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ABSTRACT. In this work we discuss the Debye-Hiickel (DH) for a classical electrolyte and the
Primitive Model (PM) for ionic solutions. Using the formalism of distribution function theory
we derive the Mean Spherical Approximation (MSA). The factor correlation functions and the
thermodynamic properties are calculated explicitly.

RESUMEN. En este trabajo discutimos la teorfa cldsica de electrélitos de Debye-Hiickel y estudia-
mos el Modelo Primitivo (PM) para soluciones iénicas con el formalismo de la teorfa de funciones
de distribucion en la Aproximacién Esférica Media (MSA). Se calculan explicitamente las funciones
factor de las funciones de correlacién y las propiedades termodinamicas.

PACS: 61.20.Gy

1. INTRODUCTION

In a previous paper (1] (hereafter called 1), we disscused the distribution function and
the factor correlation function theories. We now study charged systems, such as models
for an electrolytic solution. Tonic liquids have certain properties that are absent in fluids
composed of neutral particles (see Ref. [1]), and many of their distinguishing characteristics
are associated in some way with the slow, r~!, decay of the Coulomb potential. In the
electrolyte model the ions are represented by charged hard spheres and the solvent (water
in most cases) by a continuum or by neutral hard spheres with a charge distribution. We
will discuss models that admit analytic solutions:

1. The primitive model, in which the ions are charged spheres, and the solvent is a

dielectric continuuimn;
2. the elementary model, in which the solvent is a point dipole in a hard sphere;

10
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3. the basic model, in which we add a potential of tetraehedral octupolar symmetry
to mimic the hydrogen bonds.

While model (1) is pretty well understood, model (2) is being developed and model (3)
is just barely being started.

We will center our discusssion around the MSA (mean spherical approximation) of
Lebowitz and Percus (2], wich is an analytically solvable theory. In principle, solutions for
all three models of ionic solutions are obtained in the MSA, because the MSA is solvable
for non central forces also.

Ionic solutions are liquids consisting of a solvent formed from neutral, polar molecules,
and a solute that dissociates into positive and negative ions. They vary widely in complex-
ity: in the classic electrolyte solutions, the cations and anions are of comparable size and
absolute charge, whereas macromolecular ionic solutions contain both macroions (charged
polymer chains or coils, micelles, charged colloidal particles, etc.) and microscopic coun-
terions [3]. We will discuss only the classic ionic solutions.

2. THE PRIMITIVE MODEL AND DEBYE-HUCKEL(DH) THEORY

Consider a neutral mixture of charged hard spheres of diameter o;, charge z;e (where e
is the charge of the electron), number density p; = -LVVl (where N; is the number of ions
of species 7 enclosed in a volume V). The number of species is s. The equivalence of this
system of units, to the normal or molar concentration c is given by [4]

pi = cy 15602252 x 1074 A%, (1)

where p; is expressed in number of particles per cubic Angstrom and v; is the stoichiometric
coefficient. The temperature of the system is 25 °C or T = 298.13 K, and the relative dielec-
tric constant of water is 78.4. We will use Boltzmann’s constant kp = 1.38 x 10716 grg/K,
and also 8 = ﬁf. The electrolyte solution is represented by a random, neutral array of
charges. We would like to know the thermodynamic properties of our system, quantities
such as the internal energy F, the free energy A, the pressure P, and so on.

We start by computing the energy per particle (E/N). Neglecting boundary effects, the
charge distribution around a given ion i is

a(r) =e_ zp(r), (2)
j=1

where pgi)(r) 1s the conditional density of ions j in the neighborhood of i. In statistical

mechanics this function is usually expresed in terms of the pair correlation function

()¢, (4)
gij(r) = 2 = p‘—_(r),

= () =
e 7 pi
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which is a symmetric function in the exchange of particles i and j (see paper I). From a
simple analogy to the atmospheric pressure equation, the density p(r) of the atmosphere
is given by

p(r) = poe=P™mI", (4)

where the term mgr represents the potential energy of a particle of mass m at a height r,
g is the acceleration of gravity. More generally p(r) becomes pj(r), particle i is the earth.
We can define a potential of the mean force w;;(r) such that

9i(r) = g~ Pualr), (5)

Our central problem will be to determine this potential of mean force [1]. There are a
number of requirements on it, however.
We write

wi;(r) = ezjpi(r) + Gij(r), (6)

where the first term is purely electrostatic and (;;(r) contains all the remaining contribu-
tions, such as excluded volume. In other words

gij(r) = ePesieil?)
~ 1 - Bezpilr). (7)

If we assume (;;(r) = 0, then the electrostatic potential must satisfy the Poisson equation
in the form (the Poisson equation is valid also when (;; # 0)

4r

Vipil(r) = ——alr), (8)
€0
and using (2) and (5)
Vii(r) = = e 3 pzge PO, )
0 i=1

which is the Poisson-Boltzmann or Milner equation [5]. Even for the simplest possible
case, the equal size and equal charge electrolyte (¢4 = 0 = o, z4 = —z_), this equation
cannot be solved in closed form. But there are asymptotic regimes in which we can solve
it. If o is very small the conditional probability density must be of the form

lim p(o) = e P90, (10)

where ©9(r) = % is the bare Coulomb interaction, or, in other words, when two charges
come very close, their own interaction will dominate over the interactions of the other
surrounding charges.
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Another limiting case is when the central ion is very large. Then ¢;(r) must be small,
and we know that, for limr — co,

gij(r) = 1,
w;j — 0,

@ij(r) — 0, (11)

and, following Debye and Hiickel (DH), we can expand the exponential in Eq. (9), to
obtain [6]

Vzgo,-(r) = nzzp,-(r), (12)

where

o2 4'.rrﬁe

ij J (13)

defines the Debye screening length. There are several ways of solving the Eq. (12). Con-
sider, for simplicity, only the restricted case in which all ions are of equal size. Then the
distance of closest approach is 0. We have to transform the gradient to spherical coordi-
nates [7] but since ¢ does not depend on the angles, we simply get

1 9%
;wrg@i('r) = n2<p,-('r). (14)

The general solution of this equation is
roi(r) = Aie™™9) 4 Bier(r=9), (15)
The only way to satisfy boundary condition (11) is to require that B; = 0. The value

of A; is obtained form Gauss’s theorem, or more simply, from boundary condition (10),
since for r — 0

2;€ 1
rer) = 22 (). (16)
The full solution for the potential is
zie e~"(r=0)
L ) e e ep—1 1
#ilr) e 7(1+ ko) (17)
and according to (8) and (16) the charge density is
€ ziel 32
; - ——V2 : W =r—0)
ai(r) ar 7 rl= dnrOr2C
il
_ e o) Fid
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This charge distribution satisfies the electroneutrality condition

— zie = fdr gir), (19)

which can be verified by integration: substitution of 18) into (19) leads to
oo
Z Zj47r/ drr? hij(r) pj = =z (20)
, 0
i

This is a completely general and rigorous sum rule that must be obeyed by the dis-
tribution functions of any good theory of electrolytic solutions. It means that an ionic
cloud surrounding a given ion just has enough charge to neutralize that ion. The charge
distribution, in our theory, is exponentially decaying with a mean distance of decay equal
to 1/k.

The excess energy of charging up the system is, from (18) and Coulomb’s formula (10 ff),

€0

4me? 1
AE*® =1 [ l ZP:‘ Pj i Zj/dT"f‘zgij(T);
i

z_zﬂs(ezi)z 1 . (21)

This is the energy of a system of spherical capacitors of radius (o + %). The internal energy
has a lower bound [8]. Imagine that we increase & [Eq. (13)], either by charging up the ions
(zi — 00) or by letting the temperature drop (3 — oo) and letting the density (p; — oc).
Physically, this is equivalent to immersing all our ions in liquid metal. Then the screening
length 1 is zero: the system is a perfect screening system, and the energy

K

; A2
Apch — _ - pilez)” (22)
2600’

is a rigorous lower bound for the energy of any system of hard charged ions.
From

AA = AE—-TAS, (23)
OAA
= 24
AS, (24)
OAA/T
- 25
a(1/T) s (25)

we get

1 ’6 / 7
Ad = ﬁ/o A3 AE(S) (26)
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From Eq. (22) in the infinite dilution limit we get the Debye-Hiikel excess charging
energy

3
K
E=—-——.
A 87
Substituting this into (26) leads to
K3 K3 53 K,3
AA= - =— + =AE+ —. ar
1273 8B  24np3 2473 (27)
And from (24)
3
AR = T
The excess osmotic coefficient, defined by
‘ AP
s=1+22, (28)

with p = salt concentration = p; for the restricted case, can be obtained from the free
energy, using the relation

0AA
( % )T = —-AP. (29)
After some algebra we get
o

- .

v 24m Zi Pi (30)
The excess Gibbs free energy is
AG AA

AP (31)

SN YN oup

and using (29) and (30) we get for the mean electrostatic activity coeflicient ~4 the
following relation:

AG  BAE &3

= = — - 32
2P 2P 8T Y, pi (32)

Inyy =
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3. THE MSA FOR THE EQUAL SIZE PRIMITIVE MODEL

In the previous section we discussed the simplest possible theory, in which the potential
of mean force w;;(r), [see Eq. (6)], was set equal to the electrostatic potential. This means
that we ignore all the other contributions to the ionic interactions, notably those of the
hard-core, which accounts for two very important effects:

a) They prevent the collapse of the system: classical electroneutral Coulomb (ionic)
systems are unstable, because the (4) and the (—), form pairs of unbounded negative
energy. This is a rigorous result in statistical mechanics [1].

b) The excluded volume effect: only one ion can be placed in a given position in space.
In the DH theory, the ions of the screening cloud are points, and do not exclude each
other. Clearly, the size of the screening cloud of finite size ions must be larger than the
DH cloud.

What we want to do now is to include the hard core effects into the calculation of the
structure of the ionic cloud. Or, what is equivalent, to charge up a system of hard spheres.
This is the basic idea of the mean spherical approximation. A convenient treatment of
mixtures of neutral hard spheres is provided by the Percus-Yevick (PY) theory [2].

Consider now the following approximation: take the OZ equation (1]

hii(r) — eii(r Zpk / dryhig(r1)ex; (r = r1)), (33)

and use:
i) The hard core condition for separations r < o

hij () = —1. (34)
ii) The “Debye-Hiickel” (really, MSA) boundary condition for r > o

e? zizy

cij(r) = =Buiz(r) = —5— (35)

In the Debye-Hiickel limit of zero ionic size the Eq. (33) can be written
Y ﬁe z,z‘T / ﬁe pet  xuzj 36
h"](r) - - Epl drlhtk(Tl) |I‘ _ rll ( )

using Eq. (7) for h;(r) we get the integral form of the Poisson Boltzmann equation (9)
(see also appendix A)

 Brjepi(r) = ~24E S [ BBt g e, (37)

€oT
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The mathematical solution follows the steps outlined for the case of neutral hard spheres.
There is, however, one problem in using the Wiener-Hopf factorization described for the
hard sphere case in paper I: if we take the Fourier transform of Eq. (35), we get

ik-r
f = (38)

which has a double pole at the origin, that is, on the real axis. This violates one of the
conditions for the factorization [1]. We may, however get around this difficulty by shifting
the poles away from the origin. This is done using

2 —pr|
e e
ci(r) = —-08—z;z; lim ——.

(39)

We can check, that, just as in Egs. (A.30) and (A.31), (see appendix), the Fourier
transform of (39) is

2
i2j 1
&i(k) = B2 4

€0 k2 + [,L2 (40)

k]
u—0

which has two poles located at k& = +ig. The Fourier transform of the Orstein-Zernike
equation

47 Re? 224
Pk
k% + p?

= b;j (41)

};1—% > [bik + pihir (k)] [5kj — Pk +
x

This is a matrix equation and, therefore, complicated. If we restrict our analysis to the
symmetric 1-1 electrolyte of equal size ions then, we have the symmetries

hi1 = haa, hi2 = ha1, p1 = p2=p. (42)

In that case the OZ equation can be written as

h11 hlz) (Cu 012) _ (hn hi2 c1l 12
(hzl has e cm) P (hm hzz) : (6‘21 022) ' (43)
where (%) denotes the convolution integral:
«— [ dryh(ria)clra). (44)

Because of the symmetries (42) the OZ equation can be diagonalized by a similarity
transformation using

L e ) M



626 L. BLUM ET AL.

It is easy to verify that, for example,

hiy hio ) 3 (hn + hi12 0 )
S 5 = . 46
(hz'l has B oy = Faug 48]

Therefore, the OZ equation (43) becomes a system of two uncoupled, OZ equations. If we
define

R (r) = glhu(r) + haa(r)], (47)
h(r) = 3[h11(r) = haa(r)], (48)

then we get one “normal” equation
ho(r) = (r) = 2p [ dric®(r = ri)he(r0), (49)

which has the normal boundary conditions for hard spheres and another “special” equation
for the charge interactions:

h(r) = ofr) = p/drlc(lr — ri)h(r1), (50)

in which the boundary conditions now have changed. In fact, it is easy to verify that

h(r) = 0, r < o, (51)

3
C(T) = _h‘_v F 2 a, (52)

pr

where
, 8mfBe? 47 Be?
B = Tj = — S pizl (53)
B i

is the Debye screening parameter. Instead of (41) we now have

PLZ

i1+ ph(k)] [1 ~peh) + (54)

We follow now, step by step, the procedure used in solving the hard sphere case [1]. We
write
R2

N o
k2 + p?

p— ik} (48)

1 - pc(k)

= [+ b + 25| - [1- o=k +
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The inverse Fourier transform of this expression yields

2T o
=500+ 55 = @) + 4+ [ dr Q) @y - 1)

o a+r
—p/ dry Q(rl)A—p/ dry AQ(ry — r)

o
+pA?S (56)
2p

If we take the limit y — 0, then (56) requires that
82 = g2 A2 (57)

and, furthermore, S(r) = 27 [7 ds s ¢(s) is zero at r = o, from where we deduce that, due
to continuity,

Qo) = 0. (58)
Consider now the equation for the pair distribution function (see paper I)
pA 1

u+ik] 1 pQ(—k) + 2A

[1 + ph(k) [1 — Q) + (59)

The Fourier inversion is exactly that of the hard sphere case. We get
)= Q)= A+p [ dr I~ ) Q) - 5 [anae-ra, (e

since now ¢(r) has become Q(r) — A, where A is a constant over the range of r| from 0
to oc. The last term is apparently divergent. Let us write it in the form

/m dri J(r —r)) = —/Or dry J(r —ry) + /Omdrl J(r —ry), (61)

but remember that
o0
Jir) = 2%/ ds s h(s); (62)

so that the last term becomes

o0 oo o0 (s <]
p/ qri-Jry) = p/ driJ(r —r)) = ‘27r,o/ dn/ ds s h(s)
T 0 0 T

Il

27rp/ dssh(s)[ dry = 27rp/m ds s* h(s) = ——1~, (63)
0 0 0 2
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where the last identity is a consequence of the electroneutrality sum rule for the correlation
function h(r), (20). Putting it all together yields

A o T
I =QW) =5 +p [ dnIr-r)Qu) - pd [ dnJr-r).  (64)
Using the condition (51), we find the surprisingly simple result
Jir) = 27r/ dssh(s) =by, for r <o, (65)

(we should later see that by is in itself an interesting quantity, namely the excess internal
energy E).
Now (64) is

bo = Qr) — % + pbo [ Q) - pator, (66)
so that
L (67)

and because of the requirement (58)

Q(r) = pAby(r — o), (68)
so that, taking (66) at r = 0,

A Abgo?

b &= —p o= T et . (69)
2 2
2b0pa

_ e 70
pAc {0+ pboo)? KO (70)

To make connection with the Debye- Hiickel theory, we define

1

; (71)
o+ T

pbo = —

3

so that we get, from (71),
ko = 2To(1 + o) (72)
or

(1+2C0)? = (1 + 2k0),
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and the physical root for I' is (a comparison between I' and & is given in Ref. [9])
2o = V1+ 2k0 — 1. (73)

Let us compute the direct correlation function too. Removing the ﬁ singularity, and
taking derivatives of (56), we get

’ 7 ! pA?

2rre(r) = —-Q'(r) + Pf dr1Q'(r1)Q(r — 1) + pAQ(r) — =

"

o AZ
= —pAby + pzAbgpAbgf dri(ri—r—o) — pT + (pA)zbo(r —0)

232 .2 2
=¥ [pb"m + P T] - v bor (1 + ﬁ) ; (74)
a

202 o? 2

this later expression leads to

2 1
27rc(a)=—§~ 7 (1 4 :
Po o+ & 2(c+¢)

We can compute the excess pair correlation function by taking the derivative of (64)

— 2 rh(r) = Q(r) — 2mp [0 "drQUn) (r —m)h(r — 1) — pAJ(0),  (75)

but now A(r — ry) is zero for r — r; < o, since Q'(r) and Q(r) are zero for r > o

2rrh(r) = pAby + 2n'pf0r‘a dri Q(r1) (r — ) h(r = 1}). (76)

This equation can be solved by Laplace transformation (which, in the complex plane,
1s equal to the half-plane Fourier transform (FT)):

h(s) = /dre*" rh(r). (77)
We get

225 e %
i) = — 7
(s) p 82+ 2sT + 2I'%1 — exp(—s0))|’ yiR)

which should be contrasted to the DH expression pﬁ; for the FT of the correspond-
ing function. For small concentrations we get, for the more general case, the symmetric
expression

Be? 22 i
hi' e J 2l (r—oy;)
L +To)(1+Taj)° 1 L)

which is exponentially decaying, but with a different screening length [9,10]. In general,
however, the function h(r) will be oscillating, modulated by the hard core diameter o.
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4. THERMODYNAMIC PROPERTIES

The excess energy can be computed with the help of the pair distribution function [1,10,11]
from Eq. (21):

2 z,-zjez
AB =2 [t S iy gir) 22 (80)
1.9 0
Using (45)—(46) and (34) manipulations becomes
4 2 oo 2,2
Bifficn pr der by = 22 (81)
€0 0 €0
and, using the definition of by in (3.33)
2¢? p 1
AE="p*y=-L—F, (82)
€0 € 5+ 37

where we have also used the relation for by. The new screening length 2I" is clearly that
of the MSA. The same picture emerges as in the DH theory: The energy of charging up
the system is that of a collection of spherical capacitor of radius § + % This, in spite of
the complicated form of the pair correlation functions. The same simple result is true for
the general mixture of arbitrary size ions.

Using formula (26) we can compute the free energy excess of the ionic system:

/ dBy AE(Br) f ar 28 - 5 AE(). (83)

Now we know that, from Eq. (72),

2
L T
€0
or
2
me298 _ 11+ To)(1+ 200). (84)
e OI' :

Substituting (82) and (84) into (83) yields

r
AA = 5 dU'T? (14 2IV0) = —

L oreps 4o 5
5 Jo [T + oI (85)

Lge}
or
3

r
_ 86
AA=AFE+ 375" (86)
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which should be compared to (27). Indeed they are the same if we substitute 2I" for &
using (28), (29) and

or 7 e’ 1 (87)
9p  2¢ I(1+To)(1+2l0)
we get the very simple result
1'\3
¢p—1=——, (88)
3mp

Finally, the Gibbs free energy per molecule, i.e., the chemical potential p = ?ﬁc’ can be
calculated:

Invy = 38A+¢—1=3}BAE (89)

This completes the derivation of these properties of ionic solutions in the MSA. Compari-
son of the thermodynamic properties to computer simulations shows that for low valence
and high concentrations, the MSA is comparable to the HNC (hypernetted chain equation)
for the activity and osmotic coefficients. For low concentrations and high valence it is not
very good [11]. There are a large number of papers in which different ways of correcting
this are proposed. A recent approximation, which gives very good results (comparable to
the HNC) for 2-2 salts over a range of concentrations varying from 0.00625 M to 2M [11],
consists in writing

g(r) = Aexp(h™A(r))S(x) + g™ (r)(1 - S(2)), (90)

where S(z) is a switching function (generally linear) which also ensures that the elec-
troneutrality condition (20) is satisfied. The nice feature of the MSA is that the simplicity
of the results for the equal size case persists for arbitrary mixtures. So, we get to a good
approximation:

47 Be? % 2
41 = ; - 1
€0 ;p {1+Foi} ’ L

which is now a higher degree algebraic equation. Often, one can use the equal size equa-
tion (32) with the mean diameter

5 = Zibiiil (92)
Ei Piz;
as our initial guess for the solution. The excess internal energy is [11]
2 2
. P B (93)

by = I+al’
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which again is the sum of the charging energies of a collection of spherical capacitors. The
Helmholtz free energy yields, as before,

1'\3
AA=AF+ —
+ 375’ (94)
and, just as before,
F3
s T 5 e
¢ 3T 3 pi R)
and
AFE T .
e = B B € P2k (96)

2 i __eoZip,- . 1+To;

The general solution of the MSA is very useful in many cases to represent the properties
of a large variety of eletrolytes and its mixtures, form concentrations ranging from very
dilute to almost molten salts [11].

The remarkable fact is that these simple expressions remain true for the case of associ-
ating ions [12].

APPENDIX A: INTEGRAL AND FOURIER REPRESENTATION

The solution procedure of the linearized Poisson-Boltzmann equation used above is not
suited to include hard core effects of the ions. The most we can do is to give a size to
the central ion, but that makes the pair distribution function asymmetric. To include the
hard core effects in a symmetric way, we have to change the formalism. We notice, first,
that Poisson’s equation (8) relates the potential ¢;(r) to the charge distribution gi(r). We
can formally integrate this equation to yield

wmzifaﬁﬁi (A1)

=’

which is equivalent to adding up the Coulomb potential at r produced by all the charges
in the system. Clearly, (A.1) must be the same as (8), therefore

Viair) = 1 [dnatm) V2 [——]. (A2)

| =y

For this to be true we must have

]cirl gi(r1) V2 [ri—] ——— (A.3)

|r — rq|
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We introduce the Dirac § function:

1, it @ £0,
‘5(”’)_{0, if 7 = 0,

so that
oo
/ Bible) = 1.
—oo
And in three dimensions

6(r) = 8(z)b(y)é(z),

which means that if

v { L } = ——.41r6(r - ry),

lr—ry|

then (A.3) reads

/ dry gi(r1) [-476(r — r1)] = —4dngi(ry),

which is what we wanted.

633

(A.4)

(A.5)

(A.6)

(A.8)

We notice that if we multiply (A.7) by £ we get Poisson’s equation for a point charge,

the charge density being ¢;(r) = z;ed(r).

We would like to separate the contribution to the potential due to the central particle.

In this case (A.1) reads

zi€ ik
(r)= — + | dpy —————— 2@ Qs .
‘pl( ) P / ry Eo|l' — rll Ej Pj 25 g:](rl)

In the DH approximation g;;(r), or also the new quantity
hij(r) = gij(r) = 1,
is written
hij(r) = —Bez; p;(r).

Now substituting (A.11) into (A.9) and using the electroneutrality condition

ZP:‘Z:' =0,
i

(A.9)

(A.10)

(A.11)

(A.12)
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we get
Bzizje / Be?z;iz
- i€ Y = —_—— d St L i .
Bzje pi(r) o~ 2Pk [ dn i) (A.13)
k
or
,J(T) = ClJ Zpkfdrl Ckj (Ir = r1|)hi(r), (A.14)
where we have made the identification
e? 22
c,:j(r) = —ﬁ— = = —ﬁu,—j(r)‘ (A.15)
€0 Tr

Equation (A.14) can be derived for a much more general class of distributions and is
know under the name of Ornstein-Zernike (OZ) equation [1].

In the discussion of the solution of the OZ equation it will be necessary to unify both
descriptions of the Poisson equation: this can be achieved by using the FT technique. Our
discussion of the FT will also serve as an introduction to the mathematical techniques
used in solving the MSA.

The FT of a function is defined by

= [ dzet fa). (A.16)
The inverse FT is given by
1 [ e
flz) = -—[ dk e=*= f(k). (A.17)
D o
Substituting (A.16) into (A.17):
1 oo " fee) ik
) = —f df ot ] dzy e f(z1), (A.18)
21 /o —oo
which is true, since
1 [ . iies
B my)= Er-[_mdke‘k(“ ) (A.19)

is a representation of Dirac’s delta function. In three dimensions:
F(k) = f dr e'%T F(r), (A.20)

e e fdk —ikr B, (A.21)
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Now take the Laplacian of F(r):
1 i g
2 — 2y _—ikr
Y oFx) = 33 fdk(—k e F(k).
Consider now the Poisson equation

V2pi(r) = —‘t—: la:(r) — zee6(r)],

where we have now included the point charge corresponding to the central ion.

linearized Bolzmann approximation
V2pi(r) = k2pi(r) + %zie 8(r).
We now take the 3-dimensional FT:
@ik = [ drer pir)
e O /oo drr sin(kr) ¢i(r),
k Jo

= dx /Om dr cos(kr) /m ds s pi(s).

Also
]dr ekT(r) =1

and from the Fourier inverse of (A.22) is

[ xR T [Vrour)] = —R2Gi(K) - K ().

Putting it all together, the transform of (A.23) is

5 . drmz;
— K2Bi(k) = K? @ilk) +
€0
or
drzie 1
pi(k) = - —— ———,
# ( ) €0 k2 + h‘.2
To compute @;(r) we need to perform the inverse FT
1 Aop dmzie 1
. e T dk —ikr _1___.
wilr) 83 ,/ g €0 k2 + K2

There are two ways of doing this:

635

(A.22)

(A.23)

In the

(A.24)

(A.25)
(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)
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— KT

1. Compare to the FT of “~—.

2. Use contour integration: to do that we must close a contour around the lower
half complex k-plane, where we get a contribution only from the pole located at
k= —ik.

On the other hand, the Fourier Tronsform of Eq. (A.13) yields

zie K2

Qi = > F@i(k), (A.33)

where we have used the property of the Fourier Transform of the convolution of two
functions. We remember that the fourier convolution f * g of two functions f(z) and g(x)
is defined by the integral [13]

fro@) = [ flo=0o(€)ds. (434
In terms of FT we have
FT(f * g(z)) = FT() FT(9) (4.35)
and
FT (%) = é (A.36)
therefore
pilh) =2, (A.37)

which is the same results that obtained from the differential equation (A.31).
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