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Ultimate strength and brittleness of crystal solids
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ABSTRACT. A Frenkel-IKontorova dislocation model variation is employed to construct a Hamilto-
nian, which in turn is used to compute the temperature dependence of ultimate tensile and shear
stresses of crystal solids. A new brittleness parameter is also suggested. It is shown that with
the proposed model one is able to predict the nature of a crystal (brittle, quasi-brittle, ductile,
quasi-ductile) and estimate its ultimate strength.

RESUMEN. Mediante el empleo de una variacién del modelo de dislocaciones de Frenkel-Kontorova
se construye un nuevo hamiltoniano, que permite calcular la dependencia con respecto a la tempe-
ratura de la resistencia mdxima a la tensién y el esfuerzo de corte para cristales sélidos. Con este
nuevo modelo se sugiere una expresion para el pardmetro de fragilidad. También se muestra que
con el modelo propuesto es posible predecir la naturaleza de algunos cristales (fragil, cuasi-fragil,
dictil, cuasi-dictil) y estimar su maxima, resistencia.

PACS: 62.20; 64.10+h; 83.20.Di

The behavior of materials offers an almost infinite variety of challenges in the quest of
understand physical effects. Under ideal circumstances one would wish to start with an
atomic or molecular model of the material and then construct a completely general theory
of behavior that transcends all length scales of possible phenomena. With a profound
understanding of this type, full scale macroscopic behavior of materials could be predicted
from minimal and fundamental parameters of the material.

The first investigations devoted to the theoretical strength of crystals within the frame-
work of quantum physics considered ideal cleavage in the sense that neighboring planes
of the atomic lattice were assumed to be separated (see, for example, references in (2, 3]).
This led to an estimation of the ultimate tensile stress, oc, which in fact exceeded by
far those measured under ordinary conditions. Moreover, pure metals, like cooper or alu-
minum, are truly ductile materials which apparently cannot sustain a cleavage crack, but
may fail by plastic instability and necking on a gross scale.

In his notable work [4], Frenkel first made a famous investigation into theoretical
strength of ductile metals and also found a value of the shear strength, 7¢, higher by
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many orders of magnitude than the observed flow stresses of metals.! The original Frenkel
model [4] is associated with the sliding of one semi-infinite half crystal over another and
thus gives no way to estimate the tensile strength associated with cleavage fracture.

According to modern quantum-mechanical models of solid fracture (see Refs. [1,5, 6]
and references therein) crystal solids will be either brittle or ductile depending upon the
ratio 7¢/oc. In fact, however, the ductile response of the solid is associated with the
processes of dislocation production and propagation [6-9]. Because of this, shear strength
of a deformed crystal is strongly dependent on the actual dislocation processes. On the
other hand, even a low defect concentration catastrophically affects the tensile strength of
a brittle crystal [2,3]. Thus theoretical threshold stresses are rarely realized in practice.

Nonetheless, the theoretical ultimate strength of a crystal is of interest in solid physics
and mechanics. First, theoretical ultimate strength is an important concept in the phys-
ical theory of deformed solids and is a material parameter central to modern theories of
plasticity and fracture [6,10-13]. Secondly, ultimate strength is the upper limit of the
strength which can be reached in crystal solids under certain conditions.?

Various theoretical models of ultimate strength for crystals have been proposed by a
number of authors (see Refs. [1-5,15-17] and references therein). In the present work, we
undertake to calculate in a novel manner the ultimate strength, brittleness parameter and
their temperature dependence for crystal solids.

For this propose let us consider a configuration of atoms in a simple cubic crystal
with a defect density low enough for the characteristic distance between dislocations to
be large in comparison with the interatomic distance. The assumption that the relative
arrangement of atoms in a given element is approximately the same than the arrangement
of lattice sites, means that there can be a mutually one-to-one mapping of the atoms onto
the lattice sites which conserves the neighborhood relation. The nearest neighbors of an
atom correspond to those sites that are closer to its image on the lattice. The Hamiltonian
of such a system, expressed with regard to the Frenkel-Kontorova dislocation model [18],
may be written in the form?
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! It was this observation that led to the development of dislocation theory in the 1930’s.

2 For example, under dynamic loading when kinetical processes of dislocation (and other defect)
are not decisive in the response of irreversibly deformed solids [1,6, 14].

3 Notice that the common approximation (see, for example, Refs. [2, 3]) which takes into account
only interactions between the nearest atoms in a crystal with a simple cubic structure leads to a zero
shear modulus [19]. On the other hand, the common consideration of the sliding of atomic planes
one over another (see [2,4]) do not permit tensile strength calculations. The Frenkel-Kontorova
dislocation model [18] used in Hamiltonian (1) makes it possible to eliminate these obstacles
and consistently defines crystal behavior in shearing and tension. Notice that this is equivalent to
selecting the suitable angle dependence of interatomic potential which is the function of interatomic
distances (see Ref. [20]).
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where 7; = (7;)+;, @; is the vector of displacement of the 7th atom from its position of the
thermal equilibrium (7}), 7;; = 7; — 7; ax are the lattice constants, m is mass of an atom,
and Pj; is the momentum conjugated with Cartesian coordinates (k) of the ith atom. The
last (third) term in Eq. (1) represents the generalization of the three-dimensional case of
contribution to the Hamiltonian from the “base” by the analogy with Frenkel-Kontorova
model, which is stated in the potential form (r; is the current linear coordinate “along
the base”).

Proceeding from the variational principle in statistical mechanics (see [21]) and the
Gibbs-Bogolyubov inequality (see [22]) it is possible to calculate the free energy F of the
crystal which obeys the Hamiltonian (1), by minimizing the right side of the expression

F < Fn=Fo+{H - H), (2)

where Fy is the free energy of the model system with the Hamiltonian Hy; the mean values
of {(...) are taken within the canonical ensemble characterized by the model Hamiltonian
Hy.

Employing the self-consistent harmonic method [23], the thermodynamic properties of
the system under consideration can be readily computed by using as the model system
a set of harmonic oscillators (Einstein’s model [21]) with variational force constants A;
and lattice constant ap. In the high-temperature approximation [22], when crystal atoms
are exposed to external forces, the minimum of the free energy may be determined by
self-consistent computation of the force constants A; and the equilibrium atom positions
(7). A pair interatomic Morse potential U(7) [2] may be employed for dynamic properties
of the linear atomic chain imposing the following condition

[__‘."Il(rr) — E]ﬁk, (3)
r=aj
which leads to the following expression for the shear modulus G at the final temperature:*
LRGeS, 1-2v
G = }(C11 — C12) +3Cuq) = (0" ({rij)) (4)

(T 21=w)

Here E) is the longitudinal modulus, C;; are elastic constants, and v is the Poisson’s ratio.

To calculate the temperature dependence of the threshold tensile stress, let us consider
a uniform tension of simple cubic lattice in the z—direction under stress o1;. This results
in increase of the distance between neighboring planes normal to direction of stress on the
value u, along the axis [100]. The threshold stress may be determined from the maximum of
the function u,(g) for each temperature in the self-consistent computation using following
equations:

2
ap 0 1 cap 1 carp ( Ta)
=4 — vexp | —— 1l—exp|—- exp|——1, 8
FH (HT) R ( 45:700) [ B ( 4 E?‘GD)] P A (5)

4 Averaging was performed by the Gauss method [21].
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Here ar and ag are the parameters of the elementary cell at temperature 7 and 0 K,
respectively; ky is the Boltzmann’s constant; and U, is the bond energy, which is related
to the atomization energy (sublimation) of g-atom of solid Hy as

Hy
Uy =2 i 8
b= 2 (8)

where ny, is the bonds number (nearest neighbors) about the elementary cell® and N, is
the Avogadro’s number.

To calculate the temperature dependence of the shear ultimate strength,® let us consider
a simple cubic lattice under the uniform shear stress 79, which governs a shear § of
the neighbor atomic planes of the {001} type. In this case the self-consistent system of
constitutive equations takes the form

B Oin_ ’ i) [_ 2((1’_0) Ta * 2] (__ Ty )
Lo T(’GT o (zﬁaq* exp | =32m ar AT(T)(EC) = A(T)/)° )
Vi
A(T) = T
1) = e (-7 )
1-2v apg\* T, b
2+ ——exp [—3272 [ 22 T T os (21— )| §.
X { - 50— 1) exp [ 327 ((”‘) -'\T(T)( c) [5 + cos ( 71'(17.)]} (10)

It is easy to see that at T = 0 K Egs. (5)-(8) and (9), (10) leads to the well known
expressions (see, for example Refs. [1, 2]) for ultimate tensile and shear threshold stresses,

0 [ Tt G
oc = mH{) and T(Q = -2—7;. (11)

respectively.

® The coefficient 2 in Eq. (8) results from the sum of all the energy of interatomic bonds, where
each bond appears twice.

% The ultimate shear strength in original Frenkel-I ontorova model (18] is calculated considering
the interaction of two parallel atomic linear chains.
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It immediately follows from Egs. (5), (6) and (9), (10) that the temperature depen-
dences of the threshold stresses are governed only by two dimensionless parameters of
the material under study, namely, by the Poisson’s ratio v and effective critical value of
elastic deformations e = 0/ En.

The results of the computing of Egs. (5), (6) and (9), (10) are convenient to present
in the coordinates: ultimate strength normalized to the longitudinal modulus (oc/Ey or
7c/E)) and the normalized temperature (T/Tc), where Tc is the critical temperature crys-
tal structural stability (1], which is governed by the equation

Wy 1-2v '’
Tc —4kB max {zexp(—23:) [l+ et exp ("32m)]}, (12)

where y(z) = [(EE@)_I + 6\/2_5}2.

The results of computing temperature dependence of tensile and shear threshold stresses
by using Egs. (5), (6) and (9), (10) have shown that there are three different types of rela-
tions between the functions a,(T) = o¢/E and 22 7, = 2v/2 7¢/ E;, which are presented
in Figs. la—c. Recalling that when o¢ < 24/2 7¢: the crystal is brittle, and if o¢c > 2v/2 ¢
it is ductile [1,5]. Thus, the transition from the brittle to the ductile state of a crystal
solid may be determined by the condition

oc(Ty) = 2V2 e(Th). (13)

Hence, graphs in Fig. la are associated with the truly brittle crystal; graphs in Fig. 1b are
associated with a ductile crystal; while a crystal which is characterized by third type of
the (o¢/7c)-diagram (Fig. 1c) can be treated as a quasi-brittle or quasi-ductile material.

The specific relations between the parameters v and ¢ corresponding to these three
types of materials are presented in Fig. 1d. The last diagram evaluates the character of
material fracture according to an adiabatic model under consideration. These results give
rise to suggest a physical criterion of brittleness. We define the brittleness parameter as
the renormalized value of the effective critical elastic deformation, namely,

()
o

B, = s (14)

Y
ae

2\/578 and thus (see Eqgs. (11)) is equal to

i

where :’%- is governed by the condition rT(()‘
the ratio Ho/E\.

Now. it is straightforward to see that the crystal is truly brittle if B, < 0.63 + 0.67,
and it is ductile if By > 1. Quasi-brittle and quasi-ductile materials are characterized by
a brittleness parameter within the interval 0.65 < B, < 1.

7 Theoretical methods for the calculation v and its temperature dependence are considered
in [24,24].
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FIGURE 1. Temperature dependence of ultimate tensile (1) and shear (2) strength for brittle (a),
ductile (b), and quasi-brittle or quasi-ductile (¢) materials and the diagram of the fracture character
by adiabatic model: I: brittle cleavage, II: ductile fracture, and I1I: there is the brittle-ductile
transition.

As we can see from the data listed in Table I,® the results of brittleness estimation
by means of suggested parameter B are in a good agreement with results based on the
brittleness parameter Re., = Hy/G suggested in Ref. [26] within a framework of quantum-
statistical approach to dynamic problems of solid mechanics (see also review [14]), as well
as with the results obtained using brittleness numbers 5 = /Gb/v? and n, = /bro/7 °
which were suggested within a framework of different dislocation models of quasistatic
ductile fracture by Rice and Thomson [7] and Cherepanov [8], respectively.

The merit of the brittleness parameter B, over the brittleness numbers n and 7y, is that

8 Parameters for materials with complex crystal structure were calculated using the effective
cell concept [1,14].

% b is the Burgers vector absolute value of the elementary dislocation, and # is the surface tension
(density of the surface energy).

10 79 is the friction (Shmid) force.



ULTIMATE STRENGTH AND BRITTLENESS OF CRYSTAL SOLIDS 789

TABLE 1. Ultimate tensile strength and various brittleness parameters for some crystal materials.

Material oc, GPa B., Eq. (14) Re., [1,14] ! (8,27 ! (7]
Ductile materials, B, > 1 (Re., > 0.707 [26], 5, ' > 1 [8], n~! > 0.35 [7]).*
Au 25.3 1.81 1.01 70 0.45
Al 18.5 1.44 1.14 25 +50 0.35
Ag 189 1.28 0.85 50 + 100 0.39
Ti 24.6 1.26 1.10 40 i
Cu 29.0 1.18 0.93 30 =50 0.40
Quasi-ductile and quasi-brittle materials, 0.65 < B, < 1 (5, ' ~ 1 [8]).
Fe 38.1 0.90 0.71 10 0.34
Ru 57.2 0.73 0.70 ¥ ?
Mo 40.9 0.72 0.61 0.87 ?
w 50.5 0.70 0.55 0.93 0.33
Al,O4 49.8 0.68 0.705 0.63 0.24
Brittle materials, B, < 0.65 (Re.» < 0.707 [27], n, ' < 1 [8], n7! < 0.25 [7]).
B4C 48.2 0.53 0.60 i 7
Si 13.9 0.46 0.52 0.77 0.23
Ge 10.7 0.42 0.53 il 0.18
SiC 371 0.41 0.32 0.59 ?
Diamond 81.7 0.34 0.51 0.42 0.20

* Notice the difference in the condition of ductility according to different criteria.

for the calculation of the first one, one needs only data for elastic moduli and atomization
(sublimation) energy, which in contrast to the data for v and 7y are well defined.!!

Thus, using the suggested model we can predict the nature of a given crystal material
(brittle, (?éla.si-brittle, ductile, quasi-ductile) and estimate its ultimate tensile and shear
strength.
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11 1t should be emphasized, that elastic properties and sublimation energy of solid materials can
be estimated more accurately than the surface tension and friction force. In fact, data variation
for the last material constants reaches 100-300% [2,3] and there is little data for temperature
dependence of 4 (we do not know the data for temperature dependence of 7).

12 Notice that ultimate tensile strength should be equal to the Griffith strength [2,3] and we can
use Eqs. (5), (11) for estimation of the surface tension v, while the ultimate shear strength (9),
(11) may be observed only for a certain conditions of dynamic loading (see Ref. [14]).
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