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ABSTRACT. It is shown that the method of adjoint operators allows one to solve certain inhomo-
geneous systems of linear partial differential equations. As an example, this method is applied to
the equations of equilibrium for an isotropic elastic medium.

RESUMEN. Se muestra que el método de operadores adjuntos permite resolver ciertos sistemas
inhomogéneos de ecuaciones diferenciales parciales lineales. Como ejemplo, este método se aplica
a las ecuaciones de equilibrio para un medio elastico is6tropo.

PACS: 03.40.Dz; 02.30.Jr

1. INTRODUCTION

The complete solution of some homogeneous systems of linear partial differential equations
can be obtained by using the method of adjoint operators 112k which allows one to express
the solution of such systems of equations in terms of one or several scalar potentials.
Among the systems of differential equations of mathematical physics that can be solved
by this method are the source-free Maxwell equations (in flat space-time [2,3] or in an
algebraically special space-time (1]), the Einstein vacuum field equations linearized about
the Minkowski metric (4] or about an algebraically special vacuum space-time (1], and the
equations of equilibrium for an isotropic elastic medium in the absence of body forces (5]

The method of adjoint operators can be applied directly to systems of differential equa-
tions that can be written in the form

E(f) =0, (1)

where & is a self-adjoint linear operator and f represents the unknown variables, if there

exists a scalar made out of the field components and their derivatives X = T(f), where T
is a linear operator, thiat obeys a decoupled equation

() =0, (2)
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where O is another linear operator. The fact that Eq. (2) is a consequence of Eq. (1) is
equivalent to the existence of a linear operator S such that

SE = 0OT. (3)

Then, f = §'(¢) satisfies Eq. (1), provided that

which follows from the adjoint of Eq. (3),
st =1tof, (5)

using the fact that £ is self-adjoint. (For details see Refs. [1,2].) In some cases it is necessary
to find several decoupled equations of the form (2) in order to get the general solution of
Eq. (1).

The method of adjoint operators also allows one to solve the inhomogeneous system of
differential equations

associated to Eq. (1), in the following manner. At those points where the source term g
vanishes, we have f = Sf(3), where v is a solution of Eq. (4) (for the sake of simplicity, we
are assuming here that a single scalar potential generates the general solution of Eq. (1);
in the example given in Sect. 2, three scalar potentials are necessary) then, from Eqgs. (3)
and (6), one gets the equality

0TS (y) = S(9), (7)

which determines the solution of Eq. (4) that represents the effect of the source g.

In this paper we solve the equations of equilibrium for an infinite isotropic elastic
medium using the method outlined above. In Sect. 2 the solution of these equations is
written in cartesian and circular cylindrical coordinates and in Sect. 3 we conclude with
some remarks.

2. SOLUTION OF THE INHOMOGENEOUS EQUATIONS FOR ISOTROPIC ELASTIC MEDIA

2.1. Basic equations

As shown in Ref. [5], the equations of equilibrium for an isotropic elastic medium in the
absence of body forces,

(1-20)V?u+V(V-u) =0, (8)



SOLUTION OF THE INHOMOGENEOUS EQUATIONS OF EQUILIBRIUM. .. 697

where o denotes Poisson’s ratio and u is the displacement vector [6], are of the form (1)
with £ being self-adjoint. From Eqs. (8) one can obtain the decoupled equations

V2(é,-V xu)=0,
V(V-u) =0, (9)
V2[zV-u+2(1-20)é, -u] =0,

whose existence imply that of three scalar potentials, v, 19, ¥3, such that
u="Vx(¥é;) — V(¥ + 293) + 4(1 — o)¢3é, (10)
satisfies Eqs. (8) provided that

Vi = Viy = Vi = 0, (11)
(for details see Ref. [5]).
An expression analogous to Eq. (10) for the solution of Egs. (8) in terms of four scalar
potentials was obtained by Papkovich (1932) and Neuber (1934) (see, e.g., Refs. [7-9]).
The Papkovich-Neuber solution can be written in the form

u=—V(go+xd1 + ypa + 2¢3) + 4(1 — o) (1€, + P26y + P3€.), (12)

where the four functions ¢g, ¢1, ¢2, ¢3 are harmonic. Attempts have been made to prove
that only three of these potentials are necessary and this point has been a subject of
much discussion (see, e.g., Refs. [7-9] and the references cited therein). In Ref. [8], it is
shown that, if 40 # 1, the function ¢¢ can be omitted. However, one can show that ¢
can be omitted in all cases, provided that the potentials are allowed to have singularities
(the displacement u given by Eq. (12) may be well-behaved even if the potentials have
singularities, see, e.g., Ref. [5]). In fact, it is easy to see that the right-hand side of Eq. (12)
is unchanged if one sets ¢g equal to zero and replaces ¢; by ¢; +8f/dz; (i = 1,2, 3), where

f = ,’,4{]—0')[(;507,4075 (IT,

the r; are cartesian coordinates and r is the usual radial coordinate. (Note that V2¢g = 0
implies that V2f = 0 and, hence, V2(9f/dz;) also vanishes.)

Equations (8) can be solved by separation of variables, making use of spin-weighted
functions [5], and it turns out that their most general solution can be expressed in the
form (10) (see also Sect. 3). Comparison of Eqgs. (10) and (12) shows that ¢q corresponds
to 92, while ¢3 corresponds to 3. The Papkovich-Neuber potentials ¢1, ¢2, ¢3 can be
derived from the decoupled equations

V3zV -u+2(1 - 20)é, -u] =0,
ViyV-u+2(1-20)é, -u] =0,
V32V u+2(1-20)é, -u] =0,
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which follow from Egs. (8).
Now, we want to solve the inhomogeneous system of partial differential equations

(1-20)Vu+VY(V-u)=K, (13)

where K is a given vector field. (The vector field K is related to the body force F through
K = —2(1—-20)(1+0)F/E, where E is the Young modulus [6].) Then, from Eq. (13) one
finds that [5]

(1-20)V%(é,-V xu)=¢,-VxK=8(K),
2(1 - 0)V4(V u) = V-K = 85(K), (14)
2(1 — 0)V?[2V - u+2(1 — 20)é, - u] = 2V - K+ 4(1 — 9)é; - K = S3(K).
(Note that when K = 0, Egs. (13) and (14) reduce to Egs. (8) and (9), respectively.)
The scalar inhomogeneous equations (14) can be solved using the Green’s functions for

the Laplace operator appropriate to the boundary conditions; for instance, in the case of
free space the displacement (and its derivatives) must vanish at infinity, therefore

(1-20)é, -V x u(r) = M] [Slrlf)rflr)
2(1-0)V-ufr) = 47r [S—TFI_S_)L—I) dv', (15)
2(1 — o)[2V - u(r) + 2(1 — 20)é, - u(r)] = —~4—17F / [Sli(‘lf—)l]flr’)dv'.

Making use of the definition of the adjoint operator [1,5] (which amounts to integrating
by parts), we can write

/[slr—r'l fK ( '|) i=1,2,3, (16)

where the prime on S:T means that this operator acts on the primed variables. From the
definitions given by Eqs. (14), one finds that [5]

Siw) = V x (&) = —é, x V4,
Si(w) = -V, (17)

Sg(if") = —V(z¢) + 4(1 — o)YE,.

(Note that Eq. (10) amounts to u = S} (1) + Sl (wa) + Si(¥3).)
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We shall assume that K vanishes outside some bounded region Q. Then, for points
outside §2, u is given by Eq. (10) which, when substituted into Egs. (15), yields

32¢1 1 ! 1 I I
(1-20) 55 = —E/K(r)-Sl (|r_r,|)dv,

o7L= 0 = Je )%‘f‘ - —ﬁfK(r) s’*( )dv’, (18)

v —r'|

401 =oj(1=8e) ——?3+(3—4a)¢3] - lfK(r')-s;f( : )dv’,

Cdn Ir — r/|

where we have used Eq. (16).

Thus, the scalar potentials 1;, that determine the displacement vector outside Q have
to satisfy Eqgs. (11) and (18). Since Egs. (10), (17) and (18) are adapted to cylindrical
coordinates, in the following subsections we express the solutions of these equations in
cartesian coordinates and in circular cylindrical coordinates.

2.2. Cartesian coordinate expansion

We shall consider the upper half-space z > 0 (the case z < 0 is analogous), then, in order
for u to vanish at infinity, the solutions of Eqs. (11) must be of the form

Lo ] / a(a, §) e'0s+PY-V a2 +8%2 4 4.
Py = / f b(o, B) o=V~ o462z 4o g3 (19)
%:f f ela, @) PN V" 52 gy 43,

where a, b, and ¢ are complex-valued functions of two variables. Then, making use of the
expansion

gial—z')+iB(y—y' )~/ F B 2=+
T 8n2 / / va?+ 32

da dj3, (20)

47r|r —r'|

which follows from the well-known relation

i 1 8t'](-(l‘—r')
= / d*k,
drjr —r'|  (2m)3 k?

aqsuming that z > 2/, from Eqgs. (18-20) one finds that the coefficients ala, 8), bla, B),
and c(a, ) are given bv

w1 1 , o
(8) =~ —gy fars gy | KO wesls v
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1 | 1 ! ! /
ba, B) = ~ (1= 20) i1 — o) [az e fK(r ) - W3ag(r') dv

3—-4 ; - |
+m[mr)‘w2aﬂ(r)dv (21

1 1 ) o

c(e, B) = 872(1 — 20) 4(1 — o) o2 + B2 /K(r ) - Waag(r') dv',

where we have introduced the vector fields

Wiap(r) = ] (efestPtVeresis) =193, (22)

which, according to Egs. (10-11) and (17), satisfy the homogeneous equations (8).
On the other hand, substituting Egs. (19) into Eq. (10) one finds that, outside {2,

u= [ [ {a(@B) utas + e, B) uang + e B) usap hda d, (23)
where
uip(r) = S (elootP-Volelts) =193, (24)

which are also solutions of the homogeneous equations (8). Note that as z — oo, the vector
fields u;4p vanish, while the vector fields w,s diverge. Thus, the displacement vector can
be expanded in terms of the elementary solutions u;,z of Egs. (8), and the corresponding
coefficients are related to the inner products of K with wi,s (cf. Ref. [10]); this is a
consequence of the fact that the integrand in the expansion of the Green’s function (20)
is the product of a function of r and a function of r'.

Substituting now Egs. (21) into Eq. (23), using Eq. (20) and the fact that

—iz / g d3k
k4

/ [ [|7- —Z : ] giala—a)+iBly—y)—Va2+62 ==l 4o 4

a? + ﬁz (az Ao ﬁ2)3/2

one finds that the cartesian components of u are given by

v —r

II

el f Gij(r — &) K (") v/, (25)
where we are using the summation convention and
1 1 i 1 &r-r|
G" _ ! . o 1) =
§(F—r) = T [Ir—r’| 4(1-0) Oz:0z;
1 1

v —r| M v — /|3
An alternative derivation of Eq. (26) is given in Ref. [6] (see also Ref. [8], Eq. (91.2)).

_ 8ij (z; — z)(x; — )
T 1-20167(1 —0) [(3_40) ; J]' (26)
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2.3. Circular cylindrical coordinate expansion

Considering again the half-space z > 0, we seek solutions of Eqgs. (11) of the form

Y = Z / i (kp)e Pk di,

vy = 2 [ bmk) ()™ i (27)
vs = Z / m(kp)e™e k2 dk,

where J,, is a Bessel function. The coefficients a,,(k), b (k) and ¢ (k) are evaluated by
substituting Eqs. (17) and (27) and the expansion

Z / Jm(kp)J p)lm(w-v')—klz—fldk

into Egs. (18). One finds

]. l 1 ! /
am(k) = “Anll — 50 2 /K(l‘ ) - Wimk(r) dv',
1 /
bn(K) = ~ s g T | K Woms s
+ 3—_};—0-/K(r')vw2mk(r')dv'] , (28)
1 1 1 , )
nk) = 577 T a7 ] KU Wame(e) o
where, now,
Wik (r) = 8] (Jm(kp)e™ ™4k ). (29)

From Egs. (10) and (27) it follows that the displacement vector is given by
Z f o (K) Wi + by (K) Wzt + € () gk plk, (30)

where the u;,x are the solutions of the homogeneous equations (8) defined by

imk(r) = ST (T (kp)e™e74). (31)

Note that, also in this case, the coefficients in the expansion (30) are related to the
inner products of K with the vector fields Wiy, which are solutions of the homogeneous
equations (8) that diverge as z — oc.
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3. DISCUSSION

One can verify by a direct computation that Eq. (25) is, indeed, a solution of Eq. (13);
this result provides another proof of the fact that the most general solution of Egs. (8) can
be expressed in the form (10), in terms of three scalar potentials only. If the body forces
vanish but there are forces applied to the boundary of the elastic medium, the potentials
¥; are determined by substituting Eq. (10) into the boundary conditions coming from the
definition of the stress tensor (see Ref. [6], Eq. (2.8)). In fact, in Ref. [6] the case where
the boundary is an infinite plane is treated in this manner, making use of an expression
analogous to Eq. (10), involving four harmonic functions instead of the three potentials
1, and of some unproven assumptions.

The procedure followed here to find the coeflicients appearing in Egs. (23) and (30) is
similar to that employed in the multipole expansion of the electromagnetic field, where
the relationship between the multipole coefficients and the sources is obtained making
use of the decoupled equations satisfied by r- E and r- B (see, e.g., Ref. [11]). However,
in the derivation given in Sect. 2, the decoupled equations (14) that allow us to find
the coefficients (21) and (28) also lead to the general solution (10) of the homogeneous
equations (8) (cf. also Refs. [4,10]).

Equations (21-24) and (28-31) signify that the Green’s function for Eq. (13), in carte-
sian and circular cylindrical coordinates, admits a sort of factorization (cf. also Ref. [10]).
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