. The dependence of the phase has a 27 “jump”. The position of the jump may
change because only the relative phase is important, and the region for the relative phase
may be defined in any way €g. —m:m or 0:2r . This location tends to minimize the
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FIGURE 1. Distribution of the amplitude and phase of the smooth field: E(z,y) = (:c+z'y)e"‘2‘y2.

physical significance or importance of the discontinuities, a significant consideration for
deformable-mirror adaptive optics, for which there is an unavoidable correction error in
the vicinity of the branch cut [15]. In any case, a wavefront with such a jump cannot
be corrected completely by a mirror with a smooth profile, so, the investigation of the
possibility of the realization of such structures on real wavefronts is important. It has
been indicated [10] that dislocations limit the possibility of correcting wavefronts with
flexible mirrors. For a field of Gaussian statistics, the density of dislocations was estimated
in Refs. [9,10], but the surface density of dislocations due to the atmosphere was not
estimated.

The aim of this work is to propose an algorithm to generate quasi-random realizations
of the field with a given structure function, which describes the distortion of the field
phase by the atmosphere and to estimate the surface density of dislocations, i.e., the
mean number of dislocations per unit of the Earth’s surface.

2. THE MODEL

In the simplest model the initial distortions of the plane wave in the atmosphere are
phase ones. They can be described [4,12,16,17] by the empirical formula for the structure
function:

= 6.88 (m)sm’ (1)

To

Bir)= <(¢>(m) _®(z+ T))2>

T

where 7 = (r1,72), * = (z1,x3), ® is the phase of the field. Formula (1) describes the
fluctuations of the phase at distance r, while ry is the “coherence scale” parameter. For
visible light r¢ &~ 10 cm [12-19]. If all the turbulence is localized near the Earth’s surface,
there is no fluctuation of the field amplitude. But it has been shown [19] that this layer
gives a relatively small contribution to the distortion of the light, at least for places with
good seeing. For estimations we may assume that all phase distortions are localized in a
thin layer at a distance z above the Earth’s surface, and then the propagation of the wave
is described by the free paraxial diffraction equation.
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FIGURE 2. The distribution of the phase (a) and of the field and zeros of the amplitude (b) after
propagation at the distance z = 60 km, (h = 1.2). The field was calculated by formula (7).

So, we should provide the algorithm to generate realizations of the phase which repro-
duces the structure function (1). Then we should construct a field with a uniform amplitude
and a given phase. Without loss of generality the amplitude of the field may be set to
unity. The primary distorted field can be defined by the formula E(z,0) = exp(i®(z)).
Then linear propagation in a homogeneous linear medium should be described by the

diffraction equation
d 1 d? d?
e e = 2
(dz L 2iKp (dm% e dm%)) Blpa)y =0, (2)

where kg is the wavenumber.

The function f(z) = ilog(FE(z,x)) describes the phase of the field. If this function is
regular, there are no dislocations. If there are cuts at which the function jumps by 27 it
is not enough to say that the field has dislocations. May be, these “cuts” can be removed
by the transformation

f(2) = f(z) = f(z) + 27n(a), (3)

where n(z) is a function of the transverse coordinates which takes only integer values.
But if any “cuts” cannot be removed by the transformation (3), then the wavefront has
dislocations. To avoid the use of a complicated algorithm to count them, we prefer to see
the map f(x) to count dislocations with our fingers. An example of a map of lines of equal
phase is shown in Fig. 2a. The region where there are many equilines at a distance of one
step of the grid indicates the “cut”; the ends of the “cut” show points of the dislocation.
The calculations are done in Sect. 4.
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FIGURE 3. The estimation of the distance z of the propagation which causes a complete amplitude
modulation from the initial phase modulation.

3. THE FRESNEL ESTIMATION

Before numerical calculations it is useful to compare orders of magnitudes and estimate,
what should be expected from numerical simulations. We trying to estimate the distance
of propagation at which a phase modulation of 2w per o = 10 cm should cause com-
plete amplitude modulation. At complete amplitude modulation there are some points at
which the amplitude of the field is zero; so, the phase may have some peculiarities, i.e.,
dislocations.

Consider a column of thickness ry and length z . If the phase of the field at one side
of the column differs by 27 from the value at the other side of the column, it changes
the direction of the beam by the angle a = A/ry, Fig. 3. From Fig. 3 we see that a beam
of the diameter of the column should leave this column at the distance of propagation
z = ro/a =~ i/ For A = 107* cm this gives the estimation 2 ~ 10 km. Note that this
is the scale of the thickness of the atmosphere of the Earth. So, this estimation does not
prohibit dislocations of the wavefront by the atmosphere, and more careful estimations
are necessary.

The statistical average of the number of zeros per unit area of wavefront is found for a
speckle-nonuniform field with Gaussian statistics [2,10,11]. Other accurate considerations
may be found in [20-23], but the surface density of dislocations due to the atmosphere is
not estimated there.
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4. THE CALCULATION ALGORITHM

Consider the discrete Fourier transform

&) = %feg_*gg@(m)dzm, (4)

where k = ky, kg, k12 = 0,%£1,£2,... The function ®(z) is assumed to be periodic; the
period L should be much greater than the turbulence scale rg. The phase of the field is
teal, so, ®_j = ®}. The calculus of the square of the modulus of the phase comes next

@l = 77 [ TE=0(@)d% [ Fra(y) d%y (5)
or
@l = 5 [ [ = E = p@)e) ddty. ®)

If y = u + z, then the last expression can be written as

|®k|? = ®(z)®(z + u) d*z d?y, (7

L4
=L2[J”"‘"( f@ z)®(z + u)d’z )d (8)

Finally the square of the modulus of the phase is
0l = 77 [ "= C(r)dbr, (9)
where
il
)= ﬁftI’(:c)‘I)(:r +7)d%z, (10)

Following Refs. [1,12] we can relate the phase correlation C with the structure function
D (In the approximation of large period L): from formula (1)

By} = Elz-/((p(a:) ~ &z + 1) d% (11)

= 11—2 / ®(z)? d%z + é /@(:E + 7)) d%z
- 325 /*I)(J:)(I)(:z: +r)d*z = 2C(0) — 2C(r). (12)

So, t.he phase correlation C(r) = C(0) — D(r)/2. But the structure function D increases
infinitely at |r| — oo, while the phase correlation should be finite and preferably positive.



568 DMITRI KOUZNETSOV AND ROBERTO ORTEGA-MARTINEZ

So, we should restrict the structure function. The necessity of the restriction with some
parameter A may be grounded from some physical speculation: the difference in optical
paths for two points at the Earth’s surface never is greater than the thickness of the
atmosphere. (Practically many orders of magnitude less). Let us introduce the parameter
A > 1 and define the restricted structure function

r|5/3
) 6.88 = for |—| < 4;
D(r) = . - (13)
6.884%3,  for |[—|> A.
To

This function coincides with the empirical formula (1) at |r| < Arg and i equal to the
constant 6.88 A at large values of |r|. It gives the finite non-negative correlation
Al

5/3 .
D(r) _ 3.44 (A = = ) , for |r| < =
2

0, for |r| > ;‘%.

C(r) = C(0) - (14)

We can generate quasirandom realizations of the phase with given correlation C(r); at |r| <
A®%/37; they reproduce the empirical formula (1) for the structure function asymptotically
at large values of A. Consider the Fourier-transform of C(r). It should be positive; so, it
is necessary to restrict negative values, i.e., set them to zero. Then the amplitude of the
Fourier-components of the phase is defined. Note that phases of these Fourier-components
have no influence on the sharpness of the structure function (1), so, they should be random
values between —, 7. The field is defined by exp(i®(z)). The solution of the diffraction
equation has the form

2mikzx —aXzk?
E(z,z) = - (——) F(k), (15)
(z,=z gexp ( 7 ) exp i
where
F(k) = % /exp (2“;;’”) E(z,0) d2z. (16)

For technical reasons the grid was taken to be 32 x 32 points. For the step of the grid
Sz = 3.125 cm, the period of the grid L = 1 m. In this case 7y =~ 3.2 éz. For visible light
A~ 0.6 x 1075 m. Define the dimensionless parameter h which corresponds to the length
of the propagation:

(&) r=-2- a7)

For values mentioned above h ~ =5—; giving the realistic value h = 0.2. Thus, we have
a dimensionless approximation for numerical simulations of the distribution of the field.
The empirical formula (1) is not adequate at z > 10 km, but it gives an upper limit to
the path of the propagation without dislocations.



SIMULATION OF RANDOM FIELD DISTRIBUTION. .. 569

TABLE I. The program of calculations, written in matlab.

i=sqrt(-1); pi=3.1415925636; N=32; A=4"(5/3); h=.2; eps=.2; v/
x=-N/2:N/2-1; r=ones(x’)*x+i*x’*ones(x); r=abs(r)/3.2; y=-1:2/31:1; 12;
F=3.44*max(0,A-r.~(5/3)); C=fafo(F); mesh(C); C=max(0,real(C)); %3
f=ifafo(C); pause; clg; subplot(211); mesh(F); mesh(f); pause; clg; %4
Fk=exp(2%*pi*i*rand(N)) .*sqrt(C); subplot(111); mesh(Fk); pause; %5
Fx=2xreal(fafo(Fk)); mesh(Fx); pause; clg; %6;
E=exp(i*Fx); subplot(211); mesh(E); mesh(i*E); pause; YT
C=fafo(E); mesh(C); mesh(i*C); pause; clg; subplot(121); %8;
F=exp((i*h-eps)*r.x*r).*C; E=ifafo(F); %9;
contour (i*log(E),5,y,y); title(’Phase’); grid; y da Lo

contour (min(.1,abs(E)."2),3,y,y); title(’min(.1,intensity)’); grid; %1

5. CALCULATIONS

The program to realize the algorithm mentioned above is so short (11 lines, written in
matlab), that we reproduce it here (Table I). The meaning of every line of the program is
simple:

1:

o 3 o W

10.

11.

Defines ¢, m, A, h. While N = 32, the calculations should be made over the grid of
32 x 32 points. Parameter “eps” is used later only to smooth the visible picture to
make it easier to count dislocations.

. Defines the radius-vector of each point of the grid.

- Defines the correlation C' by formula (14). (It is plotted by the next line.) The oper-

ator “mesh” plots the distribution of the real part of its Fourier-transform. Unfortu-
nately, it also has negative values, so, it is truncated to zero at these points.

- Shows the distortion of the correlation by this truncation. (Fig. 4) This result is not

used in the following calculations.

- Defines the random phase of the Fourier-components of the field and plots them.
. Calculates the field as a function of the transverse coordinate and plots it.
- Calculates the field and plots its real and imaginary part.

- Calculates the Fourier-transform of the field [Eq. (16)] and plots its real and imagi-

nary part.

. Calculates the field distribution at the distance of propagation z. The value of z is

defined by the parameter h.
Plots the lines of countours of the phase of the field (Fig. 2a).

Shows zeros of the field amplitude. (Fig. 2b). Points with intensities .033 and .067
are connected by lines.



570 DMmiITRI KOUZNETSOV AND ROBERTO ORTEGA-MARTINEZ

FIGURE 4. (a) Plot of the restricted correlation of phase by formula (9). (b) Actual phase correlation
generated by the program.

6. RESULTS AND DISCUSSION

We considered some hundreds of pictures of the phase distribution at z ~ 10 km. No
dislocations were detected. Among more than 100 realizations of the field they never
appear at h < 1. In Fig. 2 one such dislocation is marked by the ends of the line of the
cut of the phase arg(E). (For one realization.) Fig. 2a represents the map of zeros of the
field. (Equilines with the intensity 0.033 and 0.067 are marked.)

For some realizations of the initial distribution of the phase of the field dislocations
appear at h = 1, which corresponds to z = 50 km. Observation of the set of realizations
enable us to formulate the estimation: The surface density of dislocations of the wavefront
due to the atmosphere at a distance of propagation in the atmosphere 2z = 10 km is less
than 0.01/m?. So, dislocations should not remove the possibility of correcting wavefronts
by flexible mirrors at least while its size is not greater than 10 m.

To make more accurate estimations it is necessary to consider a model for the 3-
dimensional distribution of the fluctuations of the refractive index.
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