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ABSTRACT. Cousidering the equations for the spin-3/2 perturbations of the Carter A solution,
it is shown that the maximal spin-weight components, which obey decoupled equations, satisfy
differential identities that are equivalent to the Teukolsky-Starobinsky identities fulfilled by the
separated functions (in terms of which are given the maximal spin-weight components). Further-
more, assuming that the electromagnetic field is absent, we obtain analogous relations for the
maximal spin-weight components of the Weyl spinor perturbations.

RESUMEN. Considerando las ecuaciones para las perturbaciones por campos de espin 3/2 de la
solucién A de Carter, se muestra que las componentes con peso de espin maximal, las cuales
obedecen ecuaciones desacopladas, satisfacen identidades diferenciales que son equivalentes a las
identidades de Teukolsky-Starobinsky satisfechas por las funciones separadas. Ademds, asumiendo
que el campo electromagnético no estd presente, se obtienen relaciones analogas para las compo-
nentes con peso de espin maximal de las perturbaciones del espinor de Weyl.

PACS: 04.20.Jb; 04.40.-b

1. INTRODUCTION

In general relativity there are theorems proving that the exterior space-time of an un-
charged, rotating black hole is described by the Kerr solution [1]. The equilibrium con-
figuration of such a black hole is completely characterized by its mass and angular mo-
mentum, whereas a black hole with mass, angular momentum and electric charge has
to be described by the Kerr-Newman metric. Because of their astrophysical applications,
these solutions have received considerable interest in the last decades. Thus, among other
things, their perturbations by different test fields have been studied with very interest-
ing results. One of these, is that from the massless free field equations for spin 1/2,
1, 3/2 and 2, one can obtain decoupled equations for the maximal spin-weight compo-
nents of the perturbations, which admit separable solutions [2-6]. For the Dirac field and
when the background space-time is the Kerr metric, Chandrasekhar [7] showed that this
equation can be solved by separation of variables too. Furthermore, it has been found
that the maximal spin-weight components satisfy certain differential identities, that are
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equivalent to the so-called Teukolsky-Starobinsky identities. The success of these investi-
gations has motivated the generalization of some of these results. For example, Torres del
Castillo (8,9,10] found that the solution of the Rarita-Schwinger equation can be put in
terms of one complex-valued function (Debye potential), when the background space-time
is an algebraically special solution of the Einstein vacuum field equations with or with-
out cosmological constant or of the Einstein-Maxwell field equations without cosmological
term, these works (in a certain sense) generalize the works of Giiven [6] and Aichelburg
and Giiven [11]. Furthermore, he has shown that when the space-time is of type D, the
equations governing the maximal spin-weight components admit separable or R-separable
solutions.

The aim of the present paper is to give the differential identities satisfied by the maximal
spin-weight components of the spin-3/2 perturbations of the Carter A solution, when the
cosmological constant is equal to zero, as well as for the maximal spin-weight components
of the Weyl spinor perturbations, when the electromagnetic field is absent. On the other
hand, for the spin-3/2 perturbations the real and imaginary parts of the Starobinsky
constants are determined. The spinor formalism and the Newman-Penrose notation are
used throughout.

2. THE SPIN-3/2 PERTURBATIONS OF THE CARTER A SOLUTION
When the back reaction of the spin-3/2 fields on the geometry is neglected, the extended
supergravity field equations reduce to the Rarita-Schwinger equation on a fixed back-

ground space-time, which satisfies the Einstein-Maxwell field equations without cosmo-
logical constant [12,13]. The Rarita-Schwinger equation, in spinor notation is given by

JA - ik A k soe JA
VgV op +iV2reloyt L =V 0 (1)

where j, k = 1, 2, pap is the electromagnetic spinor, €/* is the Levi-Civita symbol and
j _ 3 : ; :
Wisn =9 ape- Bauation (1) is equivalent to [10]

HJABC = HJ(ABc)a HJABC‘ =0, (2)
where
J - . ik kR
H ypc =V B Y a0k iV2e YaB ¥ ey
JA  _ oD A - ik ARk
B e = V¥ iy — V2 0 (3)

(The round brackets denote symmetrization on the indices enclosed and the indices be-
tween bars are excluded from the symmetrization.)
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As in this linearized theory the back reaction of the spin-3/2 fields on the background
solution is neglected, then the supersymmetry transformations affect only the spin-3/2
fields and are given by

y

W aps ¥ aget Vag® 4 =" 2¢" e (4)

| Pap® ¢
where o/ 4 is a pair of arbitrary spinor fields. These transformations induce the following
changes on the fields H’ e and H’ . .
J / D ' : ik kS
H g = H qpc+ ¥ apc @ p +iv2ea ViBis $oya

g J )
H s = H e (5)

From Egs. (1) and (3) one obtains that
VARHjABC' o lIJABCijAD R 4 ?\/56‘71: ‘d;kSRA VBS ‘-PACa (G)

where W 4 g p is the Weyl spinor.

In the case where the background space-time is a type-D solution of the Einstein-
Maxwell field equations with an algebraically general electromagnetic field, and their prin-
cipal directions are aligned with the principal directions of the Weyl spinor, one can choose
a spin frame o, 1* such that the nonvanishing components of ¥ apcp and @ap are ¥,
and ¢y, respectively. Then the scalars H'y = H' 4. 02080 and H’, = H? ;50118 1,
which are invariant under the transformations (4), satisfy the following decoupled equa-
tions [9]:

[(D—26+€—3p—fo)(é—37+u)
—(6-28-Ta—-3r+7)(0—3a+7)- wg]Hiﬂ =0,
[(A+27 —F+3u+0)(D+ 3 —p)
—(B+20+F+3m —F)E+38—7) - Ua| H'y =0, (7)
The scalars H?| = HjABC 14 0B 0% and Hj.z = HjABC 1448 0%, are not invariant under the
supersymmetry transformations and, by constrast to the case where the electromagnetic
field is absent, they cannot be always simultaneously eliminated by means of a supersym-

metry transformation. It turns out that in the case where the background space-time is
the Carter A solution, these scalars cannot be eliminated if

(m? 4 n?) —eo(e? + ¢g*) = 0. (8)
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For the Kerr-Newman‘black hole, Eq. (8) reduces 1o (m? — e?) = 0. When Eq. (8) is

fulfilled, apart from H’; and H J,, we have an additional invariant given by [11]
i, = Ty + 2iv2 o1 Ejk{.’erl + pHY\. (9)

In this paper wé study only the scalars H J,and H .
The Carter A solution (14}, which contains the Kerr-Newman metric as a particular
case and, of course, the Kerr solution, is given by

Q

ds* = - (du — P’ dv)* —

pQ +q2

2 2
g - (du + g2 dv)? — R‘;i dp?,  (10)

p?+
where {p,q: U v} is a real coordinate system such that du and 0, are Killing vectors; and
p = P(p) and Q = Q(q). are polyuomial functions given by

P = b—gt+omp—cop = (Mo/3)p"
0 =h#% e —2mg + c0q: — (Ag/3)q4. (11)

The parameters T, n, €, 9, and Ag correspond to mass, NUT parameter, electric and
magnetic charge and cosmological constant, respectively; while €g and b are two additional
parameters. The Kerr-Newman metric 18 obtained if one takes b =a", 9§ = 0 = n and
¢g = 1. In terms of the Boyer-Linquist coordinates ¢ =T, P = —_acosf, u=-t+ay and

v =p/a
The tangent vectors

= 1
s = 3630 (-0, + 500~ 3
12
6= (?‘;‘ ¢(8p+l(av +p28u)) )
. PR i "
S AREICES Lt 8, (12)
where
1
h = 1
¢= T (13)

form a null tetrad, such that D and A are double principal null directions of the conformal
curvature. The spin-coefﬁcients are given by

r;=a=/\=u:0, g =0, 8:4511139”4,
B 1/4 01/2 1/4 01/2

a-‘—élnp Q , A,f—'—*&lnrl—g—._‘
q-+1p q+1p

p=DIno, r=0n9, = —b lnd, ;L=—A1n¢.‘ (14)
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and the only curvature components different from zero are

. - A
Uy = {-(m+in)+ (2 +¢")8}e’, A=T. (15)
Whereas the electromagnetic field is determined by
1 , 2
@1 = 5(e+ig)o”. (16)

Assuming that the components H jo and H j3 have a dependence in the ignorable coordi-

nates u and v of the form e**“t%%) where k and [ are constants, and using Eqs. (11)—(15)
we have that the solutions of Eqs. (7) are given by [10]

Hjo o et R+3/2(Q) S43/2(p);
HYy = —Q—Iﬁ Y P St R_3/5(q) S_3/2(p), (17)

where the o and b are constants, and the functions Ri3/2, R_3/2, S43/2 and S_3, satisfy
the following equations:

[QD—1/2DEJ + 4?315(1] Q¥ R, 3y = AQY? Ryy),
(@D, Do — 4ikq| R_3/2 = AR_sps,
[311/253/2 + 41613] Sis2 = —AS432,
[5-1/2@/2 - 4k}3] S_gj2 = —AS_3)2, (18)

where A is a separation constant, whereas

D, =0, + i(l = kg*Y 4 ng—,

B nP
B = \/_(a +,pl+kp) 2-,,5),
cj,—f( Lisrty+ ’;g). (19)

: : : 3/2(pt)> 03/2 :
A direct computation shows that the function @ (Do) Q%% R 13/ has to be a multiple

3
of R_3/5, as well as (3/% (’Do) R_3/; must be a multiple of Q3/2R+3/2. Furthermore, by
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normalizing appropriately, the functions Q3/2R+3/2 and R_j/y satisfy
3
g (Dg) Q** Rygpy = C1R_gp,

3
Q¥(Dy) R_gp = C1 Q¥ Ryyp, (20)

where Cy and Cy are constants such that for k and ! real Cy = C;. Analogously, one can
normalize the functions S, 3/9 and S_3, in such a way that

Ly LyjaLyye Sezp = —B1S_3),
booptopt
£—1/2 51/2 ‘Ca/z S_3/2 = B2 Sy3p, (21)

where B and B, are real constants for k and [ real. The constants Cy, Cy, B; and B; are
such that [10]

C1Cy = B1By +16(e? + ¢})(12 + k2). (22)
On the other hand, when the background space-time is a type-D solution of the Einstein-
Maxwell field equations without cosmological constant, the solution of Eq. (1) is given
by [9,15]
Wi = —2V2¢73 6+ 28+ 7~ 27)(6 + 30 — 3r) T,
+4ic* 016738 + 38 - 37) T%,
Wi = —2V267%[(D + 2¢ + &= 2p)(6 + 36 — 37) — T(D + 3¢ - 3p)] T,
Wi, = —2V2673[(6 +28 @~ 27)(D + 3¢ — 3p) + B(6 + 36 — 37)| T,
P = =2v2¢7 (D + 26 — € — 2p)(D + 3¢ — 3p) T,
Vi, = +4i6™* 01673 (D + 3¢ - 3p) TF,,

R R | -
o0 = Yoio ¥ 000 0, (23)

where TJQ is a solution of the second equation of (7), up to the gauge transformations (4).
From Egs. (3) and (23) one finds that

Hiy = —2v2¢73(D — 28 + ¢ — 4p)(D — £ + 2 — 2p)(D + 3¢ — 3p) T,

HIy = —2vV2¢73(6+ 2a+ B— 4r)(6 + G + 28 — 27)(6 + 38 — 37) T,
- 4i¢1¢—3gik[(a+27—fy+p:+ﬁ)(D + 3% — 37)

*(6+2§+Q—T+?)(5+33—3?)]T_“3. (24)
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Furthermore, using the second equation of (7) we have

HI, = —20\26 36+ 2a+ B —4r)(6+T+28 - 27)(6 + 38 — 37) T,
—8ip 3k [ (6 +33) — a(D + 3&) + 7(6 + 3a)
- B(A +37) + 30| T, (25)
Therefore, substituting Eq. (17) into Eq. (24) one arrives at

Hjo — bjC'g (’iu‘ﬂ_Hli‘) R+3’/2 5_3/‘-2.

11.73 = 2\/_0 {b]B (r(.kn+h R 3/25- 3/2

— di(e — ig)e? b* [(1 + ik)eltkut) R_4/0 S 30| t. (26)
/ /

Looking for differential identities, analogous to those found by Torres del Castillo [8,9,16]
for the spin-3/2 perturbations of a type-D solution of the Einstein vacuum field equations
with or without cosmological constant, we have that, when the background space-time is
the Carter A solution, the perturbations (26) satisfy

[Die =28 =B+ Te— g~ 3p)(D +3 ~ gl =
(8 — a— 28+ 5m)(5 — 20 — B + 3m)(8 — 3a + m)H7,
+2v/2i Fﬂ'{p(A — 3%) + u(D — 38) — 7(8 — 38)
— (6~ 3a) + $p 6~ W} HY,,
(A — 5+ 27+ 5u)(A — 2y + 7+ 3u)(A — 3y + p)HYy =
(64 3+ 2a—57)(6+28+a—37)(6+38—1)H,
D iy ¥ {,,(A + 3%) + u(D + 3%) — 7(8 + 3B)
— n(6+3a) — 30 & 1Wa ) HYy. (27)
According to the previously expounded, we observe that Eqs. (27) restrict the solutions
of the Rarita-Schwinger equation, in such a way that the separable solutions (17) cannot
belong to the same solution.
Substituting the symmetric solutions of the decoupled equations (7) given by
HY = al gHlhatin) Ri3/2Sia2+ gdFglp—ilkutiv) Q_BNR—MQ S_3/2

1 3 RIESTES L =]k —1(ku+!
}lﬂ:} = *TJ—EC) ale k }R__g/z 5_3/2 —cj (! (‘ i 1)03/2R+';/-2 S+3/2 § (28)
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into Egs. (27), and making use of Egs. (20) and (21) we find that

C) = B, — 4di(e +ig)(l + ik), (29)

from these equations one finds that,
C1Co = B1By + 16(e + ig)*(1 + ik)? + 4i(e + ig)(! +ig)(B2 — By). (30)
Comparing with Eq. (22) one arives at

B, -8B, = S(Gk -+-gl). (31)

3. DIFFERENTIAL IDENTITIES FOR THE PERTURBATIONS OF THE WEYL SPINOR

If we denote by ¢apcp the perturbations of the Weyl spinor and assuming that the
electromagnetic field of the space-time is absent, then [17]

AA _ 1. RSAB _ B, RSA
V*%0apcp = 3h Ves¥Yrsep — ‘I’RS{BCVD) h™ "y
1 RB; SA
- §\pn5(BCV hD) B (32)

where h , ooy denote the metric perturbations. When the space-time is type-D the com-

ponents ¢g = dABCD 0108 0C 0P and ¢4 = dapep ™ 1B C P are invariant under the
transformations
; EE EE .
dapcp — Sapcn = Vg a¥eepye = 2V pacVp)el s (33)

which are induced by the gauge transformations hap — hap — 2V, (), where (o 1s an
arbitrary vector field. Furthermore, these components are such that [2]

[(D— 3¢ +E—4dp—p){(A —4y+p)
=B —3;5—6—47’—&-?){5—4&4"@—B‘Pg]qbo =0,
[(A+37 =7+ 4u +7)(D + de = p)
—(F+3a+B+4n—T)6+48 - 1) — 3U3|ps = 0. (34)
For our case, these equations admit R-separable solutions given by

= ¢ R a(q) Sialp),
01 = 30"/ ™ R_o(g) Sa(p). (35)

oo



736 G. SILVA-ORTIGOZA

where k and [ are separation constants and the functions R4, and S47 obey the differential
equations

(QD_ D} + 6ikq)Q*Rys = AQ* Ry,
(QD' Dy — 6ikq)R_y = AR_,,
(L1, Lo + 6kp)Sis = —AS,,
(L_1L) — 6kp)S_y = —AS_;. (36)

In these equations A is another separation constant. As in the previous case, the functions
Q?R.9, R_y and S., satisfy the so-called Teukolsky-Starobinsky identities given by [18]
Q*(D})*Q* Ry, = C1R_,,
Q*(Do)'R-z = C2Q*Rya,
L _1LoL1LyS12 = B1S_a,
ct Lhelcls g = BSys, (37)

where Cy, Cy, B and B, satisfy [18]
Cy1Cy = BBy + 144(m? + n?)(k? + 12). (38)

On the other hand, we have that when the space-time is type-D, the maximal spin-weight
components of the Weyl spinor can be written in the following form [19-21]:
B = 45D — 3¢ +F— 5[ D —2¢ + 2 —5p)(D— e+ 3 ~5p)[ D+ 45 — 7)) Ty,
s =460 +3a+B-57)6+2a+28-57)6+a+38-57)(6+43-7)T;
— 1207409 {p(A + 47) + u(D + 4€) — 7(6 + 4a)
—w(6+43) — 2¥, —41\}T4, (39)
where T} is a solution of second equation (34). Therefore, making use of Eqgs. (11)-(15),
(35) and (39) we have
¢ = Cre " FWT Q2R H 5,

+ 12(m + in)(I + ik)ekuv+) B_, 5_2}, (40)

where we have assumed that R 5 = Q?R,, and that Sy are real for k and [ real.
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Looking for differential identities analogous to (27), we have

(D +¢—3e—5p)(D +2¢ — 26— 5p)(D + 3¢ —€ = 5p)(D + 4e — p)gs =
(6 —a—3B+57)(8 —2a — 2B+ 5m)(8 — 3a — B+ 57)(6 — da + )¢y
— 3Wo{p(A — 47) + p(D — 4e)
—7(6 — 4B) — 7(6 - 4@) + 29~ W2} o,

(A =y +37+5u)(A =27+ 27+ 5p)(A -3y +7 +5p)(A — 4y + p)do =
(6+B+3a—57)(6+28+2a—57)(6+38+a—57)(8+48— 7)o

£ 3\1’2{p(/_\ + 4%) + u(D + 48) — 7(8 + 45)

— (6 + 4@) — 2¢¢—1\112}552. (41)

These differential identities were found by Torres del Castillo [18] when the background
is any type-D solution of the Einstein vacuum field equations with cosmological constant;
however, in the form given en Ref. [18], they do not apply in all null tetrads such that D
and A are principal directions of the Weyl spinor.

4. CONCLUSIONS

Since all terms that appear in the differential identities (27) and (41) have a well-defined
type (in the sense of Geroch-Held-Penrose [7,22]), these identities are invariant under the
transformations given by

OA—>20A, LA——>Z_1LA,

where z is an arbitrary (nowhere vanishing) complex scalar field. Therefore, (27) and (41)
are valid in all null tetrads such that D and A are double principal null directions of the
conformal curvature.

On the other hand, in accordance to the results obtained by Aichelburg and Giiven [11]
and Eq. (8), it should be possible to search for a solution of the field equations of O(2)
extended supergravity theory, which should contain the solution obtained by Aichelburg
and Giiven [23] as a particular case.
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