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ABSTRACT. We extend the U(2) model of n—coupled anharmonic oscillators, originally proposed
to describe stretching vibrations, to include bending modes. The model describes the infrared
spectrum of the molecules Hy'%0, Hy32S, 325'%0,, and %05 with rms deviations ranging from
13.42 to 1.05 cm™!. In addition, we present a calculation of the dipole transition intensities for the
H10 molecule.

RESUMEN. En este trabajo extendemos el modelo algebraico U(2) de osciladores anarmanicos
acoplados con el objeto de incluir los modos vibracionales de flexion. Mediante este modelo se
describe el espectro infrarrojo de las moléculas Ho'%0, Hy32S, 325160, y %03 con desviaciones
en las energias vibracionales que van de 13.42 a 1.05 cm™'. Ademds se presenta un calculo de
intensidades de transicién dipolares para la molécula de H}°O.

PACS: 03.65.Fd; 33.10.Cs; 33.10.Gx

I. INTRODUCTION

With the advent of laser spectroscopy techniques and their increased power of resolution,
highly excited overtone-combination vibrational spectra of molecules can now be observed.
There is therefore a renewed interest in developing theoretical descriptions of the physical
processes involved. A detailed analysis of the observed spectral properties, however, is

*Also at Laboratorio de Cuernavaca, Instituto de Fisica, UNAM; Apartado postal 139-B, Cuer-
navaca, Morelos, México.
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quite complicated and different degrees of approximation are used to study the problem,
ranging from the simple Dunham energy expansion approach to attempting the solution
of the Schrodinger equation by ab initio calculations. In 1981 a novel approach based an
algebraic methods was proposed: the vibron model [1], which was originally introduced to
describe the roto-vibrational structure of diatomic molecules and subsequently extended
to include linear polyatomic molecules and non-linear triatomic molecules [2]. An alter-
native, symmetry-adapted algebraic model for triatomic molecules has been proposed by
Bijker et al. [3]. An important advantage common to these algebraic approaches is that
the powerful methods of group theory provide relatively simple solutions.

It is well known that a reasonable potential to describe the vibrations of diatomic
molecules is the Morse potential [4]. This potential is closely associated to the O(4)
dynamical symmetry of the vibron model [5], which explains the latter’s success in describ-
ing molecular vibrational spectra. Although this is a three dimensional result, analogous
relations hold in one and two dimensions.

In a one-dimensional system the realization of SU(2) on the sphere can be associated
to a Morse potential [6]. The U(2) algebraic model may thus be considered as the one-
dimensional limit of the vibron model and can be generalized to molecules with several
bonds. In 1984 O.S. van Roosmalen et al. analyzed the case of two bonds [7] by con-
sidering the stretching vibrational modes of specific molecules like HoO, SO, and Os.
The extension of the U(2) model to arbitrary polyatomic molecules was carried out by
lachello and Oss [8], who studied the vibrational spectra of benzene and several octahedral
molecules. Recently the model has been also applied to infinite systems, namely to linear
and square crystal lattices [9]. Because of the one-dimensionality of the model, however,
the applications to molecular systems were restricted to the description of stretching
vibrations.

In this article we extend the U(2) model to describe both the stretching and bending
modes of molecules by considering the particular case of triatomic molecules. Iachello
and Oss have proposed an extension to incorporate bending modes, but using a different
technique [10]. The generalization to molecules with more atoms will be presented in
forthcoming publications [11]. The paper is organized as follows: In the next section
we present the model of n—coupled Morse oscillators, while in Sect. 3 we consider its
extension to incorporate the bending modes. An analysis of the local and normal mode
bases is also included in this section. Section 4 contains our main results, corresponding
to the vibrational spectra of the molecules Hy'®0, H,%2S, 32860,, and 103, while the
calculation of dipole transition intensities in H2'®O is presented in Sect. 5. Finally, in
Sect. 6 we summarize our results and make some concluding remarks.

2. ALGEBRAIC MODEL

The model is based on the isomorphism of the U(2) Lie algebra and the one-dimensional
Morse oscillator

W s s D(eﬁh/d _ ze—x/d)‘ (2_1)
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whose eigenstates may be put into a one to one correspondence with the U(2) > 0(2)
states [12]. We briefly discuss here how this comes about. Consider the radial equation

2
! (—l B =+ 'r2) ¢(r) = (N + 1)¢(r), (2.2)

which corresponds to a two-dimensional oscillator (in units where h = 4 = e = 1) and
thus to a U(2) symmetry algebra [6]. By carrying out the transformation 6]

r? = (N + 1) exp(-p), (2.3)
Equation (2.2) transforms into
12 N+1\?
[“;7% 2+ ) (e_zp_ze_p)} 4(p) = —m*¢(p), (2.4)

so defininig r = p-d and multiplying by h2/2,ud2 we arrive at (2.1), provided that N+1 =
vV 8ud?D/h? and E = _z_ﬁ'";gm?. Since N =0,1,2,... and m = £N/2, £(N —2)/2, ..., we

H.
see that the Morse spectrum is reproduced twice and that we need to restrict the m~-values
to non-negative values. We also note the connection between N and the potential depth.
In terms of the usual SU(2) algebra, it is then clear from (2.4) that the Morse Hamiltonian

has the algebraic realization

2
h 72

= 2ud? Ies

(2.5)

while NV is related to the SU(2) label j through j = N/2 [2,10]. We can also write (2.5)
in the form

7:{ == AéQO(g), (26)

where we have defined 6‘20(2) = 4J2 — N2. The parameter A is thus related to the Morse
parameters, while the term —N? is introduced in order to place the ground state at null
energy.

We now consider a molecular system where 7 chemical bonds are involved [8]. In the
algebraic model a U'(2) algebra is associated to the i-th bond. Therefore the product
U(2) x --- x U"(2) establishes the dynamical group of the system, which means that
every operator may be expanded in terms of generators of the U*(2) groups. In particular,
the Hamiltonian is given in terms of the invariant (Casimir) operators of the groups in-
volved in the different reductions of the dynamical algebra into its subalgebras. A possible
decomposition involves the reduction

UY2) x U%(2) x --- x U"(2) D0} (2) x -+ x 0"(2) D 0(2), (2.7)
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where the coupling to the final O(2) group is carried out through the different intermediate
couplings 0" (2). A second chain arises from all the possible couplings of the U'(2) groups
to obtain a total U(2) group, which in turn contains the full O(2) group. The Hamiltonian,
up to two-body interactions and restricted to terms conserving the total O(2) quantum
number, is then given in terms of 7 contributions h; = A,Cyp: (2)» representing the 7-one
dimensional independent Morse oscillators, plus two types of bond-bond interactions:
(520.,(2) and J\:'i,j, which correspond to the Casimir operators of the O%(2) groups and
the Majorana operators, respectively [8]. The latter are related to the UY(2) Casimir
operators C'QU,-;(Q) by the relation

Mij = =3 [Cauiay — Cavica) — Coviga) — 2N;N;] (2.8)

where Ny corresponds to the number of bosons associated to the U*(2) group. The Hamil-
tonian has thus the general form

n n n
H = hy+ Z AiCQO'(Z) + Z B,jCzo.,(g) + Z f\t_)Mi]' (2.9)
i=1 i 1>7

The simplest basis to diagonalize the Hamiltonian (2.9) is the one associated with the
local-mode chain

|13 ] s LD, o iy e o 0 2 B, (2.10)
where we have defined »; and V,
7
N; )
= 5 . V= Zl Ui (2.11)

in terms of the quantum numbers m;. The operators involved in the first two sums of the
Hamiltonian (2.9) are diagonal in the basis (2.10)

([Nll,- ssoy [N 800 o 9033 Vlézox(z) [NV ]y ooy [Vl 500 e « 4008 ‘v)

= 4(v? — Njv;), (2.12a)

[J‘?\rl],...,[."\rn]:...,l’,....,’l-‘j,...:‘-/‘>

<[1‘V1], i s [N'?]; vy Uiy ey Ugy el V‘CQOU(Q)
= 4[(v; +v;)* — (v + v;)(N; + N;)], (2.12b)
while the Majorana operator J\:/hj has both diagonal and non-diagonal matrix elements

[N]],...,[N,j];...,1-',....,.1-'1,...;1")

QFLEY PR % R "/ S V|J\;11‘J-

= (Nivj+N;vi —20iv;)by, 1 Oyt o) — Vil + D(N;: — vi)(N; — v + 1)8y) ;41601 v, -1

3

= V/oiv; + DN; = 0)(Ni = v + 1)byy o1 64t 11 (2:120)
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Thus the local basis owes its name to the fact that in it the individual Morse oscillators
are well defined, with v; the number of quanta in the i-th oscillator [12]. These simple
results for the matrix elements allow the diagonalization of Hin a straightforward way.
The Hamiltonian (2.9), however, is arbitrary and does not in general satisfy the possible
symmetry requirements of the molecule, which are considered in the next section.

The algebraic model can also provide transition intensities. In the traditional approach,
the use of the Born-Oppenheimer approximation has as a consequence that the effective
transition operator is not given directly by the dipole operator. Instead, the dipole function
is expanded in terms of single bond coordinates

(s o]

d(r) =Zan T—re)

n=l
It is also possible to perform a Taylor expansion in powers of the Morse variable
y=1- 6_0(’"““).

rather than in powers of (» —r.). It has been shown that the most convenient form, which
has the appropriate limit behavior, is [13]

d(r) = dore™ . (2.13)

In the algebraic approach the dipole function is expanded in terms of elements of the
dynamical algebra. It has been suggested that in the SU(2) model the matrix elements of
the transition operator t;, associated to the i—th bond, can be parametrized in the form [8]

([Nl], vy [Nglion ey Uhy e oo V‘fiHN]], N §./ TR W .;V) = e Alvi—ul, (2.14)

The operators #; are thus associated to the /—th bond in the local picture. The molecular
dipole transition operator is then given in terms of an expansion of the local operators ;.
For any molecular system the dipole operator T has three components, given in terms of
local operators. Up to linear terms, for example,

U
= Z(rf t;, (& = B,4.2), (2.15)
1=1

where the relative values of the coefficients af are determined according to the molecular
symmetry.

The transition intensities [;_.;, from an initial state ¢ to a final state f, are then
computed in the usual form

Lp= Y [(fITeli)|*, (2.16)
£
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where the states |i) and |f) may be expressed in terms of the local basis

4] = Zaf)mz.---vn“Nl]’ oy [Nplivr, oo V), (2.17a)
{vi}

1FS = 8 B i s a0 s s g W ) (2.17b)
{vi}

with the coeflicients af,hm’vq and (151,...,% provided by the diagonalization of the Hamilto-
nian.

Expressions (2.9) and (2.15) are still quite general and we shall see that symmetry
considerations impose certain conditions on the parameters. In the next section we present
the particular form of the Hamiltonian and the infrared operators ’f‘f for the molecules
we consider in this paper.

3. NON-LINEAR TRIATOMIC MOLECULES

In the standard approach the potentials between nuclei are expressed in terms of a set of
internal coordinates. For bent triatomic molecules the usual set corresponds to the bond
distances r1, 72 and the angle 6 between them, as shown in Fig. 1. The potential is then
expanded in the form

V(r,ma,0) =Vo+ Y aagy 875 67 (3.1)
afly

It is equally possible, however, to expand the potential in terms of 73 (the distance between
the A atoms in Fig. 1) instead of the angle 6

Virirars) = Vo + Z bapy 1T r‘g P (3.2)
afy

and the Schrodinger equation can be written in terms of either (3.1) or (3.2).

In the algebraic approach the bond coordinates r; and ry are replaced by U(2) Lie
algebraic structures. This procedure essentially corresponds to the potential (3.1) with ¢
constant, which leads to a description of stretching modes only. In this paper we propose
to generalize the algebraic description following the scheme (3.2). We can then replace the
three coordinates r1, 73 and r3 by U(2) algebraic structures, which leads to a description of
both the stretching and bending modes in terms of Morse potentials. We shall show that
this approach is valid and consistent, and compute both energy and intensity fits, which
turn out to have the same level of accuracy as other methods. The alternative description
in Fig. 1 has the additional advantage of providing a natural way to incorporate the
bending degree of freedom to molecules like O3, for which a successful algebraic description
has not been presented.
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A A A B A

FIGURE 1. a) Traditional and b) alternative internal coordinates used to describe the vibrational
degrees of freedom in bent triatomic molecules.

H o H H S H

FIGURE 2. Geometrical structure of a) water-like molecules H,0, H,S, SO,, 03(C2,) and b) Dy,
molecules showing the assignment of the U(2) algebraic structures.

We now proceed to establish the Hamiltonian for the triatomic molecules H;0, H,S,
503, and O3. In Fig. 2 we display the representative geometrical structure for these
molecules, which corresponds to a C3, symmetry. In the same figure we show for com-
pleteness a configuration with Dj;, symmetry, which would correspond to molecules such
as H;’ which, however, are not considered in this article.
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We now consider molecules with Cy, symmetry by noting that the subgroup C C Cg, is
enough to label the vibrational modes, since the three atoms define a plane. According to
the general procedure presented in Ref. [14], we first establish the isomorphism between
the C; and Sy groups:

E —i(e);
(3.3)
Cy — (12)(3).

The S, invariant Hamiltonian is then obtained in a straightforward way. Taking into
account up to two-body interactions we find
Hé == ho + A}(Cgol(g) = 61202(2)) + .‘136’203(2)

2

i B]QC-2012(2) 4= 313(62013(2) o= 02023(2))
+ MMz + Aiz(Miz + Ma), (3.4)

which is symmetric against the permutation of labels 1 and 2, as it should be. While
the Hamiltonian (3.4) describes the general features of the spectrum, it is usually unable
to provide results of spectroscopic quality, which require adding the next order (quartic)
terms to ’Héh. The Hamiltonian providing the desired accuracy is then given by

VIR | Al [ A2 A2 2] A2
He,, = He,, + Aj [Cz()l(z) = 0202(2)] Tt Bgzlczow(z)

2] A2 [2] [ A2 2 q ok
+ ‘4[3 ]Czoﬂ(z) + B [Czow(z) + Czo%(z)]- (3.5)

For (s, molecules, 9 parameters (A3 is not needed as we show in Sect. 4) plus the number
of bosons N, and N3, are thus needed to produce high quality fits.

The Hamiltonians (3.5) can be diagonalized in the local basis (2.10). For Cz, molecules
N; = N; and the basis takes the form

[N1][NVa]; vivavs; V). (3.6)

The diagonalization of the Hamiltonian couples the local oscillators. This interbond cou-
pling is induced by the non-diagonal Majorana operators, giving rise to a transition to-
wards normal modes. The true behavior of a molecule is in general in-between the local and
normal schemes and can be reproduced by choosing the appropriate parameters in (3.4)
and (3.5). The local limit is obtained by taking the A parameters equal to zero, while in
the normal limit all the 4 and B parameters should be null. Intermediate situations can be
gauged by the local-normal transition parameters  introduced by Child and Halonen (13],
which for Cy, molecules is defined as [15]

£ = Emn-‘(u*i‘) . (3.7)
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Since the Majorana parameters A can take positive and negative values, the range of the
parameter £ is —1 < £ < 1. Thus |[£| = 1 for a purely normal mode behavior and £ = 0 in
the local mode limit [13]. The factor 11 in (3.10) is introduced as a normalization.

In molecules near the local limit, e.g. H2S, the quantum numbers (3.6) provide a natural
labeling of states. When the normal mode behavior is dominant, however, normal labeling
is more appropriate. We next present the connection between these bases [12], for which
it is convenient to use angular momentum labels [ju). In terms of these indices the local
mode basis (3.6) takes the form

Ul2) x T2 x U2 > 02y x O%2) % O%2) > OF)

! ! ! ih l ! i (3.8)
|71 y J2 ’ 73 ; 5} ; ) ; w3 s
where
N N3
]1:32:?1 jS:T’ Hi = MMy

and

1= p1 + po + p3.
The Majorana operator Mys in (3.4) is diagonal in the basis

U2y % U2 5 U22) 3 0O
1 1 l ! (3.9)
|71 5 J2 5 J12 v oM12)

which means that this wave function is a normal basis with respect to the bonds 1 and
2, and is related to the local basis |jje1)|j2p2) by the coupling coefficients [16]

lvjaioi i) = Y Clirdadnas papa) | pa) |as). (3.10)
f1pt

We now proceed to establish the relation between the normal labels v4, vp (symmetric
and antisymmetric normal modes) and the angular momentum labels in (3.9). Applying
the Cy rotation [permutation (12)] to (3.10) we obtain

Caljijas raaz) = (=) H2702 |jyjos Giapa), (3.11)
which suggests the following normal labeling for the antisymmetric mode
vg =1+ j2— h1a =Ny — jig- (3.12)

Since j12 = Ny, Ny — 1,...,0, we have that vg = 0,1,..., Ny, and the wave function
chaneee cion accordine to the naritv of 10 ac evnpected The cvmmetrie altantiim nuimhber
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v4 should be defined in such a way that the parity of (3.10) is determined by v3 for any
value of v4. We thus propose

VA = J12 — M12, (3.13)

where vq = 0,1,2,...,712 since p12 = j12,712 —1,...,0. This result involves the stretching
modes only. A normal mode analysis shows that for one phonon, C3, molecules display two
symmetric and one antisymmetric normal mode. The antisymmetric mode is associated
to stretching vibrations in accordance with (3.12). In turn, the symmetric modes have
the property that one of them is almost a pure stretching mode while the other is a pure
bending mode. This fact allows us to propose the relation

v = ja — pa, (3.14)

with vff) =0,1,2,...,73. We have introduced the superindex 3 to indicate that the label
comes directly from the SU®(2) algebra, which in this case is associated to a pure bending
mode. We thus consider the (nearly) normal basis for Cy, molecules

|j1ja; iz |japs) = [[N1], [Na]; vavpoD). (3.15)

Although the set (3.15) is not exactly normal, it does constitute a very good approximation
to the normal mode labeling, as we shall prove later on.

Finally, we discuss the transition operators. Equation (2.15) gives the general form of
these operators. For Cs, molecules the components of the dipole operator (z,y) transform
as the Cy representations A and B, respectively. There is no contribution from the z-
component since we have selected the x axis orthogonal to the plane of the molecule. By
projecting the f; onto A and B, we find up to linear terms

TzA — al(fl i {2) + agfg, (3.16a)
TP = ay(ty - £2), (3.16b)

where by symmetry considerations the same parameter 3, Eq. (2.14), has been associated
to t; and f;. We have found, however, that the approximation (3.16) is not enough to
reproduce the experimental intensities and it is necessary to add the next order terms
t3(t; — t2) and t3(f; + £3):

TA = ity + o) + aofs + asts(fy + ), (3.17a)
TF = ay(fy — 1) + asts(t; — fa). (3.17b)

If 3, is the parameter associated to ¢, and 3, and (3 is the parameter corresponding to
t3, we have 7 free parameters in all. In the next section we present a fit to the dipole
transitions for the H5'®0O molecule using the form (3.17).
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4. RESULTS

We have applied the SU(2) model to study the vibrational structure of the Cy, mole-
cules HoO, H3S, SO, and O3 which do not present a chemical bond between equivalent
atoms [17].

Using the Hamiltonian (3.5) we have carried out three least-square fits of vibrational
levels for the molecules H,O, HyS and SO,. In addition to the N; and N3 boson numbers
there are 10 free parameters: six quadratic and four quartic in the generators. A first
fit was performed taking into account quadratic terms only, during which problems of
convergence were found if the six parameters were included. The problem was solved
by eliminating the ;3 parameter, which represents the coupling between the SU(2)'s
associated to the chemical bonds and the SU(2) associated to the interaction between
equivalent atoms. The exclusion of this parameter is physically justified, given that the
normal modes are almost purely stretching or bending and this interaction mixes them.
The number of parameters involved in this fit was then 5 + 2, including the two boson
numbers. A second fit was carried out including the first two quartic terms in (3.5) which
are associated to the parameters A[f] and A[lzz], totalling 7 4+ 2 parameters. The third and
final fit includes all the quartic terms in (3.5) and thus 9 + 2 parameters. Table I shows
the parameters obtained for the three fits, as well as the corresponding rms deviations.

The boson numbers Ny and N3 were varied in order to obtain the best fits. For the
N1 boson number the search was started from the value predicted for the corresponding
diatomic molecules. This is achieved by writting explicitly the eigenvalue of the Morse
Hamiltonian (2.6) and identifying the harmonic w, and anharmonic z.w. constants in
terms of the parameters A and N:

we = —4A(N + 1),
Tewe = —4A.
For diatomic molecules the number of bosons is then given by
N = wy/Tewe— 1. (4.1)

In Table IT we compare the estimated and calculated boson numbers N;.

In turn, the N3 boson number is associated with the interaction between equivalent
atoms where no chemical bond is present. Since this parameter is related to the depth of
the potential, V3 is expected to be small and in fact this is so as seen in Table L.

In the case of the O3 molecule, only one fit was performed. The higher order ones
are not feasible due to a lack of experimental information for bending excitations. The
high reactivity of ozone makes it difficult to measure its infrared spectrum. The difference
between the estimated V| and the value obtained in the fit is due to the double bonding
in diatomic oxygen in contrast to the single-double bond resonance structure in O3. The
parameters used for this molecule are also included in Table L

An analysis of the rms deviations in Table I provides a measure of the effect of the
different sets of parameters in the fitting procedure. For example, for H,O the deviations
are 10.44, 4.26 and 3.79, respectively, showing a considerable improvement from fit 1 to



TaBLE 1. Parameters used in the calculation of energy levels for H,O, H,S, SO2, and Oj. All parameters in cm~ !, except Np, N3
which are dimensionless.

H,0 H,S SO, 04
Parameters
(C2, symmetry) 1 2 3 1 2 3 1 2 3 1
M 44 44 44 47 47 47 152 152 152 54
N; 28 28 28 37 37 37 28 28 28 34
A ~19.376 -18.574  —17.793 —12.011 -11.925  —11.482 —1.360 —1.284 —0.983  —5.118
As - 6211 - 6590 — 5340 — 1.549 - 1.3900 — 0274 —0.133  —0.394 ~0.636 5.241
Bis — 0181 - 2256 — 3317 — 0289 - 0354 - 0553 —0.933 —1.097 ~1i079 4.506
Bis — 5352 — 4953 — 5771 — 5105 - 5243  — 6.125 —0.830 —0.779 —0.739 —6.538
b 1.015 1.014 1.012 0.141 0.143 0.142  0.677 0.677 0.682 0.711
Al —2.96(—4) —5.489(—4) —0.128(—4) —0.881(—4) —0.018(—4) —0.051(—4)
Al 9.66(—4) —4.992(—4) ~0.927(-4) —6.025(—4) 1.64 (—4) —3.54 (—4)
Bl 2.532(—4) ~0.532(—4) 0.059(—4)
B 2.560(—4) 1.456(—4) 0.126(—4)
Number of levels 52 52 32 20 20 20 41 41 41 30
rms (cm™!) 10.44 4.26 3.79 1.19 1.1 1.05 3.92 3.82 3.71 13.42

VIiL

“Tv 1 SYINY "IN'[



ALGEBRAIC DESCRIPTION OF STRETCHING AND BENDING MODES. .. 715

TABLE II. Estimated boson numbers according to spectroscopic constants [17] and boson numbers
N obtained in the fits.

Molecule We WeTe We/Tewe — 1 M
BolH 3737.76 84.881 43.03 44
1325 2711.6 59.9 44.26 47
18 E9es 1149.22 5.63 203.12 152
'H-'H 4395.9 117.9 37.28 30
160160 1580.361 12.073 131.6 54

fit 2, while the inclusion of all quartic terms does not have a significant effect in the last
fit. For the H,S, SO,, and O3 molecules the deviations for the first fit are 1.19, 3.92 and
13.42, respectively. The inclusion of the quartic interactions associated to the parameters
Bﬁ] and Bﬁ] does not give rise to a significant gain in accuracy. However, we note that
the introduction of additional quartic terms in (3.5), such as

[C201(2) + Cao2(2)][Ca03(2y); (4.2)

could improve the calculation. Operators of the type of (4.2) are diagonal in the local
basis and their inclusion is straightforward.

In Tables IIT, IV and V we present the comparison between experimental and calculated
energies for HyO, H2S and SO, respectively. In these tables we display the predicted
energies up to seven quanta. The assignment of states was done according to the maximum
component in the wave function. In molecules with local behavior, like H,S, a strong
mixing of the normal basis (3.15) is present, the local labeling being more appropriate in
this case. On the contrary, the SO, molecule presents normal behavior and thus strong
mixing of states appears in the local basis. The HoO molecule is in-between so the mixing
occurs with respect to both bases. The mixing increases in all cases for higher multiplets,
while for lower energies there is no strong mixing and the labeling coincides with previous
assignments [17].

Comparison of our results with the experimental values for O are presented in Table VI.
This molecule has been studied previously by using algebraic methods [2,7,22]. The corre-
sponding deviation was 23.7 cm™! [7] while our result is 13.42 cm™!. Since this molecule
has atoms with the same mass, normal behavior is expected. One of the advantages
of the algebraic model is that the local—normal mode transition can be analyzed in a
simple way, e.g., through the ¢ coefficient defined by Eq. (3.7), where the parameters
should correspond to the first fit. In Table VII we show the value of £ corresponding
to this calculation, which turns out to be —0.96, close to the normal limit |¢| = 1, in
agreement with the results of Refs. [13]. The same analysis can be applied to H,O, H,S
and SO;. From this set of molecules, SO, has similar atomic masses, while H;0O and
H3S involve very different ones, particularly for the latter. We then expect to obtain
an almost local behavior far HyS, while SO, should be close to normal and H;0 in an
intermediate situation. The values obtained are —0.33, 0.08 and —0.82 for H-,0, H,S and
SO, respectively, again in accordance with Refs. [13,15].
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TABLE III. Comparison between calculated and experimental energies for HoO, and predicted
energies up to 7 quanta. All energies in cm™!.

(n m= v2) (v1 vz v3) Theor. Exp. Theor. — Expt.
00+ 1) (010) 1594.52 1595.00 —0.48
00+ 2) (020) 3152.23 3151.40 0.83
(01+ 0) (100) 3661.99 3657.00 4.99
(01— 0) (001) 3751.05 3755.90 —485
00+ 3) (030) 4675.53 4667.00 8.53
(014 1) (110) 5238.01 5234.90 3.11
(01= 1) (011) 5327.06 5331.20 —4.14
00+ 4) (0 4 0) 6166.61 6168.70 ~2.09
01+ 2) (120) 6776.50 6775.00 1.50
(01— 2) (021) 6865.55 6871.50 ~5.95
02+ 0) (2 00) 7207.14 7201.50 5.64
(02— 0) i o 7246.73 7249.80 -3.07
(11+ 0) (002) 7442.51 7445.00 —2.49
01+ 3) (130) 8279.86 8274.00 5.86
(01— 3) (031) 8368.91 8374.00 ~5.09
02+ 1) (210) 8764.43 8761.50 2.93
(02 - I} (111) 8804.02 8807.00 ~2.98
(114 1) (012) 8999.80 9000.10 —0.30
(024 2) (22 0) 10283.49 10284.40 -1.91
(02— 2) (121) 10323.08 10328.70 —5.62
(114 2) (022) 10518.86 10524.30 —5.44
(03+ 0) (300) 10601.68 10599.60 2.09
(03— 0) (201) 10611.06 10613.40 —-2.34
(12+ 0) (102) 10868.91 10868.80 0.11
(12~ 0) (003) 11033.60 11032.40 1.20
03+ 1) (310) 12140.02 12139.20 0.82
(03— 1) (211) 12149.40 12151.20 —1.80
12+ 1) (112) 12407.25 12407.60 —0.35
(1§~ 1) (01 3) 12571.93 12565.00 6.93
(03+ 2) (320) 13639.45 13642.00 ~2.55
04+ 0) (202) 13828.36 13828.30 0.06
(124 2) (1 22) 13906.68 13910.80 —-4.12
(12— 2) (023) 14071.36 14066.10 5.26
(134 0) (40 0) 14222.71 14221.10 1.61
(13- 0) (103) 14315.79 14318.80 -3.01
(22+ 0) (00 4) 14545.94 14536.80 9.14
(044 1) (2 1.2) 15347.52 15344.40 3.12
(04— 1) (311) 15348.76 15347.90 0.86
(13+ 1) (410) 15741.87 15742.70 —0.83
(13-1) (113) 15834.95 15832.70 2.25
04+ 1) (2/2..2) 15347.52 15344.40 3.12
(04+ 2) (22 2) 16827.12 16821.60 5.52
(04— 2) (321) 16828.36 16825.20 3.16
(05+ 0) (302) 16896.51 16898.40 ~1.89
(05— 0) (203) 16896.63 16898.80 -2.17
¢ B 3) (4 2 0) 17221.46 17227.70 —6.24
(18— 2) (3.:2.3) 17314.55 17312.50 2.05
(144 0) (500) 17460.12 17458.20 1.92
(14— 0) (401) 17492.20 17495.50 ~3.30
(23+ 0) (104) 17744.70 17748.00 -3.30
(23— 0) (00 5) 17967.53 17970.90

rms deviation (cm) 3.79
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TABLE III. Cont. Predicted energies.

(nm =+ vg) (v1 v2 v3) Theor. (nm %+ vg) (v1 v2 v3) Theor.
00+ 5) (0 50) 7627.50 (13- 3) (133) 18756.98
00+ 6) (0 6 0) 9060.00 (14+ 1) (510) 18959.89
01+ 4) (140) 9750.29 22+ 3) (0 3 4) 18987.13
(01— 4) (041) 9839.35 (14- 1) (411) 18991.97
00+ 7) (0 70) 10465.76 (23+ 1) (114) 19244.47
01+ 5) (150) 11189.82 (23— 1) (015) 19467.30
(01— 5) (051) 11278.87 06+ 0) (402) 19813.42
02+ 3) (2 30) 11766.73 (06— 0) (303) 19813.43
02— 3) (131) 11806.32 05+ 2) (322) 19855.84
i T4 B (032) 12002.10 (05— 2) (223) 19855.95
01+ 6) (160) 12600.25 (14+ 2) (520) 20419.45
(01— 6) (061) 12689.31 (14— 2) (421) 20451.53
02+ 4) (2 40) 13216.35 (15+ 0) (600) 20535.20
(02— 4) (141) 13255.04 (15— 0) (501) 20541.00
(11+ 4) (042) 13451.72 (234 ) (124) 20704.02
02+ 5) (2 50) 14634.36 (24+ 0) (6 0 0) 20895.71
(02— 5) (1 5:1) 14673.95 (23- 2) (0 25) 20926.86
(114 5) (052) 14869.73 (24-0) (105) 21043.08
03+ 3) (330) 15102.38 06+ 1) (412) 21293.58
(0%~ %) (231) 15111.76 (06— 1) (313) 21293.58
12+ 3) (132) 15369.61 33+ 0) (0 06) 21305.92
(12— 3j (033) 15534.29 15+ 1) (6 10) 22015.36
22+ 1) (01 4) 16065.10 (15-1) (511) 22021.15
(03+ 4) (3 4 0) 16531.00 24+ 1) (610) 22375.86
(03— 4) (241) 16540.38 (24— 1) (115) 22523.24
(124 4) (142) 16798.23 07+ 0) (30 4) 22583.27
(12— 4) (0 43) 16962.92 (07-0) (403) 22583.27
(22+ 2) (0 24) 17544.70 33+ 1) (016) 22786.07
(04+ 3) (232) 18269.55 (164 0) (502) 23446.12
(04— 3) (331) 18270.78 (16— 0) (601) 23446.77
05+ 1) (312) 18396.28 (25+ 0) (700) 22966.00
{5~ 1) (213) 18396.39 (25— 0) (403) 24031.33
(13+ 3) (430) 18663.89 (34+ 0) (106) 24291.41

(34— 0) (007) 24557.37

In Sect. 3 the normal basis for Cy, molecules was constructed. The eigenfunctions can
thus be expressed in terms of them, leading to useful information for the classification
of states. As explained before, the states (3.15) are a close approximation to the normal
basis but are not exact. In addition, the molecules we have studied involve behaviors
from local (§6 = —0.08) to normal (¢ = —0.96). Therefore, the eigenfunctions in the
normal basis are certainly not pure and are often strongly mixed, specially for highly
excited states.

Since the rms deviations corresponding to the best fits are rather small, e.g., 3.70, 1.02,
3.71 and 13.42 for H,0, H3S, SO, and Ogs, respectively, the theoretical energies can be
used to predict overtones and combinations not yet measured. In Tables III-VI we present
the calculated energies up to vy + vy + v = 7.
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TaBLE IV. Comparison between calculated and experimental energies for H,S, and predicted

energies up to 7 quanta. All energies in cm™".

1

(nm= v) (v1 vo v3) Theor. Exp. Theor. — Expt.

(00+ 1) (010) 1183.61 1182.60 1.01
00+ 2) (020) 2353.07 2354.00 -0.93
01+ 0) (100) 2615.26 2614.40 0.86
(01— 0) (001) 2628.61 2628.50 0.11
(014 1) (110) STIRAZ 3779.20 —1.08
(01-1) (011) 3791.47 3789.30 217
(01— 2) (021) 4939.74 4939.20 0.54
(02+ 0) (200) 5145.42 5145.10 0.32
(02— 0) (101) 5145.22 5147.40 —-0.18
(024 1) (2 1:0) 6287.36 6288.20 -0.84
(02— 1) (111) 6289.16 6289.20 ~0.04
(114 1) (012) 6385.86 6388.70 —2.84
03+ 0) (102) 7575.87 7576.30 ~0.43
(03— 0) (201) 7575.97 7576.31 —0.34
(12+ 0) (300) 7753.38 7751.90 1.48
(12— 0) (00 3) 7779.41 7779.20 0.21
(03— 1) (211) 8696.82 8697.30 ~0.48
(04— 0) (301) 9910.19 9911.10 —-0.91
(13- 0) (103) 10194.07 10194.50 —-0.43
(04— 1) (311 11009.78 11008.80 0.98
rms deviation (cm) 1.05

TaBLE IV. Cont. Predicted energies.

(nm=* vg) (v) vy v3) Theor. (nm £ v) (v1 v2 v3 Theor.
(00+ 3) (030) 3512.31 (054 0) 302 12149.89
(014 2) (120) 4926.40 (50— 0) (203) 12149.89
00+ 4) (0 4 0) 4665.04 (12+ 4) (340) 12159.75
(11+ 0) (00 2) 5243.92 (12— 4) (04 3) 12185.79
(00+ 5) (050) 5814.73 (134 2) (420) 12372.37
01+ 3) (130) 6064.02 (i 5= 9 (123) 12377.44
(01— 3) (031) 6077.37 @22+ 2) (024) 12476.14
(00+ 6) (0 6 0) 6964.61 (14+ 0) (104) 12524.76
01+ 4) (14 0) 7194.70 (14— 0) (401) 12525.11
(01— 4) (041) 7208.05 (234 0) (500) 12696.69
(024 2) (220) 7414.29 (23— 0) (005) 12734.68
(02- 2) (121) 7416.09 (04+ 3) (2372) 13165.42
(11+ 2) ‘02 2) 7512.79 (04— 3) (331) 13165.43
00+ 7) (0 7 0) 8117.69 05+ 1) (312) 13228.06
01+ 5) (150) 8321.90 (50— 1) (213) 13228.06
(01— 5) (051) 8335.25 (13+ 3) (430) 13444.25
02+ 3) (2 30) 8530.15 (L3~ 3 (133) 13449.31
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TaBLE IV. Cont. Predicted energies.

(n m=x vq) (v1 ve v3) Theor. (nm £ vg) (vy v2 v3) Theor.
02— 3) (131) 8531.95 22+ 3) (03 4) 13548.01
(171 + 8) (032) 8628.65 14+ 1) (114) 13602.93
03+ 1) (112) 8696.73 (14— 1) (411) 13603.28
12+ 1) (310) 8874.23 23+ 1) (510) 13774.86
(1 8= 1) (013) 8900.26 (23— 1) (015) 13812.85
01+ 6) (16 0) 0448.86 05+ 2) (3272) 14290.01
(1 ~ 8 (061) 9462.21 (50— 2) (223) 14290.01
02+ 4) (2 40) 9638.63 06+ 0) (20 4) 14295.69
(02— 4) (141) 9640.44 60— 0) (303) 14295.69
(11+ 6) (042) 9737.13 14+ 2) (124) 14664.88
03+ 2) (122) 9802.15 (14— 2) (421) 14665.23
03— 2) (221) 9802.25 (15+ 0) (20 4) 14763.42
04+ 0) (202) 9910.18 (15— 0) (501) 14663.43
12+ 2) (320) 9979.66 23+ 2) (52 0) 14836.81
(12— 2) (023) 10005.69 (25— 2) (025) 14874.80
(13+ 0) (40 0) 10189.01 24+ 0) (6 00) 15037.16
22+ 0) (004) 10292.77 (24— 0) (303) 15046.55
02+ 5) (2 50) 10743.22 (33+ 0) (00 6) 15148.11
(02~ 5) (151) 10745.02 06+ 1) (214) 15352.27
11+ 5) (052) 10841.72 (60— 1) (313) 15352.27
03+ 3) (132) 10896.10 15+ 1) (214) 15820.00
(03— 3) (231) 10896.19 (15— 1) (511) 15820.02
04+ 1) (212) 11009.78 (24+ 1) (610) 16093.74
(12+ 3) (330) 11073.60 (24— 1) (313) 16103.13
(12— 3) (03 3) 11099.63 33+ 1) (016) 16204.70
154 1) (410) 11288.60 (7T0+ 0) (30 4) 16348.22
(13- 1) (113) 11293.67 (07= 0) (40 3) 16348.22
22+ 1) (01 4) 11392.37 (16+ 0) (502) 16907.97
03+ 4) (142) 11982.25 (16— 0) (601) 16907.97
(03— 4) (241) 11982.34 (25+ 0) (700) 17279.64
04+ 2) (222) 12093.55 (25— 0) 601) 17280.46
(04— 2) (321) 12093.55 (34+ 0) (700) 17447.08

(34— 0) 007) 17496.25

5. DIPOLE TRANSITIONS

In Sect. 2 we presented the general form of the dipole operator and indicated the way to
compute transition intensities in the framework of the algebraic approach. In this section
we calculate the dipole intensities for the HoO molecule.

Although the linear expansion of the transition operator (2.15) is not sufficient to fit the
data, we have found that the dipole operators (3.17a-b), which include quadratic terms,
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TABLE V. Comparison between calculated and experimental energies for SO,, and predicted en-
ergies up to 7 quanta. All energies in cm™!

(nm=+ vg) (v1 v v3) Theor. Exp. Theor. — Expt.
00+ 1) (010) 518.61 517.87 0.74
00+ 2) (020) 1034.46 1035.13 —0.67
(01+ 0) (100) 1150.95 1151.71 —0.76
(01— 0) (001) 1358.12 1362.06 —3.94
00+ 3) (03 0) 1549.25 1551.75 —2.50
01+ 1) (110) 1667.40 1666.33 1.07
01— 1) (011) 1874.57 1875.79 -1.22
00+ 4) (0 40) 2064.55 2066.87 -2.32
01+ 2) (120) 2180.97 2179.51 1.46
02+ 0) (2 00) 2293.92 2295.80 ~1.88
(01— 2_} (021) 2388.14 2388.92 —0.78
(02— 0) (101) 2498.78 2499.87 ~1.09
00+ 5) (05 0) 2581.77 2582.30 ~0.53
01+ 3) (130) 2693.36 2693.63 -0.27
(11+ 0) (002) 2706.91 2713.38 —6.47
02+ 1) (210) 2808.21 2807.19 1.02
02— 1) (111) 3013.06 3010.32 2.74
(1 1% 1) (012) 3221.19 3222.25 ~1.06
(12+ 0) (300) 3428.94 3431.19 —2.25
03— 0) (201) 3631.56 3629.61 1.95
{1 8 022) 3732.46 3730.90 1.56
03+ 0) (102) 3837.40 3837.06 0.34
(24 1) (310) 3941.04 3939.90 1.14
(03— 0) (201) 3631.56 3629.61 1.95
14 5 (022) 3732.46 3730.90 1.56
(03 + 0) (102) 3837.40 3837.06 0.34
24 1 (310) 3941.04 3939.90 1.14
(02— 3) (131) 4034.31 4029.39 4.92
(L 2= 0 (00 3) 4046.38 4054.00 ~7.62
(11+ 3) (032) 4242 .44 4241.50 0.94
02+ 4) (240) 4339.69 4342.70 -3.01
2+ B (320) 4450.01 4446.90 3.11
f, == 1 (013) 4558.48 4560.10 ~1.62
(04— 0) (301) 4754.48 4751.23 5.25
03+ 2) (1.29) 4858.47 4848.14 10.33
12+ 3) (330) 4957.56 4958.00 —0.44
(L@~ 0 (103) 5166.80 5163.62 3.18
(Ld= b (401) 5873.53 5872.10 1.43
(14+ 0) (104) 6487.02 6489.20 ~% 18
(23— 0) (005) 6697.43 6689.40 8.03

rms deviation (cm) 3.71
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TABLE V. Cont. Predicted energies.

(nmz ) (v1 vo v3) Theor. (nm £ vp) (v v2 v3) Theor.
(01— 3) (031) 2900.52 (13- 4) (043) 6082.69
00+ 6) (0 6 0) 3102.22 23+ 1) (510) 6182.85
01+ 4) (14 0) 3206.12 (04— 3) (331) 6278.16
02+ 2) (2 20) 3319.48 (05— 0) (2 03) 6279.53
01- 4) (041) 3413.29 (134 9) (024) 6393.12
02— 2) (121) 3524.34 04+ 3) (232) 6481.78
00+ 7) (0 70) 3627.05 05+ 1) (312) 6582.72
01+ 5) (15 0) 3720.70 23+ 2) (520) 6687.19
02+ 3) (230) 3829.45 (18~ (133) 6688.49
(01— 5) (051) 3927.87 (24+ 0) (6 0 0) 6786.36
03— 1) (211) 4143.66 05— 1) (213) 6787.23
01+ 6) (16 0) 4238.38 (14— 2) (421) 6885.58
03+ 1) (112) 4349.50 (13+ 3) (03 4) 6898.24
(01— 6) (061) 4445.54 (15~ 0) (501) 6982.76
(02— 4) (141) 4544.54 (14+ 1) (114) 6994.72
(13+ 0) (4 00) 4556.00 05+ 2) (322) 7087.06
(03— 2) (51 4652.64 06+ 0) (402) 7182.18
(11+ 4) (04 2) 4752.67 {2 55— 1] (015) 7205.14
(13+ 0) (4 00) 4556.00 05+ 2) (322) 7087.06
03— 2) (221) 4652.64 06+ 0) (402) 7182.18
(1 1+ 1) (04 2) 4752.67 (88~ 1) (015) 7205.14
02+ 5) (250) 4851.60 (05— 2) (2 23) 7201.58
04+ 0) (202) 4960.10 (24+ 1) (610) 7291.85
(02— 5) (151) 5056.46 (06— 0) (303) 7384.56
(13+ 1) (410) 5065.91 (15— 1) (511) 7488.25
(03— 3) (Ea1) 5160.19 (14+ 2) (124) 7499.06
(04— 1) (311) 5266.38 06+ 0) (20 4) 7589.87
03+ 3) (132) 5366.02 (23— 9) (02 5) 7709.48
(13+ 0) (00 4) 5376.55 (15— 0) (105) 7798.04
04+ 1) (212) 5470.00 34+ 0) (7 00) 7889.68
(134 2) (420) 5572.58 (06— 1) (313) 7890.06
(12— 3) (03 3) 5575.00 24+ 0) (006) 8009.04
(03— 4) (241) 5667.87 (25— 0) (601) 8084.16
(23+ 0) (50 0) 5675.14 06+ 1) (214) 8095.36
(L 3= 1) (113) 5676.71 (16+ 0) (502) 8281.59
(04— 2) (321) 5773.05 (15— 1) (115) 8303.53
03+ 4) (142) 5873.71 (07~ 0) (40 3) 8481.93
(L34 1) (01 4) 5886.46 (24+ 1) (016) 8514.53
04+ 2) (222 5976.67 07+ 0) (304) 8685.12
05+ 0) (302) 6075.02 (16— 0) (2 0 5) 8891.12
(134 14 (430) 6077.69 25+ 0) (106) 9099.89

(34— 0) (007) 9311.39
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TaBLE VI. Comparison between calculated and experimental energies for O3, and predicted en-

ergies up to 7 quanta. All energies in cm™!,

(nm=+ wvg) (v1 vo v3) Theor. Exp. Theor. — Expt.
00+ 1) (010) 720.34 701.00 19.34
(01+ 0) (100) 1033.13 1042.00 —8.87
(01— 0) (001) 1109.89 1102.00 7.89
01+ 1) (110) 1727.32 1726.00 1.32
(01- 1) (011) 1804.08 1796.00 8.08
02+ 0) (200) 2049.66 2058.00 ~8.34
(02— 0) (101) 2102.08 2110.00 ~7.92
(11+ 0) (002) 9212.40 2201.00 11.40
02+ 1) (210) 2717.70 2726.00 —8.30
02— 1) (111) 2770.12 2785.00 ~14.88
11+ 1) (012) 2880.44 2886.00 ~5.56
03+ 0) (300) 3043.63 3046.00 = BT
(03— 0) (201) 3071.56 3084.00 ~12.44
(L2+ 0) (102) 3180.24 3185.00 —4.76
(12— 0) (003) 3302.99 3289.00 13.99
04+ 0) (400) 4003.02 4000.00 3.02
(04— 0) (301) 4012.74 4009.00 3.74
(134 0) (202) 4141.35 4139.00 2.35
(13- 0) (103) 4241.74 4238.00 3.74
(@ 2% 0) (0 04) 4382.12 4371.00 11.12
(05— 0) (401) 4919.44 4922.00 ~2.56
(14— 0) (203) 5165.71 5170.00 ~4.29
(23— 0) (00 5) 5449.15 5443.00 6.15
06+ 0) (402) 5786.92 5767.00 19.92
(15+ 0) (6 0 0) 6038.55 5997.00 41.55
(15+ 0) (204) 6204.06 6204.00 0.06
(33+ 0) (00 6) 6504.07 6506.00 ~1.93
(16— 0) (601) 6950.14 6987.00 —36.86
(25— 0) (403) 7218.25 7227.00 _8.75
(34— 0) (007) 7546.72 7555.00 ~8.28
rms deviation (cm) 13.42

lead to a satisfactory description for the intensities in this molecule. Using the parameter
values a3 = 15.8, ag = 450.0, ag = —35.0, g = 55.0, a5 = 2350, 4, = 1.1 and f3 = 2.5
we obtain the result given in Table VIII. Although these parameters were not obtained
by a least squares fit procedure, but rather varied to search for the best fit, this is not
difficult since the effect of each parameter on the intensities is very specific. A fit to these
intensities was carried out previously by Iachello and Oss [15], within the U(4) algebraic
method. Although in that case energy fits are quite straightforward, the fit to intensities is
very difficult due to the model’s sensitivity to parameter values, in contrast to the case of
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TABLE VI. Cont. Predicted energies.

(nm=x vy) (v1 va v3) Theor. (nm £ vo) (v1 v2 v3) Theor.
00+ 2) (02 0) 1482.61 13+ 2) (222) 5414.76
00+ 3) (030) 2286.80 05+ 1) (312) 5506.92
01+ 2) (120) 2463.44 (05— 1) 411) 5509.04
01- 2) (021) 9540.20 (1= ) (123) 5515.15
00+ 4) (04 0) 3132.92 (28 + 2) (024) 5655.53
01+ 3) (130) 3241.48 23+ 1) (510) 5688.03
01— 3) (031) 3318.24 (14— 1) (213) 5755.30
02+ 2) (220) 3427.66 (06— 0) (30 3) 5787.25
(02— 2) (121) 3480.08 14+ 1) (11 4) 5886.36
11+ 2) (022) 3590.41 02+ 5) (2 50) 5809.12
03+ 1) (310) 3685.52 01+ 6) (160) 5827.16
(03— 1) (211) 3713.45 (02—~ 5) (151) 5861.54
12+ 1) (112) 3822.13 03+ 4) (3 4 0) 5862.75
i2- 1 (013) 3944.89 (03— 4) (241) 5890.67
(00+ 5) (05 0) 4020.96 (01— 6) (061) 5903.92
01+ 4) (140) 4061.45 00+ 7) (0 70) 5922.83
(01— 4) (041) 4138.21 (114 5) (052) 5071.86
02+ 3) (230) 4179.56 04+ 3) (4 30) 5976.02
() B %5 (131) 4231.98 (04— 3) (331) 5985.74
(11+ 3) (032) 4342.30 (12+ 4) (142) 5999.35
03+ 2) (320) 4369.34 23- 1) (015) 6038.74
(03— 2) (221) 4397.27 (15— 0) (501) 6071.10
12+ 2) (122) 4505.95 (24— 0) (105) 6339.18
04+ 1) (410) 4618.76 (13+ 3) (232) 6114.35
(04— 1) (311) 4628.48 (12— 4) (04 3) 6122.11
i 5~ 19) (023) 4628.70 05+ 2) (322) 6138.44
(13+ 1) (213) 4757.09 (05— 2) (421) 6140.55
(18= 1) (113) 4857.48 (13- 3) FLE) 6214.74
05+ 0) (302) 4917.33 @3+ 2) (520) 6319.55
01+ 5) (150) 4923.34 06+ 1) (412) 6350.36
00+ 6) (06 0) 4950.93 06— 1) (313) 6350.69
02+ 4) (240) 1973.37 (2 2+ ) (03 4) 6355.12
22+ 1) (014) 4997.86 (14— 2) (2 23) 6386.82
(01— 5) 051) 5000.10 (14+ 2) (12 4) 6517.87
(02— 4) (141) 5025.79 (15+ 1) (61 0) 6601.99
03+ 3) (330) 5095.08 (07+ 0) (502) 6614.30
23+ 0) (500) 5008.44 (07— 0) (403) 6614.34
3~ 3) (231) 5123.01 (15=1) (511) 6634.54
(11+ 4) (04 3) 5136.12 (23— 2) (02 5) 6670.25
(1 24 4 (132) 5231.69 (F 54 1) (214) 6767.50
(04+ 2) (4 2 0) 5276.43 24— 1) (115) 6902.62
(04— 2) (321) 5286.15 (16+ 0) (700) 6940.37
(14+ 0) (10 4) 5206.77 334+ 1) (0.1 &) 7067.51
(12— 3) (033) 5354.44 (344 0) (700) 7113.44

(25+ 0) (106) 7371.35
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TABLE VII. Values of the £ parameter for the molecules analyzed in Table II.

Molecule E

H,0 —-0.33
H,S —0.08
S0, —0.82
O3 —0.96

the U(2) model. In Table VIII we also present the results of Ref. [15], as well as previous
calculations using simple dipole functions.

From Table VIII we conclude that traditional calculations fail completely to describe
the observed intensities. Even though the accuracy of our results is of the same order of
magnitude than the one of Ref. [15], we have used a much simpler procedure with nearly
half the number of parameters. These results emphasize the usefulness of the U(2) model
when only vibrational degrees of freedom are involved. Our fitting programs are available
on request.

6. CONCLUSIONS

We have presented an extension of the U(2) model which incorporates the description of
bending modes in triatomic molecules. In addition to the energy fits we have calculated
dipole intensities for the HoO molecule.

The rms deviations obtained for the best fits are of the order of a few cm™! or less
(with the exception of Oj). This result, together with the simplicity of the model (no
coupling coefficients are involved in computing the matrix elements) makes it particularly
attractive for the study of overtones and combinations with high number of quanta.
This is in contrast with the traditional approach, based on integrodifferential techniques,
where the potential is modeled in terms of the force field constants through complex
calculations [27]. Using the parameters obtained in the quadratic fits we also computed
the parameter £, which gives a measure of the local-normal behavior of the molecules.
In addition, our analysis shows that the definition of quantum numbers proposed for the
normal states are very close to the exact quantum number for molecules with normal
behavior. Qur relatively simple dipole intensity calculation in HyO gives a reasonably
good description of the experimental observations, with similar quality to more involved
methods. The method can be improved in several ways. The interactions included in
the Hamiltonian (3.5) assume the conservation of the total number of quanta V. This
restriction means that only some physically meaningful interactions, such as the Darling-
Dennison interactions, have been taken into account, while others, like those leading to
Fermi resonances, have not been included in the Hamiltonian. Phonon non-conservation,
however, can be readily included in the model through the other generators of the SU(2)
group. In particular, the raising and lowering operators, J, and J_, or their hermitean
sum J; = %(j+ + J_), mix the multiplets in precisely the required form for Fermi-like
interactions.
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TaBLE VIII. Calculated intensities (0,0,0) — (v; vz v3) in HyO.

Lawton & Stamard Carney
v V2 U3 Obs. [23]  Present work  Iachello Oss  Child [24] et al [25] et al. [26]

010 1040.0 973 1040 1040.0 1040
100 49.5 55.3 51 49.5 43.0 35.6
001 720.0 670.4 732 74.1 241.9 493.0
020 7.6 6.5 4.7 0.043 5.4
110 B A 1:8 5.7 0.051 1.3
011 80.4 824 82.8 26.7 162.5
200 4.6 5.1 77 0.037 0.004 4.3
101 64.3 74.2 28 0.054 0.004 22:2
(-0 2 0.58 1.0 2.2 0.01 0.0 0.15
030 0.04 0.044 0.02 0.0014 0.02
120 0.31 0.012 0.08 0.06 0.08
0:2:1 5.1 0.55 14 0.05 1.7
210 0.042 0.16 0.03 0.0013
1.171 4.95 9.13 3.9 0.0036
012 0.16 0.034 0.001 0.29
300 0.62 1.61
201 7.96 4.69
102 5(—6) 0.059 0.16
003 0.27 0.12
040 0.002 0.0003 0.0004 0.0039
130 0.023 0.00008 0.0008 0.0024
031 0.089 0.0037 0.011 0.058

Number of

parameters 7 12

The matrix elements of J, in the local basis take the form

([NJv + 1| J;|[N]o) =

v

(N =)o +1),

([Nlo = 1]|Jz|[N]v) = /o(N —v +1).

B[

The algebraic model can thus naturally incorporate such terms in a simple fashion.

On the other hand, the study of vibrational isotopic effects in molecules is of major
importance due to the fact that to a very high degree of approximation these molecules
correspond to the same energy potentials. The differences in vibrational frequencies are
due mainly to the presence of different masses. From these considerations it is possible to
establish additional equations that determine the force field constants. In the algebraic
approach, however, there is no explicit distinction between the kinetic and the potential
energy terms. All structural information is contained in the Hamiltonian parameters, so
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we cannot reproduce the traditional studies in a straightforward way. It is possible, never-
theless, to study any isotopic molecule by means of the same algebraic scheme considering
the change to lower symmetry, if present. Once we have at our disposal fits to a set of
isotopic molecules we can analyze the scaling properties of the Hamiltonian parameters
as a function of their masses, which allows the prediction of the vibrational spectrum of
other isotopic species [15]. It is also possible to correlate the Hamiltonian parameters with
the force field constants by means of closed energy expressions for the fundamentals and
first overtones, as explained in Ref. [15] for the case of H,0O.

We remark that although the generalization of the U(2) model has only been pre-
sented for the case of triatomic molecules, it is possible to extend our considerations
to polyatomic molecules, although a careful analysis of spurious degrees of freedom has
to be made [10,11]. The model seems to represent a very promising framework for the
description of infrared spectroscopic properties of complex molecules.
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