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Dynamics of relativistic membranes with boundaries
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ABSTHACT. A ('()variant formalisIll is pres('nteci to describe the dynamics of an arbitrary membrane
with smooth physical bOllHdaries. \re exploit tite faet tltat the boulldary worldsheet is an clIlbed.
<led surfare of codinH'nsion olle in tlt(' worldsheet spanned by the membrane in spacetime. The
formalisJIl applies lO any dfpctiv(' tlH'ory for tIle dynamics of the mcmhranc and of its boundary.
The case of extn'lIlal meIllbranes with extremal boundaries is discussed in detail.

nESU~fEr\. Pres{,lJtamos una formulación rovariante para describir la dinámica de 11110.membrana
arbitraria con fronteras físicas suaw's. Usamos ('1hecho de que la superficie de Inundo de la frontera
{'s ulla superficie de co-dimellsióll llJlO eH la superficie de llIundo de la membrana en el espacio-
tiempo. Esta formulación se aplica a cualquier teoría efectiva para la dinámica de una memhrana
y de sus fronteras. El caso <1('IIH'llllJl'anaS extrelllalcs eOIl frolltera.l;¡ extrrlllal<'s ('stá tratado en
detalle.

rACS: a8.80.Cq: 13.70.+k: a8.80.lIw

The dynamics of Illany physi('al systellls can bc 1Il0deled by the d.ynamics of relativistic
Illcmbrancs of an appropriatc dimensioll. in a fixcd background sparetiI1lc (For exalllplps,
~re Hf'f~. [l-"¡J). The pl11'1l0Illcllologira! action detrrmining the dynamics of tlle memhranp
is construct('d using a lillPar r01l1binatioll of the geollletrica1 sralars of its worldsheet. At
!owrst. OI'der, t.his actioll is Pl"O})ortiolla! to t.he volullle of Ihe \,,'orldslJ('et., and it is knowll
as tia' Dirar-Xamhll-Goto [VXG] (lrtiOll.

Hpre. w(' (,oIlsidl'r tJI(' case of 1I1cmbnl.ll{,s with SlIIooth physiraJ hOllllrlaries. An e1('-
lIlrntary rxamplp is gin'Il by aH 0PPll string witlt lllonopolrs at. its ends. Another is a
domain waH bound"d by a string. In (,os!IIology. objects of tbis typ" ('an be gen"rat"d by
a hi"rar('hy of phase transitions in the "arly uni",'rse [1]. In the Iimit that the mass of the
boundary t"nds to zero we re('O\.er ti", nuH bonndary dynalllics familiar in the thcor)' of
(1)('11 1lH'IIIiHan('s [2]. Thc lWtill poi lit of this pa¡H'r is lo providc a g(,ollH't.rical t.reatlllC'llt
of tlll' dynalllics of rr1ati\'islic IlH'lIlhrallPS with boun<iarips. Our k('y id('a is to cOJlsidpr
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the boundary worldsheet itself as an embedded surface in the worldsheet of the relativistic
membrane. The boundary is t hus treated as a membmne itself, of one dimension less than
the original membmne.
]n order to simplify our presentation, we consider the case of an extremal membrane,

described by the Dl\'G action, with a single extrema] boundary, described by a DNG
action of one lower dimensiono \Ve derive the equations of motion for this system, and we
discuss briefly their structlll'e. This analysis can be easily genemlized to any dynamies,
both for a different choice of action for the membrane and for the bonndary. It can also
be genemlized in a straightforward way to the CRse in which the boundary has seveml
disconnected cOInponcnts.

To begin with, consider an oriented timelike worldsheet m of dimension D, whieh
eorresponds to the tmjectory of a relativistic membrane in an N -dimensional spacetirne
{M,g~v}. The worldsheet m is described by the embedding

;r~= x~(~a),

where :r11 are eoordinates GIl 1\1 1 and ~a coordinatcs 011 1n

n,b, ... = O,... ,D -1). The D vectors,

(1)

(JI, V, ... = O, ... , f'.,r - 1, and

(2)

form a basis of tangent vectors to 11I, at eaeh point of m. The metric induced on the
worldsheet is then given by

V"Xv ()tab = ..i\. ,a ,b g/w = 9 ea 1 eb .

Let the spacetime vectors ni denote the i'h unit normal to the
1, .... N - D), defined, up to a local O(N - D) rotation, with

(3)

worldsheet (i,j, ... =

(4)

Normal vielbcin indiccs are raisrd and lowcrcd \",ith bij ano Dij, respcctively, where(ts
tangential indices are raised and lowered with ,nb aml'ab, respectively.
The vectors {ea, ni} form a basis for spacetime vectors adapted to the ,ituation of

intefC'St. here.
The worldsheet projcction of the spacetime covariant derivativcs is defined with Da :=

e~D¡"where D~ is the (torsionless) covariant derivative compatible with g,w' The classical
Gauss equation (see ReL [5]) is given by

D 'J' iufb = {no Ce - \ab ni. (5)

The !abe = rba e are the COllllcct.ion cocfficicllt.S cOInpatiblc \vith thc worldshrct metric ,ab.
The quantity f\'abi is the i1h extrinsic curvatlll'e of the worldsheet, defined by

(6)
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The extrinsic geometry of m is determined by J\"bi, and by the extrinsic twist potential,
associated with the covariance uuder normal frame rotations, which we will not need here
(see, e.g., Ref. [6]).
As is well known, not every s¡ll'cification of the intrinsic and of the extrinsic geornetry is

consistent with sorne embedding. There are integrability conditions, the Gauss-Codazzi,
Codazzi-Mainardi, and Ricci equations, which rnust be satisfied by the intrinsic and ex-
trinsic geometry, for an embedding to exist. \Ve will not need their explicit form in this
papel'.
'Ve tum now to the definition of the intrinsic and extrinsic geornetry of the worldsheet

boundary Dm. The point is to see Dm as a timelike surface of dimension D - 1, described
by the embedding in the worldsheet m:

(7)

where A, [J, ... = O, 1, ... , D - 2.
The definition of the extrinsic amI intrinsic geometry of the worldsheet boundary is a

spedal case of the discuss;on given above for an arbitrary worldsheet. In order to establish
our notation, we repeat it, specializing to the case of eo-dimension one. The D - 2 vectors
fA := x".A D" are tangent to the boundary worldsheet Dm. The metrie induced on om is
then

The normal to Dm is defined by

(8)

1(ry, '1) = 1. (D)

The Gauss equation, for a eo-dimension one embedding, takes the form

(10)

where \7A = f" A \7" is the gradient along the tangential basis {fA}. 1A¡¡C are the eonnee-
tion coeffkienls compatible with the boundary worldsheet metric hA¡¡, and kAIJ = k¡¡A

is the bOl1ndary worldsheet extrillsic CUfvature. For a co-dimension 011(' embedding, the
extrinsÍc geoJnetry is determined complet.eIy by the extrinsic curvatllrc, and the nicci
integrability conditiolls are vacutls.

The dyaamics of lhe membrane is speeified by lhe choice of an appropriate phenOn1£'llO-
logical aelion, eonstrueted with scalars built with the quantities that charaeter;ze the
intrinsie and extrinsic geometry of the membrane worldsheet. In the presence of bound-
aries, one needs aloo to "pecify SOlne dynamieal rule for the boundaries themselves. For
thí' sake oC concretC'IlCSS. in tIlC' following ,.....(' ChOOSf' thc DNG action [oc tile membranc.
and the same action for its single boundar)". Gur anal)"sis can be easily generalized lo any
dynamics, and to thc rase of a bOllll<1a1')' with mélny disrOlllH'ctrd rompollrnts.
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1'h(' action we cOllsider is

where

50[XI = -ao1dD~.¡:::y,
m

5bh(X)] = -ab { d(D-I)¡'V-h,
./0717

(11)

( 12a)

(12b)

ao is tl1(' membrallc tensiOIl. a,} is the tcnsiOll of thc boundary mClIlbranc.- , tlH' determi-
nant of lhe lllelll1Jranc worlds!I('('t. met.ric ')'(lb. and " is lhe deterlllin<lnt of t}¡c bOllndary
worldshect metric !tAIJ. This Hcl,ioll is a ftllJctional of •.he cmbrdding ~\lt of 111in .i\f1 and
of thp Plllbedding y(1 of um in ",.
To e!eriw the equalions of 1Il01ion of the action (11), consie!er firsl a \'ariation of the

embee!e!ing of 111, X'> - X'>+~X'>. The e!isplacement is assumee! lo mnish on two spacelike
hyprrsurfaces of 111, which play lhe role of iuitia] ane! final liu]('s (see e.g., flrfs. [6,7]).

Thr variation of the memhrallc actioll So gives

\Ve d('compos(' thp displac(,llH'1I1 with r(,S¡H'ct to the spac('timp hasis {ca.n'}. as

óX = <I'npn + 1>;/l'. (14)

:\'ole also that the coutractee! Gauss equatiou, [Eq. (5)] can be expressed iu lhe form

(15)

\v}u'rp 1\"' = ,u!, I\'(~I/ is tlle llH'flll cxtrinsic C'urvatllrt'. lllscrting this exprCSSlOll in t}¡c
\"ariation of the aetioll. 01H' o!>tains

~50= -ao ( ,¡I)-I" 'lb'¡=¡; 'I,b+ ao!,¡D~.¡:::y[\';(1);.
.10m . 1/1

(1 G)

\\"e fiue! then thal onlO' tlt!' normal projt'ctiou ofthe variation contrihlltes to th!' !''fllations
of motioll of tlw membraue, Tht' tangt'lltial ,'ariatioll gi\'('s a hOlllldary t('rm that will
contrihllt(' to t}¡p ('quatiolls (JI' lIlolioa of th(' h0l111daty.

Au interestillg l-ilH'cial ('a~(' wortll llH'ut.ionillg is tite strillg, i.f: .. D = 2, For au oprtl
strillg \vithollt piIysiral h0l1lldaril's. Olll' illlPOS(,S t.he hOllIldary (,ollditioll that the \\'orld-
sill't't spatial dpri,'atin:, of tll(' I'lllbeddiJl~ flllletion ,'allish at th(, ('lIds, This eall('{'ls t}¡e
hOlllldar\" term iu Eq, (lGL Ph\'sirall\". tltis is {'(Jl1i\'al('ut to aSSlllllinl! that llO 1Il01llf'ntlllll
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!lows off the ends which now tra\'el at the speed of light [21. (For a geometrie treatment
of this type of boundary contributions, see Ref. [81.)
Let us consider now the boundary aetion. The displaeement of the boundary worldsheet

induced by the displacement of the worldsheet m can be written as

Then the \'ariation of the boundary action gives

bSb = ab r dD-l/,,,¡=T,habkab<f>.
.10m

( 17)

( 18)

\Ve ha\'e used part of the pre\'ious deri\'ation here, together with tlH' wel! knOWll faet that
the boundary of a boundary is zero. It is at this le\'e! that the assnmption of dealing with
a smaalh boundary comes in.
The \'¡¡riation of the total action [Eq. (11)]' gi\'es the equations of motion for the

membrane

f{' = O. ( 19)

i.e .. thp mean extrinsic Cllrvature vanishes. 'Ve find that lhe [onu of the equations of
motioH of the original IIlclllbranc is nol affected hy lhe additioll of a bOllndary.
The ('qnations of motion for t he boundary take th(' form

(20)

where k = hAll k,\11 is the mean extrinsic e\lf\'ature of the boundary worldsheet.
Th('s(' eqnations of motion constitute a highly non-linear system of coupled hyperbolic

partial differential equations. \Vhile the system is wel! defined in principie, one ean hope
to find explieit solntions on1y for highly symmetrical configurations. 1I0we\'er. e\'en in this
case. the interplay between the dynamics of the original membrall(' and the dynamics of
tbe pbysical boundaries can make the solution \'ery di!licult. In practÍc('. what one needs
to do is lo tn'al the [partion of 1h(' boundary dynamics OH the lIl('Illi>ranc in an iterative
way.
\Ve conelnde with abrid remark about tbe stability analysis of ('xt(,IHled objects with

boundar)'. In Ref. [GI. a general!y cm'ariant treatment of the kin('matics of infinitesimal
deformatiollS of 1I}('mbrall{,S without bOllIlc1arips \\'as gi\"CIl. It can he ('a.,;¡ily gC'Ilcralized
to tlle case in whjch slllooth bounciaries are presf'llt tlsing thl' gl'olllf'trir point. of virw
presf'lltC'd in this papero

1\CI": :-;OWLEl)(; Et-.l E:-':TS

\Ve gral('flllly ackllowl,'d¡(,' "'pporl from CO!'1ACyT. llw1Pr ¡(ralll :¡:l5,I-E9J08.
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