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AIlSTIIACT. lt is sho,,"u that the method of adjoint operatars allows one to salve certain inhamo-
geneons systems of linear partial ditferential equations. As an example, this method is applied to
thc equatiollS of equilihriUlIl for an isotropic elastic mcdium.
RESU'IEN. Se mnestra qne el mi,todo de opera,lores adjuntos permite resolver ciertos sistemas
inhomogéneos de ecuaciones diferenciales parciales hneales. Como ejemplo, este método se aplica
a las f'cuaciones de equilihrio para U11 medio elástico isótropO.
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(1)
£.(1) = n,

The complete solut iou of some homogeneous systems of linear partial dilferential e<¡uations
can be obtained by IIsing the method of a,ljoint operators [1,2], whieh allows one to express
the solution of slIeh systems of e'l"atio"s in terms of one or several sealar potentials.
Among the systems of differentia\ e'luations of mathematical physics that can be solved
by this method are the source-free Maxwell e<¡lIations (in tlat spaee-time [2,3] or in an
algebraically special spaee-time [1]), the Einstein vacuum field e<¡nations linearized about
the ~Iinkowski metrie [4J or about an algebraically special vacuum gpace-time [1J, and the
e<¡uations of e<¡lIilibrillm for an isotropic elastie medium in the absence of body forces [51.
The method of adjoint operators can be applied directly to systems of dilferential e<¡ua-

tiOIlS t hat can he writtrn in t 11(' f01'111

1. I:-<TIIODUCTIOt'

(2)

where £. is a self-adjoillt linear ol",rator and f represents the IIlIknown variables, if there
exis!s a sealar malle ollt of the fiel,1 eompOlH'nts and their derivatives \: = T(1), where T
i:-; a lin('¡-u ol)('rator. t}¡at ob('~':-; a t1l'collplp<\ <,<¡uat.ion
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where O is another linear operator. The fact that Eq. (2) is a consequence of Eq. (1) is
equivalent to the existence of a linear operator S such that

SE =OT.

Then, f = SI(,¡,) satisfies Eq. (1), provided that

Ol(,¡,) = O,

which follows from the adjoint of Eq. (3),

ESI = TIOI ,

(3)

(4)

(5)

using the fact that E is self-adjoint. (For details see Refs. [1,2].) In sorne cases it is necessary
to find several decoupled equations of the form (2) in order to get the general solution of
Eq. (1).
The method of adjoint operators also allows one to solve the inhomogeneous system of

differential equations

£(f) = g, (6)

associated to Eq. (1), in the following manner. At those points where the source ter m 9
vanishes, we have f = Sl(,¡,), where'¡' is a solution of Eq. (4) (for the sake of simplicity, we
are assuming here that a single scalar potential generates the general solution of Eq. (1);
in the example given in Sect. 2, three scalar potentials are necessary) then, from Eqs. (3)
and (6), one gets the equality

CJTSI(,¡,) = S(g), (7)

which determines the solution oC Eq. (4) that represents the effect of the source g.
In this paper we solve the equations of equilibrium for an infinite isotropic elastic

medium using the method outlined aboye. In Sect. 2 the solution of these equations is
written in cartesian and circular cylindrical coordinates and in Sect. 3 we conclude with
sorne remarks.

2. SOLUTION OF TIIE INIIOMOGENEOUS EQUATIONS FOR ISOTROPIC ELASTIC MEDIA

2.1. Basic equa/ions

As shown in Ref. [51, the equations of equilibrium for an isotropic elastic medium in the
absence of body forces,

(1 - 2a)V'2u + V'(V'. u) = O, (8)
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where a denotes Poissoll's ratio and u is the displacement vector [6]' are of the form (1)
with £ being sclf-adjoillt. From Eqs. (8) one can obtain the decoupled equations

\72(e, . \7 x u) = O,

\72(\7 . u) = O,

\72[z\7. u + 2(1 - 2a)e, . u] = O,

whose existepce imply that of three scalar potentials, 1/;1, 1/;2, 1/;3, such that

satisfies Eqs. (8) provided that

(9)

( 10)

(11)
(for details see Re£. [5]).
An expression analogons to Eq. (10) for the solution of Eqs. (8) in terms of ¡OUT scalar

potentials was obtained by Papkovich (1932) and Neuber (1934) (see, e.9., Refs. [7-9]).
The Papkovich-Nenber sollltion call be written in the form

where the four functions <Po, <PI, <P2, <P3 are harmonic. Attempts have been made to prove
that only three of these potentials are necessary alld this point has been a subject of
much discussion (see, e.9 .. Refs. [7-9] and the references cited therein). In Re£. [8]' it is
shown that, if 4a '" 1, the fUllctioll <Po can be omitted. However, one can show that <Po
can be omitted in al! cases, provided that the potentials are al!owed to have singularities
(the displacement u given by Eq. (12) may be wel!-behaved even if the potentials have
singnlarities, see, e.g., Re£. [5]). In fact, it is easy to see that the right-hand side of Eq. (12)
is nnchanged if one sets <Po eqllal to zero and replaces <Pi by <Pi+a¡ lax, (i = 1,2,3), where

the .T, are cartesian coordillales and r is the usnal radial coordinate. (Note that \72<pO = O
implies that \72¡= O and, hellee, \72(D¡lax,) also vanishes.)
Eqnations (8) call be solved by separation of variables,' making use of spin-weighted

functiolls [5], and it tums out that their most gelleral solntion can be expressed in the
form (lO) (see also Sect. 3). COlllparison of Eqs. (10) and (12) shows that <Po corresponds
lo '1'2, while 1>3 correspollds lo 1/;3' The Papkovich-Neuber potentials <PI, <P2, 1>3 can be
derivrd from the decoupled equalions

\72Ix\7. n + 2(1 - 2a)e, . nI = O,

'V2¡y'V' u + 2(1 - 2a)ey' u] = O,
2'V [zv. u + 2(1 - 2a)e, . u] = O,
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which follow fram Eqs. (8).
Now, we want to solve the inhomogeneous system of partial differential equations

(1 - 2a)V'zu + '17('17.u) = K, (13)

where K is a given vector field. (Thc vector field K is related to the body force F through
K = -2(1 - 20')(1 + a) F/ E, where E is the Young modulus [6].) Then, from Eq. (13) one
finds that [5]

(1 - 2a)V'z(e,. V' x u) = e, . V' x K == S,(K),

2(1 - a)V'Z(V' . u) = '17. K == Sz(K), (14)

2(1 - a)V'Z[zV'. u + 2(1 - 2a)e, . u] = zV'. K + 4(1 - ale, . K == S3(K).

(Note that when K = O, Eqs. (13) and (14) reduce to Eqs. (8) and (9), respectively.)
The scalar inhomogeneous equations (14) can be solved using the Creen's functions for

the Laplace operator appropriate to the boundary conditions; for instance, in the case of
free space the displacement (aud its derivatives) must vanish at infinity, therefore

(1 - 2a)e, . V' x u(r) = __1 J [S, (K)j(r') dv',
4rr Ir - r'l

2(1 - 0")'17. u(r) = -~ J [Sz(K)](r') dv', (15)
4rr Ir - r'l

2(1 - O")[zV' . u(r) + 2(1 - 20")<', . u(r)] = __1 J [S¡(K)](r) dv'.
4rr r - r'

Making use of the definitiou of the adjoint operator [l,5J (which amounts to integrating
by parts), we can write

J [Si(K)](r') d ' = J K( ') . s't ( 1 ) 1 '
I '1 v r, I '1 (V,r-r r-r

i=1,2,3, (16)

where the prime 011 s;t means that this operator acts on the primed variables. Fram the
definitions given by Eqs. (14), one finds that [5]

sl(1jJ) = V' x (1jJe,) = -e, x V'1jJ,

Sl(1jJ) = -V'1jJ,

SJ(l,b) = -V'(z1/J) + 4(1 - O")1jJe,.

(Note that Eq. (10) amounts to u = SI(1jJ,) + Sl(1jJz) + SJ(1/13).)

(17)
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\Ve shall assume that K vanishes outside sorne bounded region O. Then, for points
outside O, u is given by Eq. (lO) whieh, when substituted into Eqs. (15), yields

( a21/Jl I / (' '1 ( I ) ,
1- 2a) az2 = - 41T K r) . SI Ir _ r'l dv,

( a1/J3 1/(, 'I( 1),4(1 - a) I - 2a)-a = -- K r). S2 1 I dv,
Z 47r r - r'

4(1 - a)(1 - 2a) [- a~2 + (3 - 4a)1/J3] = - 4~ / K(r'). S~I Cr ~ r'l) dv',

(18)

where we have used Eq. (16).
Thus, the sealar potentials 1/Ji, that determine the displaeement vector outside O have

to satisfy Eqs. (11) and (18). Sinee Eqs. (lO), (17) and (18) are adapted to eylindrical
eoordinates, in the following subseetions we express the solutions of these equations in
eartesian eoordinates and in circular eylindrieal eoordinates.

2.2. Cartesian coordinate expansion

\Ve shall eonsider the upper half-spaee z > O (the case z < O is analogous), then, in order
for u to vanish at infinity, the solulions of Eqs. (11) must be of the form

1/;1 = l: l: a(O;, (3) ei(ox+13Y)-Vo'+13" do d(3,

1/J2= l: l: h(o, (3)ei(ox+13Y)-V"'+13" do d(3,

1/;3 = l: l: c(o, (3) ei(nx+13y)-vo'+13" do d(3,

(19)

where a, h, and e are eomplex-valued funetions of two variables. Then, making use of the
expansion

I
41Tlr - r'l

I foo j.oo ein(x-x')+i13(y-y')-vo'+13' 1'-"1
=82 2 dod(3,

1T -00 -00 V02 + (3.
(20)

whieh follows from the well-known rclatiou

I I / eik(r-r')
--- = -- ---- d3k
41Tlr - r'l (2JT)3 k2 '

assuming that z > z', frolIl Eqs. (18-20) oue finds that the eoefficients "(0,(3), h(o,(3),
and c(o, (3) are givcu by

( (3) - I I /, "
(J 0;, - - 81T2(1 _ 2a) (02 + (32)3/2 K(r ) . WlnB(r ) dv ,
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b(a, {3) = 871"2(11_20") 4(1 ~ 0") [a2 ~ {32J K(r'). W3a~(r') dv'

3 - 40" J (' (,),]+ (a2 + {32)3/2 K r ) . W2a~ r dv ,

c(a,{3) = 871"2(/- 20") 4(1 ~ 0") a2 ~ {32J K(r'). W2a~(r') dv',

where we have introduced the vector fields

(21)

w" (r) = SI (e-i(ax+~y)+v'a'+~' ,)tOr./3 - 1 ' i = 1,2,3, (22)

which, aceording to Eqs. (ID-U) and (17), satisfy the homogeneous equations (8).
On the other hand, substituting Eqs. (19) into Eq. (10) one finds that, outside n,

where

u" (r) = SI (ei(ax+~y)-v'a'+~' ,)10{3 - t 1
i=1,2,3, (24)

which are also solutions of the homogeneous equations (8). Note that as z --> 00, the vector
fields Uia~ vanish, while the vector fields Wia~ diverge. Thus, the displaeement vector can
be expanded in terms of the elementary solutions Uia~ of Eqs. (8), and the eorresponding
eoeflicients are related to the inner produets of K with Wia~ (eJ. ReL [10]); this is a
consequenee of the faet that the integrand in the expansion of the Green's funetion (20)
is the product of a funetion of r and a funetion of r'.
Substituting now Eqs. (21) into Eq. (23), using Eq. (20) and the faet that

1 J eik-(r-r')
Ir-r'l = -- ---d3k

71"2 k4

= _~ fOO fOO [12 - z'l + 1 ] eia(x-x')+i~(y-y')-v'a'+~' 1'-"1 dad{3
2rr -00 -00 a2 + {32 (a2 + {32)3/2

one finds that the eartesian eomponents of u are given by

(25)

(26)

where we are using the surnmation convention and

Gi(r _ r') = __ 1_~ [ 8ij 1 D
2
1r - r'l]

J 1 - 20" 471" Ir - r'l 4(1 - 0") DXiDxJ

1 1 [ 8 (Xi - x')(xJ" - X')]= (3-40") 'J + ' J.
1 - 20" 1671"(1- 0") Ir - r'l Ir - r'13

An alternative derivation of Eq. (26) is given in ReL [61 (see also ReL [8]' Eq. (91.2)).
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2.3. Circular cylindrical coordina te expansion

Considering again the half-space z > O, we seek solutions of Eqs. (11) of the form

00 roo
,pI = L Jo am(k) Jm(kp)eiml'-b dk,

01=-00 O

00 roo
,p2 = L Jo bm(k) Jm(kp)eiml'-b dk,

Jll=-OO o

"'3 = f 1000 cm(k) Jm(kp)eiml'-b dk,
Hl=-OO o

(2;)

where Jm is a Bessel fllnction. The coefficicnts am(k), bm(k) and cm(k) are evaluated by
subst.itllting Eqs. (1;) ano (2;) ano the expansion

I

Ir - r'l

into Eqs. (18). One finds

( I IJ' ("am k) = -4,,(1-2a)k2 K(r)'Wlmk r)dv,

I I [1 J " "bm(k) = - 4,,(1 _ 2a) 4(1 _ a) k K(r) . w3mdr ) dv

3 - 4a J (') ,,]+ ----¡¡:¡- K r . W2mk(r )dv ,

( I I IJ' "Cm k) = 4,,(1 _ 2a) 4(1 _ a) k K(r ). w2mdr) dv ,

whefr, no\\',

( ) - SI (J (k ) -iml'+b)Wiml.: r = i m pe.

From Eqs. (10) and (2;) it follows that the displacement vector is given by

00 roo
1I= L Jo {"m (k) lI¡'nk + bm(k) 1I2mk+ cm(k) U3mk}dk,

m=-oo O

where the lIimk are the sollltiolls of the hOlllogeneolls equations (8) defined by

( ) - ....t(J (" ) iml'-b)
Ujlllk r = Vi m "P e .

(28)

(29)

(30)

(31)

1\ot(' tilat, also in this case, t.lI(l coefficiPllts in t}¡c cxpansion (30) are related to the
innrr products of K \vith tIte \'('ctor firlds Wúnk. \vhich are solutions of lhe hornogeneol1s
eqllalions (8) t hat diverge as z ~ oo.
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3. DISCUSSIO:"1

One ean verify by a direct. computat.ion t.hat. Eg. (25) is, indeed, a solut.ion of Eg. (13);
t.his result. provides anot.her proof of t.he fact. t.hat. t.he most. general solut.ion of Egs. (8) can
be expressed in t.he form (10), in t.erms of t.hree scalar pot.ent.ials only. If t.he body forces
vanish but. t.here are forces applied t.o t.he boundary of t.he elast.ic medium, t.he pot.ent.ials
1/1i are det.ermined by subst.it.ut.ing Eg. (lO) int.o t.he boundary condit.ions coming from the
definit.ion of t.he stress t.ensor (see ReL [6]' Eg. (2.8)). In fact., in ReL [6] the case where
the boundary is an infillitc planc is trcat.cd in this manner1 making use of an expression
analogous t.o Eg. (lO), involving fonr harmonic funct.ions instead of the tlnee potentials
7/Ji 1 and of so me unproven assmnptions.
The procedure followed here to find t.he coefficients appearing in Egs. (23) and (30) is

similar t.o t.hat employed in the mult.ipole expansion of t.he electromagnetic field, where
t.he relationship bet\Veen the Illultipole coefficient.s and t.he sources is obtained making
use of the decoupled eguat.ions satisfied by r. E and r. B (see, e.g., ReL [11]). Ho\Vever,
in the derivation given in Sect. 2, the decoupled eguations (14) t.hat. allo\V us t.o find
the coefficients (21) and (28) also lead to the general solut.ion (10) of the homogeneous
eguations (8) (ej. also Refs. [4,10]).
Eguations (21-24) and (28-31) signify that the Green's function for Eg. (13), in carte-

sian and circular cylindrical coordinat.es, admits a sort of factorization (ef. also ReL [10]).
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