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Dynamics of relativistic membranes with boundaries
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ABSTRACT. A covariant formalism is presented to describe the dynamics of an arbitrary membrane
with smooth physical boundaries. We exploit the fact that the boundary worldsheet is an embed-
ded surface of codimension one in the worldsheet spanned by the membrane in spacetime. The
formalism applies to any effective theory for the dynamics of the membrane and of its boundary.
The case of extremal membranes with extremal boundaries is discussed in detail.

RESUMEN. Presentamos una formulacién covariante para describir la dindamica de una membrana
arbitraria con fronteras fisicas suaves. Usamos el hecho de que la superficie de mundo de la frontera
es una superficie de co-dimensién uno en la superficie de mundo de la membrana en el espacio-
tiempo. Esta formulacién se aplica a cualquier teoria efectiva para la dindmica de una membrana
y de sus fronteras. El caso de membranas extremales con fronteras extremales estd tratado en
detalle.

PACS: 98.80.Cq; 13.70.+k; 98.80.Hw

The dynamics of many physical systems can be modeled by the dynamics of relativistic
membranes of an appropriate dimension., in a fixed background spacetime (For examples,
see Refs. [1-4]). The phenomenological action determining the dynamics of the membrane
is constructed using a linear combination of the geometrical scalars of its worldsheet. At
lowest order, this action is proportional to the volume of the worldsheet, and it is known
as the Dirac-Nambu-Goto [DNG] action.

Here, we consider the case of membranes with smooth physical boundaries. An ele-
mentary example is given by an open string with monopoles at its ends. Another is a
domain wall bounded by a string. In cosmology, objects of this type can be generated by
a hierarchy of phase transitions in the early universe [1]. In the limit that the mass of the
boundary tends to zero we recover the null boundary dynamics familiar in the theory of
open membranes [2]. The main point of this paper is to provide a geometrical treatment
of the dynamics of relativistic membranes with boundaries. Our key idea is to consider
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the boundary worldsheet itself as an embedded surface in the worldsheet of the relativistic
membrane. The boundary is thus treated as a membrane itself, of one dimension less than
the original membrane.

In order to simplify our presentation, we consider the case of an extremal membrane,
described by the DNG action, with a single extremal boundary, described by a DNG
action of one lower dimension. We derive the equations of motion for this system, and we
discuss briefly their structure. This analysis can be easily generalized to any dynamics,
both for a different choice of action for the membrane and for the boundary. It can also
be generalized in a straightforward way to the case in which the boundary has several
disconnected components.

To begin with, consider an oriented timelike worldsheet m of dimension D, which
corresponds to the trajectory of a relativistic membrane in an N-dimensional spacetime
{M, g }. The worldsheet m is described by the embedding

o = X¥#(£%), (1)
where x# are coordinates on M, and £ coordinates on m (p,v,... = 0,...,N — 1, and
ab,...=0,...,D —1). The D vectors,

€q 1= )[f:l a,m (2)

form a basis of tangent vectors to m, at each point of m. The metric induced on the
worldsheet is then given by

Yab = X0 X5 900 = g(ea, €p). (3)
Let the spacetime vectors n' denote the i*" unit normal to the worldsheet (7,7,... =
1,...,N — D), defined, up to a local O(N — D) rotation, with

g(n',n?) = Y, g(eq,n') = 0. (4)

Normal vielbein indices are raised and lowered with 6% and b;j, respectively, whereas
tangential indices are raised and lowered with 4% and 7,4, respectively.

The vectors {e,,n'} form a basis for spacetime vectors adapted to the situation of
interest here.

The worldsheet projection of the spacetime covariant derivatives is defined with D, :=
eq Dy, where D), is the (torsionless) covariant derivative compatible with g,,,. The classical
Gauss equation (see Ref. [5]) is given by

Daep = Yap“ec — Kap'ni. (5)

The v, = 75, are the connection coefficients compatible with the worldsheet metric v4p.
The quantity K,' is the i*" extrinsic curvature of the worldsheet, defined by

Ku' = —g(Daeb,vli) = K, (6)



DYNAMICS OF RELATIVISTIC MEMBRANES WITH BOUNDARIES 767

The extrinsic geometry of m is determined by K,*, and by the extrinsic twist potential,
associated with the covariance under normal frame rotations, which we will not need here
(see, e.g., Ref. [6]).

As is well known, not every specification of the intrinsic and of the extrinsic geometry is
consistent with some embedding. There are integrability conditions, the Gauss-Codazzi,
Codazzi-Mainardi, and Ricci equations, which must be satisfied by the intrinsic and ex-
trinsic geometry, for an embedding to exist. We will not need their explicit form in this
paper.

We turn now to the definition of the intrinsic and extrinsic geometry of the worldsheet
boundary dm. The point is to see dm as a timelike surface of dimension D — 1, described
by the embedding in the worldsheet m:

£ = x"(u"), (7)

where A, B,...=0,1,...,D — 2.

The definition of the extrinsic and intrinsic geometry of the worldsheet boundary is a
special case of the discussion given above for an arbitrary worldsheet. In order to establish
our notation, we repeat it, specializing to the case of co-dimension one. The D — 2 vectors
€4 := x% 4 0, are tangent to the boundary worldsheet dm. The metric induced on dm is
then

has = YabX* .4 X".B = V(€4 €B). (8)

The normal to dm is defined by

v(n,€4) =0, y¥(n,m) = 1. (9)

The Gauss equation, for a co-dimension one embedding, takes the form

Vaen = vap%€c — kapn, (10)

where V4 = €% 4V, is the gradient along the tangential basis {EA}. vap© are the connec-
tion coefficients compatible with the boundary worldsheet metric hap, and kap = kpa
is the boundary worldsheet extrinsic curvature. For a co-dimension one embedding, the
extrinsic geometry is determined completely by the extrinsic curvature, and the Ricei
integrability conditions are vacuus.

The dynamics of the membrane is specified by the choice of an appropriate phenomeno-
logical action, constructed with scalars built with the quantities that characterize the
intrinsic and extrinsic geometry of the membrane worldsheet. In the presence of bound-
aries, one needs also to specify some dynamical rule for the boundaries themselves. For
the sake of concreteness, in the following we choose the DNG action for the membrane,
and the same action for its single boundary. Our analysis can be easily generalized to any
dynamics, and to the case of a boundary with many disconnected components.
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The action we consider is
S = 50+ s, (11)

where

SolX] = a0 / dPe V=7, (12a)

Slx(X)] = -ab/ dP=Npv/=h, (12b)

w m

o is the membrane tension, oy, is the tension of the boundary membrane, v the determi-
nant of the membrane worldsheet metric 74, and h is the determinant of the boundary
worldsheet metric h4g. This action is a functional of the embedding X# of m in M, and
of the embedding \* of 9m in m.

To derive the equations of motion of the action (11), consider first a variation of the
embedding of m, X* — X#+4+§ X", The displacement is assumed to vanish on two spacelike
hypersurfaces of m, which play the role of initial and final times (see e.g., Refs. [6,7]).

The variation of the membrane action Sy gives

659 = ~ag / dP€ 8y [V=7"e% 6Xa] + a0 / dP€dy [V=1"e%] 6Xa.  (13)

m

We decompose the displacement with respect to the spacetime basis {e?,n'}, as
6X = $pe” + Pin'. (14)
Note also that the contracted Gauss equation, [Eq. (5)] can be expressed in the form

dy [V’—"r 1-°br7°a] = V=7 1® V€%, = /=7 K'n®, (15)
where K = ~* K" is the mean extrinsic curvature. Inserting this expression in the
variation of the action, one obtains

(55(] = —0'0/ ([Uglﬂ. vV —h (I)b + og / de N =LY f\-iq)i. (16)
hn .

m

We find then that only the normal projection of the variation contributes to the equations
of motion of the membrane. The tangential variation gives a boundary term that will
contribute to the equations of motion of the boundary.

An interesting special case worth mentioning is the string, i.e., D = 2. For an open
string without physical boundaries, one imposes the boundary condition that the world-
sheet spatial derivative of the embedding function vanish at the ends. This cancels the
boundaryv term in Eq. (16). Phvsicallv. this is equivalent to assumine that no momentum
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flows off the ends which now travel at the speed of light [2]. (For a geometric treatment
of this type of boundary contributions, see Ref. (8].)

Let us consider now the boundary action. The displacement of the boundary worldsheet
induced by the displacement of the worldsheet m can be written as

S6¢ =% =B+ Dyet. (17)

Then the variation of the boundary action gives
68y = a,,f dP 1/ —h bk ®. (18)

We have used part of the previous derivation here, together with the well known fact that
the boundary of a boundary is zero. It is at this level that the assumption of dealing with
a smooth boundary comes in.

The variation of the total action [Eq. (11)], gives the equations of motion for the
membrane

K'=0, (19)

1.e., the mean extrinsic curvature vanishes. We find that the form of the equations of
motion of the original membrane is not affected by the addition of a boundary.
The equations of motion for the boundary take the form

ask = ag, (20)

where k = h*Bk 4 is the mean extrinsic curvature of the boundary worldsheet.

These equations of motion constitute a highly non-linear system of coupled hyperbolic
partial differential equations. While the system is well defined in principle, one can hope
to find explicit solutions only for highly symmetrical configurations. However, even in this
case, the interplay between the dynamics of the original membrane and the dynamics of
the physical boundaries can make the solution very difficult. In practice, what one needs
to do is to treat the reaction of the boundary dynamics on the membrane in an iterative
way.

We conclude with a brief remark about the stability analysis of extended objects with
boundary. In Ref. [6], a generally covariant treatment of the kinematics of infinitesimal
deformations of membranes without boundaries was given. It can be easily generalized
to the case in which smooth boundaries are present using the geometric point of view
presented in this paper.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from CONACyT, under grant 3354-E9308.



770

Ri1ccARDO CAPOVILLA AND JEMAL GUVEN

REFERENCES

1.

2.

o

= |

A. Vilenkin, Phys. Rep. 121 (1985) 263; E.P.S. Shellard and A. Vilenkin Cosmic Strings and
Other Topological Defects, Cambridge Univ. Press, Cambridge (1994).

M.B. Green, J.H. Schwarz, and E. Witten, Superstring Theory, Vol. 1, Cambridge University
Press, Cambridge (1987).

“Statistical Mechanics of Membranes and Surfaces”, Proceedings of the Jerusalem Winter
School for Theoretical Physics, Vol. 5, ed. by D. Nelson, T. Piran and S. Weinberg, World
Scientific, Singapore (1989).

“The Role of Extended Objects in Particle Physics and Cosmology”, Proceedings of the Trieste
Conference on Super-membranes and Physics in 2 + 1 dimensions, Trieste 1989, ed. by M.J.
Duff, C.N. Pope and E. Sezgin, World Scientific, Singapore (1990).

L.P. Eisenhart, Riemnannian Geometry, Princeton Univ. Press, Princeton (1947); M. Dajczer,
Submanifolds and Isometric Immersions, Publish or Perish, Houston, Texas (1990); B. Carter,
Journal of Geometry and Physics 8 (1992) 52.

J. Guven, Phys. Rev. D48 (1993) 5562; R. Capovilla and J. Guven, Phys. Rev. D51 (1995)
6745.

J. Garriga and A. Vilenkin, Phys. Rev. D44 (1991) 1007; ibid. D45 (1992) 3469.

D.H. Hartley and R.W. Tucker, in Geometry of Low Dimensional Manifolds: 1, London
Mathematical Society Lecture Note Series 150, ed. S.K. Donaldson and C.B. Thomas,
Cambridge University Press, Cambridge (1990).



