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ABSTRACT. In this work we discuss the Debye-lIiickel (DlI) for a classical electrolyte and the
Primitive !v1odel (PM) for ¡onie solutions. Using the formalism of distribution funetion theory
we derive the Mean Spherical Approximation (MSA). The factor correlation functions and the
thermodynamic properties are calculated explicitly.

RESU~fEN. En este trabajo discutimos la teoría c1á.<;icade electrólitos de Debye-Hückel y estudia-
mos el ~IodeloPrimitivo (P~I) para soluciones iónicas con el formalismo de la teoría de funciones
de distribución en la Aproximación Esférica Media (MSA). Se calculan explícitamente las funciones
factor de las funciones de correlación y las propiedades termodinámicas.

PACS: 61.20.Gy

l. It'iTROUUCTIOt'i

In a previous paper PI (hereafter called 1). we disscused the distribution function and
the factor correlation function theories. \Ve now st udy charged systems, sueh as models
for an electrolytie solntion. Ionie liquids have certain properties that are absent in fluids
composed ofneutral partic1es (see ReL [1]), and many oftheir distinguisbing charaeteristics
are associated in sorne way with the slow, r-I, deeay of the Conlomb potentia1. In the
eleetrolyte model the ions are represented by charged hard spheres and the solvent (water
in most cases) by a contin1l11111or by neutral hard splH'res \'.:ith a chargc distribution. \Ve
will discnss models that admit analytic solntions:

1. Tbe primitive model, in which the ions are charged spheres. and the solvent is a
dielectric continullm;

2. the elementary model, in which the solvenl is a point dipole in a hard sphere;
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3. the basic model, in whieh we add a potential of tetraehedral oetupolar symmetry
to mimic the hydrogen bonds.

\Vhile model (1) is pretty well understood, rnodel (2) is being developed and model (3)
is just barely being started.
\Ve will center our discusssion around the !lISA (mean spherical approximation) of

Lebowitz and Percus [2]' wich is an analytically solvable theory. In principie, solutions for
all three models of ionic solutions are obtained in the MSA, because the MSA is solvable
for non central forces also.
Ionic solutions are liquids consisting of a solvent forrned from neut ral, polar molecules,

and a solute that dissociates into positive amI negative ions. They vary widely in complex-
ity: in the classic electrolyte solutions, the cations and anions are of comparable size and
absolute charge, ",hereas macromolecular ionic solutions contain both maeroions (charged
polymer chains or coils, micelles, charged colloidal particles, etc.) and microscopic coun-
terions [3). \Ve will discuss only the classic ionic solutions.

2. TIlE PRIMITIVE MODEL AND DEIlYE-HüCKEL(DH) TIlEORY

Consider a neutral mixture of charged ha ni spheres of diameter O"i, charge Zie (where e

is the charge of the electron), number densily Pi = !{f (where Ni is the number of ions
of species i enclosed in a volume V). The number of species is s. The equivalence of this
system of units, to the normal or molar concentralion c+ is given by [41

-4 A-3Pi = c+ Vi 6.02252 x 10 , (1)

where Pi is expressed in number of particles per cubic Angstrorn and Vi is the stoichiomelric
coefficient. The lemperature of the syslem is 25 oC or T = 298.13 K, and the relative dielec-
tric coustant of water is 78.4. \Ve ",illuse Ilollzmann's constant kB = 1.38 x 10-16 erg/K,
aud also (3 = k~T' The electrolyte Solulion is represenled by a random, neutral array of
charges. \Ve would like lo know the thermodynamic properties of our system, quantities
such as lhe inlernal energy E, the free energy A, the pressure P, and so on.
\Ve start by computing the energy per particle (E/N). Neglecting boundary effects, the

chargr distrihutioll arolllld a given ion i is

,
qi(r) = eL zjp)')(r),

j=l
(2)

where p)')(r) is the conditional densily of ious j in the neighborhood of i. In statislical
mechanics lhis funclion is nsually expresed in terms of lhe pair correlation function

(i) ( ')p (r) p' (r)
g,j(r) = _J__ = gJi(r) = _'__ ,

Pj Pi
(3)
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which is a symmetric function in the exchange of partides i and j (see paper 1). From a
simple analogy to the atmospheric pressure equation, the density p( r) of the atmosphere
is given by

(4)

where the term mi;r represents the potential energy of apartide of mass In at a height r,
9 is the acceleration of gravity. More generally p(r) becomes p}(r), partide i is the earth.
\Ve can define a potential of the mean force lV¡j(r) such that

(5)

Our central problem will be to determine this potential of mean force [11. There are a
number of requirements 011 it, however.
\Ve write

(6)

where the first term is purely electrostatic and (¡j(r) contains all the remaining contribu-
tions, such as exdnded volume. In other words

9¡j(r) = e-Pezj'l';(r)

'" 1 - {3ez)'P¡(r). (7)

Ir we assume (¡)(r) ~ O, then the electrostatic potential must satisfy the Poisson equation
in the form (the Poisson equatíon is valid also when (ij # O)

and using (2) and (5)

2 411'
\7 'P¡(r) = --q¡(r),

fO
(8)

(9)

whích is the Poisson-13oltzmann or Milner equation [51. Even for the simplest possible
case, the equal size and equal charge electrolyte (<1+ = <1_ = <1, Z+ = -z-), this equation
cannot be solved in doscd formo 13ut there are asymptotic regimes in which we can solve
it. Ir <1 is very small the conditional probability density must be of the form

lim p(<1) = e-Pez}'I'?(r),
~_O

(10)

where ,oo(r) = !S is the ha re Coulomb interaction, 01', in other words. when two charges
""1 (Qr

come vcry clase. their OWIl interaction \....iII <iominate ayer the interactions of the other
surrounding rhargcs.
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Another limiting case is when the central ion is very large. Then 'Pi(r) must be small,
and we know that, for lim T ~ 00,

9¡j(T) = 1,

Wij ---+ O,

(11)

and, following Oebye and Hückel (OH), we can expand the exponential in Eq. (9), to
obtain [61

(12)

where

(13)

defines the Oebye screening length. There are several ways of solving the Eq. (12). Con-
sider, for simplicity, only the restricted case in which all ions are of equal size. Then the
distance of closest approach is a. We have to transform the gradient to spherical coordi-
nates [71 but since 'P does not depend on the angles, we simply get

( 14)

The general solution of this equation is

(15 )

The only way to satisfy boundary condition (11) is to require that Di = O. The value
of A¡ is obtained form Gauss's theorem, or more simply, from boundary condition (10),
since for r ---+ O

"'Pi(T) = _z¡e (_1_) .
<o 1+ Ka

The ful! solution for the potential is

and according to (8) and (16) the charge density is

< Z z¡e 1 az ( )q¡(r) = --'V 'Pi(T) = e-K r-q

471' 471' T arz
.,.e/\,2= _~_e-K(T-(T)
471' r

(16)

(17)

( 18)
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This charge distribution satisfies the electroneutrality condition

- ZiC = J drq¡(r),

\Vhich can be verified by integration: substitution of 18) into (19) leads to

( 19)

(20)

This is a completely general and rigorous sum rule that must be obeyed by the dis-
tribution functions of any good theory of electrolytic solutions. It means that an ionic
cloud surrounding a given ion just has enough charge to neutralize that ion. The charge
distribution, in our theory, is exponentially deraying \Vith a mean distauce of decay equal
to 1/".
The excess energy of charging up the system ¡s, from (18) and Coulomb's formula (lO ff),

[ 2]eh 1 41fC '" J 2 1f::.E = 'i -- ¿p¡PjZ¡Zj drr gij(r)-:
(O . . 1

',)

= _ '" Pi(ez;)2 1 .
¿ 2<0 a + !, ,

(21)

This is the energy of a system of spherical capacitors of radius (a + ¿). The internal energy
has a 10\Verbound [8]. Imagine that \Veiucrease" [Eq. (13)], either by rharging up the ions
(Zi ~ 00) 01'by letting the temperature drop ((3 ~ 00) and letting the density (Pi ~ 00).

Physirally, this is equivalent to immersing all our ions in liquid metal. Then the srreening
length ¿ is zero: the system is a perfect screeniug system, and the energy

is a rigorous 10\Verbound for the energy of any system of hard rharged ions.
From

f::.A = f::.E-Tf::.S,

Df::.A = -f::.S
DT '

Df::.A/T
D(I/T) = f::.E,

\Ve get

f::.A = ~t d(3'f::.E((3')

(22)

(23)

(24)

(25)

(26)
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From Eq. (22) in the infinite dilution limit we get the Debye-Hükel excess charging
cnergy

K.3
fJ.E = --o

81r{3

Substituting this into (26) leads lo

1\.3 1'L3 ",3 1\,3
fJ.A = --- = -- + -- = fJ.E+ --o

121r{3 81r{3 241r{3 241r{3

Ano from (24)

The excess osmotic coefficient. defined by

{3!'.P
<p = 1+ --,

r

(2;)

(28)

with P = saH concentration = (Ji for the res! ri"ted case, can be obtained from the free
cnerg~\ using the rclation

(
éi!'.A)
éi~r T = -6.p.

After some algebra we get

The excess Gibbs free energy is

fJ.G 6..4 6.P

Li ¡Yi Li Ni = Li Pi.

(29)

(30)

(31 )

and using (29) and (30) we get for the mean eiectrostatic activity coefficient 'x the
following relation:

!'.G {36.E ,,3
In,,,, = -- = -- = ----oL, P, L, (J, 81r Li (J,

(32)
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3. TIIE !viSA FOR TIIE EQUAL SIZE PRIMITIVE MODEL

In the previous seetion we diseussed the simplest possible theory, in whieh the potential
of mean force Wij(r), [see Eq. (6)], was set equal to the eleetrostatic potential. This means
that we ignore al! the other eontributions to the ionie interaetions, notably those of the
hard-eore, whieh aeeounts for two very important effeets:

a) They prevent the eol!apse of the system: classieal electro neutral Coulomb (ionie)
systems are unstable, beeause the (+) and the (-), form pairs of unbounded negative
energy. This is a rigorous result in statistieal meehanies [1].

b) The excluded volume effeet: only one ion can be plaeed in a given position in spaee.
In the OH theory, the ions of the sereening cloud are points, and do not exclude eaeh
other. Clearly, the size of the sereening cloud of finite size ions must be larger than the
OH cloud.

What we want to do now is to include the hard eore effeets into the ealeulation of the
stmeture of the ionie cloud. 01', what is equivalent, to eharge up a system of hard spheres.
This is the basie idea of the mean spherieal approximation. A eonvenient treatment of
mixtures of neutral hanl spheres is provided by the Pereus- Yevick (PY) theory [2].

Consider now the fol!owing approximation: take the OZ equation [1)

hij(r) - eij(T) = LPk J dr¡hik(r¡)Ckj(lr - r¡1),
k

and use:
i) The hanl eore eondition for separations T < (J

ii) The "Oebye-Hüekel" (real!y, !viSA) bounclary condition fol' r ~ (J

In the Oebye-Hüekel limit of zero ionie size the Eq. (33) can be written

(33)

(34)

(35)

(36)

using Eq. (7) for hij(r) we get the integral form of the Poisson Boltzmann equation (9)
(see also appendix A)

- ¡3Z)C<p¡(T) = (37)
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The rnathernatical solution follows the steps outlined for the case of neutral hard spheres.
There is, however, one problern in using the \Viener-Hopf factorization described for the
hanl sphere case in paper 1: if we take the Fourier transforrn of Eq. (35), we get

J e'kr I
dr-- ~-,

r k2
(38)

which has a double pole at the origin, that is, on the real axis. This violates one of the
conditions for the factorization [1]. \Ve rnay, however get around this difficulty by shifting
the poles away frorn the origino This is done llsing

(39)

\Ve can check, that, jllSt as in Eqs. (A.30) and (A.31), (see appendix), the Fourier
transforrn of (39) is

(40)

which has two poles located at k = :bJi. The FOllrier transforrn of the Orstein-2ernike
equation

(41 )

This is a rnatrix equation and, therefore, cornplicated. If we restrict our analysis to the
syrnrnetric 1-1 electrolyte of eqllal size ions then, we have the syrnrnetries

h12 = h21, PI = P2 = p. (42)

In that case the 02 eqllation can be written as

(
hll
h21

h12) (C11
h22 - C21

C12) = P (hll
Cn h21

h12).(Cll
h22 C21

C12) ,
Cn

(43)

where (.) denotes the convollltion integral:

(44)

I3ecallse of the syrnrnetries (42) the 02 eqnation can be diagonalized by a similarity
transformation using

5 __ 1_( I 1)
- V2 -1 I ;

-1)
I . (45)
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It is easy to verify that, for example,

5 (h11
h21

h12) 5-1 = (h11 + h12 O )
h22 O h11 - h12 .

(46)

Therefore, the 02 equation (43) beeomes a system of two uneoupled, 02 equations. If we
define

hO(r) = ![h11 (r) + hI2(,.)),

h(,.) = ![h11(r) - hI2(,.)],

thell \\'e get ol1e "Hormal" equat.ion

(47)

(48)

(49)

whieh has the normal boundary eonditions for hard spheres and another "special" equation
for the eharge interaetions:

h(r) - e(r) = p J dr¡e(lr - rJl)h(r1)'

in whieh the boundary eonditions now haY(' ehanged. In faet, it is easy to verify that

h( r) = O. r < a.

t(.2
e(r) = --, r 2: a,

P"

wherr

'2 '2.' _ 87i'/3e _ 471'l3e ",_,
K - --p- --LPl4-¡

fO f i

is the Debye sereening paramet('r. Instead of (41) \\'e no\\ have

[
K2 ]lim [1 + ph(k)J I - pe(k) + k' 2 = 1.

11-0 ' + IL

(50)

(51)

(52)

(53)

(54)

We follo\\ now, step by step. the proeedure used in solving the hanl sphere case [1]. \\'e
writ('

[
K2 ]

I - pe( k) + 1.'2 + ,,' [
p.4 ] [ p.4 ]1+ pQ(k) + --o . 1- pQ(-k) + --o .

11-11.' 1'-11.'
(55 )
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The inverse Fourier transform of this expression yields

/'i,2 e-Ilr ¡a
-5(1') + -- = -Q(1') + A + p , d1'¡ Q(1'¡) Q(1'¡ - 1')

P 2J1

-p ¡a d1'¡ Q(1'¡) A _ p ¡a+,d1'¡ A Q(1'¡ _ 1')

(56)

Ir we take the limit J1 ~ O, then (56) requires that

(57)

and, furthermore, 5(1') = 2" fra ds S c(s) is zera at r = a, fram where we deduce t;¡at, due
to continuity.

Q(a) = O,

Consider now the equation for the pair distribution function (see paper 1)

[
pA ] 1[1 + ph(k)] 1 - pQ(k) + --'k = \ .

l' + l' 1 - pQ( -k) + /",k
The Fourier inversion is exactly that of the harel sphere case. \Ve get

(58)

(59)

J(r) = Q(r) - A + p 1000 d1'¡ J(r - r¡) Q(1'¡) - P loo rl1'¡ .1(1' _ 1'¡) A. (60)

sinee now q(r) has become Q(r) - A, where A is a constant over the range of 1'¡ fram O
to oc. The last term is apparently divergent. Let us write it in the fonu

loo drl J(r - ,.¡) = - lo' dr¡ .1(1' - r¡) + 1000 drl J(r - rl)'

but remember that

J (r) = 2" loo ds s h (s);

~o t hat the last term l)('('omt's

p¡OO dr¡J(r¡) = p roo rlr¡J(r _ 1'1)= hp (X drl ¡X dssh(s)
r Jo Jo r¡

1000 lo" 1000 1= 2"p ds s hes) dr¡ = 21rp ds 82 h(s) = __ ,
o o o 2

(61 )

(62)

(63)
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where the last identity is a consequence of the electroneutrality sum rule for the correlation
function h(r), (20). Putting it aH together yields

A r rJ(r) = Q(r) - "2 + p Jr dr¡ J(r - r¡) Q(r¡) - pA Jo dr¡ J(r - r¡).

Using the condition (51), we find the surprisingly simple result

J(r) = 27r ["" ds s h(s) = bo, for r < a,

(64)

(65)

(we should later see that bo is in itse1f an interesting quantity, namely the excess internal
energy E).
Now (64) is

A Io
u

bo = Q(r) - - + pbo dr¡ Q(r¡) - pAbor,2 O

so that

0= Q'(r) - pAbo,

and because of the requirement (58)

Q(r) = pAbo(r - a),

so that, taking (66) at r = O,

A pAboa2bo= -pAboa - "2 - pbo--2-

2bopapAa = - ---- = Ka.
(1 + pboa)2

To make connection with the Debye- Hückel theory, we define

1
pbo = ---¡,

a+r

so that we get, from (71),

Ka = 2ra(1 + roo)

or

(1 + 2ra)2 = (1 + 2Ka),

(66)

(67)

(68)

(69)

(70)

(71)

(72)
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and lhe physical rool for f is (a comparison belween f and 1< is given in Ref. [9))

2fu = Vi + 2M - 1. (i3)

(i4)

Lel us compule lhe direcl correlalion funclion loo. Removing lhe t singularily, and
laking derivalives of (56), we gel

fa pA2
27r1'c(r) = -Q'(r) + p j, dr¡Q'(r¡)Q(r - 1'1)+ pAQ(r) - -2-

la pA2
= -pAbo +/ AbopAbo dr¡ (1'1 - l' - u) - - + (pA)2bo(r - u)

r 2
= .2 [Pbour p2b6u2r] (pAu)2b ( Pbor)

p.... u + 2u2 = U2 01' I + -2- ;

lhis later express ion ¡eads lo

211'c(u) = _ ,,2_1_1 (1 + (u )).
Po U + r 2 U + t

\Ve can compule lhe excess pair corre]alion funclion by laking lhe derivalive of (64)

- 211'rh(r) = Q'(r) - 211'ploa drl Q(r¡) (1' - r¡J h(r - 1'1) - pA J(O), (i5)

bul now h( l' - r¡) is zero for l' - 1'¡ < u, since Q' (1') and Q( 1') are zero for l' > U

211'rh(1') = pAbo + 211'pfar-a d1'1Q(rl) (1' - r¡J h(r - 1'¡J. (i6)
This egualion can be solved by Laplace lransforrnalion (which, in lhe complex plane,

is egua] lo lhe ha]f-plane Fourier lransforrn (FT)):

h(s) = J dre-"1'h(r). (n)

\Ve gel

(i8)h(s) =
2r2.., e-su

p s2 + 2sf + 2f2[1 - exp( -su))'

which should he conlrasled lo lhe DH expression k'1K' for lhe FT of lhe correspond-
ing funclion. For small concenlrations we gel, for lhe more general case, lhe symmelric
exprcssion

(i9)h'(1')",_f3e2 ZiZj e-2r(r-a'j)
') - <01' (1 + fUi)(1 + fUj) ,

whirh is exponcnlially decaying, bul wilh a differelll screening lenglh 19, lO]. In general,
howe\'Cr, lhe funclion h(r) will be oscillalillg, rnodulaled by lhe han] core diarneler u.
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4. TIIERMODYNAMIC PROPERTIES

The excess energy can be computed with the help ofthe pair distribution function [1,10.111
from Eg. (21):

(80)

Using (45)-(46) and (34) manipulations becomes

and, using the definition of bo in (3.33),

2 2 2 1
6.E = ~p2bo = _'!....!.!.

a ¡'
fO fO "2 + 21'

(81 )

(82)

where we have also used the relation for bu. The new screening length 2f is clearly that
of the MSA. The same picture emerges as in the DH theory: The energy of charging up
the system is that of a collection of spherical capacitor of radius 1+ A. This. in spite of
the complicated fonn of the pair correlation functions. The same simple result i" true for
the general mixture of arbitrary size ions.

Using formula (26) we can compute the free energy excess of the ionic system:

1 rJ3 1 rl' 8{3
6.04 = ii Jo d{3¡ 6.E({3¡) = ii Jo df' 8f' 6.E(f').

Now we know that, from Eq. (72),

or

rrr2 p 8{3
-8f = [(1 + fa)(l + 2fa).

fO .

Substituting (82) and (84) into (83) yields

? 11' 16..4 = _.::- df' f'2 (1+ 2f'a) = --{3 [~f3+ af"]
1r/3 o 1r

or

f3
6..4 = 6.E + -{3'

3rr

(83)

(84)

(85)

(86)
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which should be compared to (27). Indeed they are the same if we substitute 2r for "
using (28), (29) and

ar tr (3e2 I

ap 2<0 r(1 + ra)(1 + 2ra)'

we get the very simple result

r3
</>-1=--.

3trp

(87)

(88)

Finally, the Gibbs free energy per molecule, i.e., the chemical potential Jl = ~, can be
calculated:

(89)

This completes the derivation of these properties of ionic solutions in the MSA. Compari-
son of the thermodynamic properties to computer simnlatlons shows that for low valence
and high concentrations, the MSA is comparable to the HNC (hypernetted chain eguation)
for the activity and osmotic coefficients. For low concentrations and high valence it is not
very good [11]. There are a large number of papers in which different ways of correcting
this are proposed. A recent approximation, which gives very good results (comparable to
the HNC) for 2-2 salts over a range of concentrations varying from 0.00625 M to 2M [11],
consists in writing

g(r) = A exp(hMSA(r))S(x) + gMSA(r)(1 - S(x)), (90)

where S(x) is a switching function (gene rally linear) which also ensures that the elec-
troneutrality condition (20) is satisfied. The nice feature of the MSA is that the simplicity
of the results for the egual size case persists for arbitrary mixtures. So, we get to a good
approximation:

4r2 = 4tr{3e
2 L Pi { Zi }2

<o . I+ rai, (91)

which is now a higher degree algebraic eguation. Often, one can use the egual size egua-
tion (32) with the mean diameter

- L¡ P¡GiZ;a - ----- L.i PiZ;

as our initial guess for the solution. The excess internal energy is [11]

2 2
!lE = -=-r L PiZi ,

<o . I + air,

(92)

(93)
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which again is the sum of the charging energies of a collection of spherical capacitors. The
Helmholtz free energy yields, as before,

amI, just as before,

r3
~A=~E+-,

31f{3
(94)

and

1>-1=

{3~E
In')'" = -- =

¿iPi

(95)

(96)

The general solution of the MSA is very useful in many cases to represent the properties
of a large variety of eletrolytes and its mixtures, form concentrations ranging from very
dilute to almost molten salts [111.
The remarkable fact is that these simple expressions remain true for the case of associ-

ating ions [121.

ApPE~D1X A: INTEGIlAL A~D FOUIlIER IlEPRESENTATION

The solution procedure of the linearized Poisson-Boltzmann equation used aboye is not
suited to indude hard core effects of the ions. The most we can do is to give a size to
the central ion, but that makes the pair distribution function asymmetric. To indude the
hard core effects in a symmetric way, we have to change the formalismo We notice, first,
that Poisson's equation (8) relates the potential 'l'i(r) to the charge distribution qi(r). We
can formally integrate this equation to yield

1 J qi(r¡)
'l'i(") = - drl I l'

fO r - fl
(A.l)

which is equivalent to adding up the Coulomb potential at r produced by all the charges
in the system. Clearly, (A.1) mllst be the same as (8), therefore

2 lJ 2[ 1 ]\7r'l'i(r)=~ drlqi(r¡)\7r Ir-r¡1 .

For this to be truc we must have

(A.2)

(A.3)
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\Ve introduce the Dirac 6 function:

{
1,

ó(x) = O,

so that

if x 1- O,
if x = O,

(A.4)

1:dx6(x) = 1.

And in three dimensions

6(r) = 6(x)ó(y)6(z),

which means that if

\7; {Ir ~ r¡1} = -'4rró(r - rl),

then (A.3) reads

J drl qi(r¡) [-4rró(r - r¡)1 = -4rrqi(r¡),

(A.5)

(A.6)

(A.7)

(A.S)

which is what we wanted.
\Ve notice that if we mnltiply (A.7) by 7c;' we get Poisson's equation for a point charge,

the charge density being qi(r) = zie6(r).
\Ve would like to separate the contribution to the potential due to the central particle.

In this case (A.I) reads

(A.9)

In the OH approximation gij(r), or also the new quantity

(A. 10)

is written

Now substituting (A.Il) into (A.9) and using the c1ectroneutrality condition

I:PiZi = o,

(A.U)

(A.12)
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we get

or

hij(r) = Cij(r) - I:Pk J drl ckj(lr - r¡l)hidr),
k

where we have made the identification

(A.13)

(A.14)

(A.15)

Ei¡uation (A.14) can be derived for a much more general dass of distributions and is
know under the name of Ornstein-Zernike (OZ) equation 11].
In the discussion of the solution of the OZ equation it will be necessary to unify both

descriptions of the Poisson equation: this can be achieved by using the FT technique. Our
discllssion of the FT will also serve as an introdllction to the mathematical techniqlles
Ilsed in solving the MSA.
The FT of a function is defined by

1(10) = l: dxeih f(x).

The inverse FT is given by

1 loo 'k-f(x) = - dio e-o x f(k).
2" -00

Sllbstitllting (A.16) into (A.17):

1 loo ,¡OOf(x) = - dio e-.h dx¡ eikx, f(x!),
21r -00 -00

which is true, since

ó(x _ x¡) = _1_ roo dio eik(x-x,)
2rr J-oo

is a representation of Dirac's delta fllnction. In three dimensions:

F(k) = l: dr eik.r F(r),

F(r) = ~Jdke-ik,r F(k).
8"

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)
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Now take the Laplacian of F(r):

\72 F(r) = _1_ J dk (_k2) e-ik-r F(k).
811"3

Consider now the Poisson equation

\72'Pi(r) = - 411" [qi(r) - z;eó(r)],
fO

(A.22)

(A.23)

where we have now included the point charge corresponding to the central ion. In the
linearized Bolzmann approximation

We now take the 3-dimensional FT:

'Í"i(k) = J dreik.r 'Pi(r)

411" roo
= k Jo drr sin(kr)'Pi(r),

= 411" roo drcos(kr) [00 dSS'Pi(S).
~ . T

Also

J dreik-r ó(r) = 1

and from the Fourier inverse of (A.22) is

Putting it al! together, the transform of (A.23) is

_ k2 - .(k) - 2 - '(k) 411"Zie'P, -" 'P, + --fO
or

'Í"i(k) = _ 411"
Zie 1
fO k2 + ,,2'

To compute 'Pi(r) we need to perform the inverse FT

.( ) - 1 J dk -;k-r 411"Zie 1<{Jt r - - e -- _ ..
811"3 fO k2 + ,,2 .

There are two ways 01 doing this:

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)
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1. Compare to the FT of e-r<r •

2. Use contour integration: to do that we must close a contour around the lower
half complex k-plane, where we get a contribution only from the pole located at
k = -ú"

On the other hand, the Fourier Tronsform of Eq. (A.13) yields

z.e ",2
'Pi = - fO'P - k2 'Pi(k), (A.33)

where we have used the property of the Fourier Transform of the convolution of two
functions. We remember that the fourier convolution f * 9 of two functions f(x) and g(x)
is defined by the integral [131

f * g(x) = [: f(x - Og(O de,.

In terms of FT we have

FT(f * g(x)) = FT(f) FT(g),

and

therefore

(A.34)

(A.35)

(A.36)

'Pi(k) =
Zie 1
fO k2 + ",2'

(A.37)

which is the same results that obtained from the differential equation (A.31).
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