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ABSTRACT. The forces between two bodies with fixed electrical charge distributions and the forces
between two conducting bodies with the same shape and geometrical arrangement are compared,
emphasizing the qualitative difference in the respective electrostatic situations. The choice of
parallel circular cylinders lends itself to a quantitative illustration of the differences, which persist
even in the limit of vanishing radii.

RESUMEN. Se comparan las fuerzas entre dos cuerpos con distribuciones de carga eléctrica fijas y
las fuerzas entre dos cuerpos conductores con las misma.<;forma.':iy arreglo geométrico, destacando
la diferencia cualitativa en las situaciones electrostáticas respectivas. La selección de cilindros
circulares paralelos se presta para una ilustración cuantitativa de las diferencias, las cuales persisten
aun en el límite cuando los radios de los cilindros tienden a cero.

PAes: 41.10.Dq

1. INTROOUCTION

Coulomb's law describes the forces of interaction between two point charges [1-3]. In
practice, it is the interaction of finite size bodies that can be studied experimentally. Then
the question arises, "Under what conditions can the forces between two finite size bodies be
described by Coulomb's law?". Newton studied the gravitational counterpart, establishing
that the forces between two spherical symmetric distributions of mass obey his universal
law [41. Correspondingly, the answer for the electrical question is that the bodies must
have spherically symmetric distributions of charge. However, in the electrical practice the
use of conducting bodies is the common rule, which leads to the question: "Under what
conditions can the forces between two conclucting spheres be approximated by Coulomb's
1m",?". It must be recognizcd that in elcctrostatics there is a qualitative differencc bet\veen
the two situations of given charge r!istributions versus given equipotential surfaces, leading
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to di!f~r~nt forces for each case and leaving the last question still open. The force between
two cond ucting spheres forming a bispherical capacitor can be evaluated on the basis of
a r~cent work [5]' but this requires sorne elaborate mathematics. The same physics can
be quantitath'ely illustrated considering a cylindrical geometry. In fact, it is shown in
this pap~r that the force between two conducting electrodes in a bicylindrical capacitor
is definitely di!ferent from the force between the uniformly charged cylinders, even in the
limit of vanishing radii. The di!ference for any geometry is due to the mutual and seU
induction e!fects in the conductors.
In this pap~r we present a comparative study of the interaction between two uniformly

charged cylinders and the interaction between two conducting cylinders in the same ge-
ometrical arrangemeut, which may be appropriate for the junior-senior leve!. Section 2
contaius the evaluation of the electric intensity field and the mutual forces of the two
uuiformly charged cylinders, using polar coordinates. In Sect. 3, the electrostatic field,
charge distributions and forces associated with the electrodes of a bicylindrical capacitor
are studied, using bipolar coordinates. Sect. 4 consists of a comparison of the forces
and sources involved in both situations, recognizing their qualitative and quantitative
differenees. In Sect. 5 we discuss the sp~cific characteristics of the cylindrical geometry
and the general results for auy geornetry.

2. FORCES BET\VEEl'i T\VO Ur-;IFOIt~ILY CIlARGED CII\CULAR CYLIr-;DERS

The eleetrostatic field of a uuiformly charged straight line with linear charge density ,\
is studied and evaluated in the iutroductory courses on electrornagnetism using Gauss'
law [1-3), the electric intensity field being radial and inversely proportional to the distance
from the lineo

E(ji) = V,p.
p (1)

This field is also valid for the region outside any cylinder coaxial with the original straight
line with the same charge distributed uuiformly on its surface; the field inside the cylinder
is nul!.
Let us consider two such cylinders with axes in the positions PI, pz, radii RI, Rz and

Iin~ar charge densities ,\], ,\z, respectively. By using the superposition principIe the total
electric intensity át any point defined by the position vector P, is written

The force exerted by cylinder 1 on cylinder 2 is evaluated through integration of the
product of the "lectrie intensity and the eharge over the surface of the latter:

FI_z = i E(¡J)a(p) da. (3)



(4)
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where E(iJ) is the total field in Eq. (2), but the integrated contribution of the second
term, ¡.e. the self-force, vanishes; a(iJ) = a(¡h + R2) = 2:k, is the surface charge density;
and da = R2 d'P2 dz 's the elementary area element on the surface of the cylinder. For
purposes of the integration and without any 10ss of generality, the axis of cylinder 1 can
be taken at p, = O, then

f _ 2"1"2 rh rh
(P2 + R2)R2 d'P2 dz

1-2 - 22rR2 Jo Jo P~ + R~ + 2P2R2 cos 'P2 .

By taking cartesian coordinates with the x-axis along the line joining the axes of cylinder
1 and 2, the vector in the integrand of Eq. (4) has the components

P2 + R2 = i(P2 + R2 cos 'P2) + ]R2 sin 'P2. (5)

Upon integration the ]-component of the force in Eq. (4) vanishes, since the contribu-
tions from O < 'P2 < 1r cancel their counterparts from 1r < 'P < 21r. The integration of
the i-component follows after rewriting the corresponding integrand and evaluating each
integral:

(, (P2 + R2 cos 'P2) d'P2
Jo P~ + R~ + 2P2R2 cos 'P2

1 12
' [ p

2
_ R

2
]_ _ 1 + 2 2 d'P

2P2 o P~ + R~ + 2P2R2 cos 'P2 2

22r [ p2
_ R

2
]=_ 1+ 2 2

2P2 J(p~ + R~)2 - 4p~R~ .
(6)

(7)

> Rz, i.e.,
In the first

At this point, it is important to distinguish between the two situations P2
axis 1 is external to cylinder 2, and P2 < R2, i.e., axis 1 is inside cylinder 2.
situation the fraction in Eq. (6) is +1 and the force of Eq. (4) becomes

F- _ 2", "2hi
1-2 -

P2

In the second situation the fraction in Eq. (6) is -1 and the force vanishes.
Comparison of Eqs. (1) and (7) indicates that the force between the uniformly charged

cylinders, when they are exterual to each other, is the same a, the force between two
charged lines at their respective axes. On the other hand when one cylinder is inside the
other one, the force vanishes, since the field of the external cylinder is null in its interior
as pointed out in the paragraph after Eq. (1).

3. BICYLINDHICAL CAPACITOH AND FOHCES BETWEEN ITS ELECTHODES

The geomctrical configuratioll oCthe two circular cylindcrs is naturally describcd in bipolar
coordinates [61

a sinh T)
x = .

cosh '/ - cos ~ .
a sin ~

y= -----,
cosh - cos~

:;= =. (8)
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where the surfaces with fixed values of O .,; ( < " correspond to circular arc cylinclers
with radius alcsc (1 and axis at (x = O, Y = a cot (, z) meeting at (x = :J:a, y = O, z), with
( = 0,2" corresponding to the outer portions of the xz plane with y = 0+ and y = 0_,
respectively, ( = ;, 3; are half circle cylinders of radius a, and ( = " is the inner portion
of the yz plane; and the surfaces with fixed values of -00 < '1 < 00 correspond to nested
circular cylinders with radius alcschryJ and axis at (x = acothry,y = O,z), with ry = O
corresponding to the yz plane, and r¡ = :J:oo to the lines (x = :J:a, y = O, z).
The unit vectors and scale factors associated with these coordinates follow from

(9a)

(=
-i sinh '1sin ( + j(cosh '1cos ( - 1)

cosh '1 - cos (
. -i( cosh r¡cos ( - 1) - j sinh r¡sin (
'1 = cosh '1 - cos (

(9b)

a
II{ = 11" = -----

cosh '1 - cos (
(9c)

The uuit vectors ¿, ,j, k forlll a right handed orthonormal set reflecting the orthonormality
of the coordinates themselves.
The bipolar coordinates also give a natural description of the electrostatic field of

capacitors with circular cylindrical electrodes. In fact, the Laplace equation

[
1 (D

2
D
2
) D

2
]h{h" De + D'I2 + Dz2 <1>((. r¡, z) = O

is separahle in such coordinates, allowing the fulfillment of the boundary conditions

(10)

<1>((, '1 = ry2, z) = V2 (11 )

in an illllllediate way. For infinite cylinders the z-dependence in Eqs. (10).(11) disappears,
and the most general salution af the Laplace equation in the bipolar coordinates is

00

<1>((,'1) = ¿)A",sinm( + B",cosmO(C",sinhm'l+ Dmcoshmr¡). (12)
m=O

The boundary conditions af Eqs. (11) select the m = O term in the summation and
determine the respective cocfficients Icading to the electrostatic potential functian linear
in the coordinate '1:

<1>((, r¡) = V2(r¡ - r¡d + \'1(r¡2 - r¡).
r¡2 - '11

The electric intensity field is the negative gradient of this potential:

- ((D 'jD) 'jV2-V¡E((,'I) = - -- + -- <1>((,'1) = ----o
h{ D( 11" Dr¡ h" '12 - '11

( 13)

(14 )
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Notice that according to Eq. (13) the equipotential surfaces are the nested circular cylin-
ders for each value of '7 between the electrodes, and the electric field lines according to
Eq. (14) are normal to these cylinders.
The charge distributions on the electrodes are obtained by application of Gauss' law

in terms of the surface charge densities:

i¡.E 1 V2-Vl
0"((,'7 ='71) = -4- = --4 ---(COSh'71-COSO,

71" 7I"a'72- '71
(15a)

(15b)
i¡.E 1 V2-V10"(~,'7 = '72)= --4- = -4----(COSh'72 - cosO,
71" 7I"a'72- '71

The total charge on each electrode is evaluated by integrating the surface charge density
over the surface of the cylinder:

¡h¡h h VI - V2Ql = O"h~d~ dz = ---- = -Q2.
o o 2a '72- '71

(16)

As expected, both charges have the same magnitude and opposite signs, and correspond
to linear charge densities

.\1 = Ql = -.\2 = VI - V2.
h '72- '71

(17)

The force exerted by cylinder 1 on cylinder 2 is evaluated through Eq. (3) using the
appropriate electric intensity Eq. (14) and surface charge density Eq. (15b):

~ 1 (V2 _ VI ) 2¡h ¡h 1 I
Fl~2 = - 471" _ h2 i¡h~ d~ dz

'72 '71 o o ~ ~='1>

= _~ (V2 - VI) 2 t~[-i(cosh '72cos{ _ 1) _ jsinh '72sin~] ~
471"a '72- '71 Jo

=_ ih (V2-Vl)227r=2.\1.\2hi.
471"a '72- '71 a

(18)

In the second line the explicit form of the unit vector i¡ [Eq. (9b)] is used, and in the
final form the force is expressed in terms of the linear charge densities of each cylinder.
Notice that this force is attractive and the same for any two cylinders '71and '72with same
charges, for a given value of the distance a. This distance can be expressed in terms of
the radius oC each cylindcr, R¡ = a csch 1]1 and R2 = a csch TJ2, and the distance between
their axes, d = a coth '72- a coth '71,as

a=
J(d + R1 + R2)(d + Rl - R2)(d - Rl - R2)(d - R¡ + R2)

2d
(19)
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4. COMPARlSON OF FOnCES ANO SOURCES

The comparison of the forces of the electrostatic situations studied in Sects. 2 and 3,
respectively, can be made right away through Eq. (7) with P2 = d, and Eq. (18) with
the value of a given by Eq. (19). Their obviously common characteristics are their radial
direction, their direct proportionality with the charge per unit length .\1 of cylinder 1
and the charge .\2h of the chosen portion of cylinder 2. Their space dependences are
definitely different, even though they have the same geometrical arrangement. Indeed,
the force between the uniformly charged cylinders external to each other depends only on
the distance between their axes and not at aH on their radii, Eq. (7); if one cylinder is
inside the other, the force vanishes. The force between the clectrodes of the bicylindrical
capacitor, on the other hand, has a fixed value for any two cylinders with the same value
of a, Eq. (18); it changes with the radii of the cylinders and distance between their axes
according to Eq. (19). It must be emphasized that the difference persists even in the limit
of cylinders with vanishing radii, RI ••••••O, R2 ••••••O, for which Eq. (19) gives a = d/2,
and the force between the two conductors is double the force between the two uniformly
charged cylinders. The conclusion is that there are not common geometrical situations for
which the force between the conducting cylinders, Eq. (18), may approximate the force
between the uniformly charged cylinders, Eq. (7).
It is instructive to compare also the charge distributions in the cylinders for the respec-

tive situations of Sects. 2 and 3, since they determine the nature of the corresponding
forces. In the first situation, each cylinder has the lowest circular harmonic, i.e., uniform,
source distribution [71; correspondingly, the force reduces to the bidimensional "monoline-
monoline"contribution, Eq. (7). The electrostatic potential function, Eq. (1), electric in-
tensity ficld, Eq. (14), and surface charge distributions, Eqs. (15), correspond also to the
lowest harmonic, but in bipolar coordinates. The source distributions of Eqs. (15) can be
rewritten in terms of their respective circular harmonics with the help of Eqs. (8); for the
points on cylinder 2,

a sinh '/2
X2 = ------ = a coth '12+ a csch '12+ a csch '12cos 'P2,

cosh '/2 - cos ~

and Eq. (15b) becomes

( ) 1 V2 - VI sinh2 '/2a r.p2,1} = 1]2 = -- ---- -------
4rra '12 - '11 cosh '12+ cos 'P2

_ 1 V2 - VI sinh
2
'12f) )'(cos 'P2 )'

4rra '12 - '11 cosh '12 ,=0 cosh '12

1 V2 - VI sinh2 '12
=

4rra '12 - '11 cosh '12

(20)

00 [ 00 ( )(-)'" In + 2k

x ~ (2 cosh 112)'" ~ k (2 ~ )2k] f,"cosm'P2' (21)cos 1/2
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In going from the first to the second line the inverse of the binomial is expanded through
its geometric series, and the final form is obtained by expressing the powers of the cosine
function as the superposition of cosines of the integer multiples of the azimuthal angle
'P2, where £0 = 1 and £m = 2 for m ~ 1.
Equation (21) shows that the lowest bipolar harmonic corresponds to an infinite su-

perposition of circular harmonics; there is also the counterpart for cylinder 1. The lowest
circular harmonic in each cylinder is associated with the uniformly distributed charge, and
the higher harmonics arise from the mutual and self electrostatic induction in both cylin-
ders. Correspondingly, the force in Eq. (18) contains not only the "monoline-monoline"
contribution, but also the contributions from the higher harmonic interactions, which due
to their inductive nature make an attractive contribution to the force.

5. DISCUSSION

\Ve have presented a comparative study of the forces between two uniformly charged
cylinders and between two conducting cylinders in the same geometrical arrangement.
The emphasis has been on the differences arising from the different electrostatic situations
involved; fixed charge distributiúns in one and fixed electrostatic potentials in the other.
The cylindrical geometry allows simple and direct quantitative treatments of both cases,
as well as the comparison of the forces and sources.
Other geometries may not allow a quantitative treatment so simple as the one in this

work, but the physical elements are the same. The case of two uniformly charged spheres is
mathematically the same problem studied by Newton for the gravitational interaction of
two spheres with uniform mass distributions [4]; the case of two equipotential spheres was
studied by Maxwell using the method of images and using spherical harmonics centered in
each sphere [81, and also by other authors using bispherical coordinates [5,9]. In general,
the forces in both situations of bodies with fixed charge distributions and conducting
bodies with the same geometrical arrangement, are different since their electrostatic fields
and sources have different harmonic compositions.
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