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ABSTRACT.The distortions of the wavefront in the Earth's atmosphere are discussed. The ap-
proxirnation of the distortions of the wave localized in a thin layer is considered. A model to
construct randorn realizations of the field with a given structure function is suggested. In the first
approximation the role of the thickness of the atmosphere is described by a linear diffraction equa-
tion which gives an estimation of the dislocations of the wavefront of the initia1 plane wave. It
is shown that for this case the den si ty is less than 1 dislocation per 100 square meters, at least
for good seeing conditions. This indicates the possibility of correcting wavefronts with a flexible
mirror.

RESUMEN.Se discuten las distorsiones del frente de onda en la atmósfera de la Tierra. Se considera
la aproximación de la distorsión de la onda localizada en un estrato delgado. Se sugiere el modelo
para construir al azar la realización del campo con la función de estructura. La ecuación lineal
de difracción describe la importancia del espesor de la atmósfera. Para las condiciones de buena
calidad de la imagen del objeto, la estimación de la densidad de dislocaciones es menor a 1 en 100
metros cuadrados. Es posible la corrección del frente de onda con un espejo flexible.

PACS: 95.75.Qr; 94.20.Bb; 94.1O.Lf

1. INTRODUCTIOl\;

Atmospheric turbulence is the main factor which Iimits the resolution of optical telescopes
on the Earth [1-7j. The possibility of improving the resolution by partial correction of the
wavefront using adaptive optics has heen demonstrated in Refs. [3-11 j. One fundamental
Iimit of this method may be connected with the points in which the amplitude of the field
is zero and the phase is indefinite. Such points are not so important, beca use the position
of the mirror surface at such points has no inf1uence on the quality of the corrected image.
But, unfortunately, usually the phase in the vicinity of the zero-point is also indefinite. (Jt
changes by 2". on the contour around the zero-point.) In 3-dimensional space such zero-
points define Iines. In analogy with crystallography snch Iines may be called "dislocations"
of the wavefront. In the surface of the adaptive mirror of the telescope these Iines could
define points of the dislocations. An example of a field with such dislocations is presented
in Fig. 1. The dependence of the phase has a 2rr "jump". The position of the jump may
change because only the relative Jlhase is important, and the region for the relative phase
may be defined in any way e.g. -". : 1r or O : 2". . This location tends to minimize the
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FIGURE1. Distribution oí the amplitude and phase oí the smooth field: E(x, y) = (x+iy)e-x'-.'.

physical significance or importance of the discontinuities, a significant consideration for
deformable-mirror adaptive optics, for which there is an unavoidable correction error in
the vicinity of the branch cut [15). In any case, a wavefront with such a jump cannot
be corrected completely by a mirror with a smooth profile, so, the investigation of the
possibility of the realization of such structures on real wavefronts is important. It has
been indicated [10) that dislocations limit the possibility of correcting wavefronts with
flexible mirrors. For a field of Gaussian statistics, the density of dislocations was estimated
in Refs. [9,10], but the surface density of dislocations due to the atmosphere was not
estimated.
The aim of this work is to propose an algorithm to generate quasi-random realizations

of the field with a given structure function, which describes the distortion of the field
phase by the atmosphere and to estimate the surface density of dislocations, i.e., the
mean number of dislocations per unit of the Earth's surface.

2. TIIE MODEL

In the simplest model the initial distortions of the plane wave in the atmosphere are
phase ones. They can be described [4,12,16,17] by the empirical formula for the structure
function:

( 2) (Irl)5/3D(r) = (1)(x) - 1>(x+ r)) x = 6.88 ro ' (1)

where r = (r¡,r2), x = (Xj,X2), 1> is the phase of the field. Formula (1) describes the
fluctuations of the phase at distance r, while ro is the "coherence scale" parameter. For
visible light ro "" 10 cm [12-19). lf aH the turbulence is localized near the Earth's surface,
there is no fluctuation oí the field amplitude. But it has been shown [191 that this layer
gives a relatively smaH contribution to the distortion of the light, at least for places with
good seeing. For estimations we may assume that aH phase distortions are localized in a
thin layer at a distance z aboye the Earth 's surface, and then the propagation of the wave
is described by the free paraxial diffraction equation.
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FIGURE 2. The distribution of the phase (al and of the field and zeros of the amplitude (b) after
propagation at the distanee z = 60 km, (h = 1.2). The field was ealculated by formula (7).

So, we should provide the algorithm to generate realizations of the phase which repro-
duces the structure function (1). Then we should construct a field with a uniform amplitude
and a given phase. Without loss of generality the amplitude of the field may be set to
unity. The primary distorted field can be defined by the formula E(x, O) = exp(i<I>(x)).
Then linear propagation in a homogeneous linear medium should be described by the
diffraction equation

(
d 1 (d

2
d
2

))dz + 2il<0 dXI + dx~ E(x, z) = O, (2)

where 1<0is the wavenumber.
The function ¡(x) = i 10g(E(z, x)) describes the phase of the field. If this function is

regular, there are no disloeations. If there are cuts at which the funetion jumps by 2" it
is not enough to say that the field has dislocations. May be, these "cuts" can be removed
by the transformation

¡(x) - j(x) = ¡(x) + 27Tn(x), (3)

where n(x) is a function of the transverse coordinates which takes only integer values.
But if any "cuts" cannot be removed by the transformation (3), then the wavefront has
dislocations. To avoid the use of a complicated algorithm to count them, we prefer to see
the map ¡(x) to count dislocations with our fingers. An example of a map of lines of equal
phase is shown in Fig. 2a. The regio n where there are many equilines at a distance of one
step of the grid indieates the "cut"; the ends of the "cut" show poin!s of !he dislocation.
The ca1culations are done in Seet. 4.
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FIGURE 3. The estimation oC the distance z oC the propagation which causes a complete amplitude
modulation Crom the initial phase modulation.

3. TIIE FRESNEL ESTIMATION

BeCore numerical calculations it is useful to compare orders of magnitudes and estimate,
what should be expected from numerical simulations. \Ve trying to estimate the distance
of propagation at which a phase modulation of 271' per 1'0 '" 10 cm should cause com-
plete amplitude modulation. At complete amplitude modulation there are sorne points at
which the amplitude oC the field is zero; so, the phase may have sorne peculiarities, ¡.e.,
dislocations.

Consider a column oC thickness 1'0 and length z . If the phase of the field at one side
oC the column differs by 271' Crom the value at the other side of the column, it changes
the direction of the beam by the angle o '" >.fro, Fig. 3. From Fig. 3 we see that a beam
oC the diameler oC lhe column should leave this column al the disl ance of propagation
z '" 1'0/0 '" 1'6/ A. For A '" 10-4 cm this giws the estimation z '" 10 km. Nole that this
is the scale oC the thickness oC the atmosphere oCthe Earth. So, this estimation does not
prohibit dislocations oC the waveCront by the atmosphere, and more careful estimations
are neccssary.

The statistical average oC the number of zeros per unit area oC wa\'eCront is Cound for a
speckle-nonuniCorm field with Gaussian statistics [2,10,111. Other accurate considerations
may he Cound in [20-231, but the surCace density oC dislocations due to the atmosphere is
not estimatcd thcrc.
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4. TIIE CALCULATION ALGORITIIM

Consider the discrete Fourier transform

I J ,.'h 24>k = £2 e--¡;-4>(x)d X, (4)

where k = k¡, k2, k'2 = O,:l:1, :l:2, ... The function 4>(x) is assumed to be periodic; the
period £ should be much greater than the turbulence scale ro. The phase of the lield is
real, so, 4>-k = 4>;'. The calculus of the square of the modulus of the phase comes next

(5)

or

lf y = 11 + X, then the last expression can be written as

2 I JJ '.ók. 2 2l4>kl = £4 e-L-4>(x)4>(x + 11)d X d y,

I J '.ók. ( I J 2 ) 2= £2 e-L- £2 4>(x)4>(x + 11) d X d 11.

Finally the square of the rnodulus of the phase is

2 I J "'h 2l4>kl = £2 e-L-C(r) d 1',

wherc

C(r) = l2 J 4>(.T)4>(X+ 1') d2x,

(6)

(7)

(8)

(9)

( lO)

Following Refs. [1,12) we can relate the phase correlation C with the structure function
D (In the approximation of large period £): from formula (1)

D(r) = l2 J(4)(x) - 4>(x + 1'))2 d2x

= ~2 J 4>(.Tf d2x + ~2 J 4>(.1'+ ,.)2 d2x

- ;2 J 4>(x)4>(x + 1')d2x = 2C(0) - 2C(r).

(11)

(12)

So, the phase correlation C(r) = C(O) - D(r)/2. But the structure f\lnction D increases
inlinitcly at 11'1 ~ 00, while the phase correlation should be linite and preferably positive.
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So, we should restrict the structure function. The necessity of the restriction with some
para meter A may be grounded from some physical speculation: the difference in optical
paths for two points at the Earth's surface never is greater than the thickness of the
atmosphere. (Practically many orders of magnitude less). Let us introduce the para meter
A > 1 and define the restricted structure function

¡ I
r 1

5
/
3

_ 6.88 - ,
D(r) = ro

6.88 A5/3,

for 1;0 1 ~ A;

for 1;01 ~ A.

(13)

This function coincides with the empirical formula (1) at Irl ~ Aro and i,. equal to the
constant 6.88 A at large values of Irl. It gives the finite non-negative correlation

¡ ( I
r 1

5
/
3
)- 3.44 A - ~

6(r) = 6(0) _ D;r) = ro'

O,

for Irl < ~.- ro 1

for Irl > ~.- 'o

(14)

\Ve can generate quasirandom realizations ofthe phase with given correlation C(r); at Irl ~
A5/3ro they reproduce the empirical formula (1) for the structure function asymptotically
at large values of A. Consider the Fourier-transform of C(r). It should be positive; so, it
is necessary to restrict negative values, i.e., set them to zero. Then the amplitude of the
Fourier-components of the phase is defined. Note that phases of these Fourier-components
have no influence on the sharpness ofthe structure function (1), so, they should be random
values between -", ". The field is defined by exp(i<I>(x)). The solulion of the diffraction
equation has the fonn

where

( 2"ikX) (-" >.Zk2)E(x,z)=l(exp --L- exp L2 F(k),

1 J (2rrikX) 2F(k) = £2 exp -L- E(x,O)d x.

(15)

(16)

(17)

For technical reasons the grid was taken lo be 32 x 32 points. For the step of the grid
ÓX = 3.125 cm, the period of the grid L = 1 m. In this case ro '" 3.2 óx. For visible light
>. '" 0.6 x 10-6 m. Define the dimensionless parameter h which corresponds to the length
of the propagation:

(ÓX)2 h = ,,>. z.
ro L2

For values mentioned aboye h '" 50 'km; giving the realistic value h '" 0.2. Thus, we have
a dimensionless approximation for numerical simulations of the dislribution of the field.
The empirical formula (1) is not adequate at z » 10 km, but it gives an upper limit to
the path of the propagation without dislocations.
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TABLEI. The program of calculations, written in matlab.

i=sqrt(-l); pi=3.1415925636; N=32; A=4-(5/3); h=.2; eps=.2; %1;
x=-N/2:N/2-1; r=ones(x')'x+i'x"ones(x); r=abs(r)/3.2; y=-1:2/31:1; %2;
F=3.44*max(O,A-r.-(5/3)); C=fafo(F); mesh(C); C=max(O,real(C)); %3;
f=ifafo(C); pause; clg; subplot(211); mesh(F); mesh(f); pause; clg; %4;
Fk=exp(2'pi*i*rand(N)).•sqrt(C); subplot(111); mesh(Fk); pause; %5;
Fx=2'real(fafo(Fk)); mesh(Fx); pause; clg; %6;
E=exp(i*Fx); subplot(211); mesh(E); mesh(i*E); pause; %7;
C=fafo(E); mesh(C); mesh(i'C); pause; clg; subplot(121); %8;
F=exp«i'h-eps)'r.'r).'C; E=ifafo(F); %9;
contour(i*log(E),5,y,y); title('Phase'); grid; %10;
contour(min(.l,abs(E).-2),3.y,y); title(Jmin(.l,intensity)'); grid; %11;

5. CAI.CULATIONS

The program to realize the algorithm mentioned above is so short (11 lines, written in
matlah), that we reproduce it here (Table I). The meaning of every line of the program is
simple:

1. Defines i, ¡r, A, h. While N = 32, the calculations should be made over the grid of
32 x 32 points. Parameter "eps" is used later only to smooth the visible picture to
make it easier to count dislocations.

2. Defines the radius-vector of each point of the grid.

3. Defines the correlation e by formula (14). (It is plotted by the next line.) The oper-
atar "mesh" plots the distribution of the real part of its Fourier-transform. Unfortu-
natc!y, it also has negative values, so, it is truncated to zero at these points.

4. Shows the distortion of the correlation by this truncation. (Fig. 4) This result is not
used in the following calculations.

5. Defines the random phase of the Fourier-components of the field and plots them.

6. Calculates the field as a function of the transverse coordinate and plots it.

7. Calculates the field aud ]llots its real aJl(I imaginary parto

8. Calculates the Fourier-transform of the field IEq. (16)) and plots its real and imagi-
nary parto

9. Calculates the field distribution at the distance of propagation Z. The value of z is
defined by the parameter h.

10. Plots the liues of countours of the phase of the field (Fig. 2a).

11. Shows zeros of the field amplitude. (Fig. 2b). Points with intensities .033 and .067
are connec!e" by lines.
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FIGURE4. (a) Plot of the restricted correlation of phase by formula (9). (b) Actual phase correlation
generated by the programo

6. RESULTS AND DlSCUSSION

\Ve considered sorne hundreds oí pictures oí the phase distribution at z '" 10 km. No
dislocations were detected. Among more than 100 realizations oí the field they never
appear at h < 1. In Fig. 2 one such dislocation is marked by the ends oí the line oí the
cut of the phase arg(E). (For one realization.) Fig. 2a represents the map of zeros of the
field. (Equilines with the intensity 0.033 and 0.067 are marked.)
For sorne realizations of the initial distribution of the phase of the field dislocations

appear at h '" 1, which corresponds to z '" 50 km. Observation of the set of realizations
enable us lo formulate the estimation: The surface density of dislocations of the wavefront
due to the atmosphere at a distance of propagation in the atmosphere z '" 10 km is less
than 0.01/m2. So, dislocations should not remove the possibility of correcting wavefronts
by flexible mirrors at least while its size is not greater than 10 m.
To make more accurate estimations it is necessary to consider a model for the 3-

dimensional distribution of the f1uctuations oí the refractive indexo
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