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ABSTRACT. In the present work we show that the Einstein equations on M without cosmologicaI
constant and with perfect fluid as source, can be obtained from the field equations for vacuum
with cosmologicaI constant on the principal libre bundle P (tM, U(I)), M being the space-time
and 1 the radius of the internal space U(I).

RESUMEN. !"lostramos que las ecuaciones de Einstein sobre M sin constante cosmológica y con
fluido perfecto como fuente, pueden obtenerse a partir de las ecuaciones de campo para vaCÍo con
constante cosmológica sobre el haz librado principal P (tM.U(I)), donde M es el espacio-tiempo
e 1 el radio del espacio interno U(I).

PACS: 1I.1O.Kk; 98.80.Dr

1. INTHOOUCTION

In a reeent work 11] it has been shown that vaeuum solutions in sealar-tensor theories
are equivalent to solutions of general relativity with imperfeet fluid as so urce. The aboye
models have the defeet that the sea lar lields do not arise from a natural framework of
unifieation, but they are put by hand as in the inflationary models [21 and are therefore
artificial fields in the theory. On the other hand, we know that the geometrie formalism of
principal fibre bundles [3,41 is a natural seheme to unify the general rclativity theory with
gauge field theories (Abelian and Non-Abelian). If the principal fibre bundle P(iJ, U(I))
is endowed with a metrie "dimensionally reducible" to iJ by means of the reduetion
theorem [51, i.e., if the metrie can be built out from quantities defined only on 111, then
the sealar fields arise in a natural way. Thercfore, it is important to study the aboye model
in the eontext of [11 for the particular principal fibre bundle POM, U(I)), lvl being the
spaee-time and 1 the sealar field. This paper is organized as follows: in the next seetion we
review the geometrie formalism of principal fibre bundles while in Seet. 3 we deduce the
Einstein equations without eosmologieal eonstant and perfect fluid as source from the field
equations on POllf, U(I)) for vacuum and eosmological constant. \Ve give an example in
Seet. 4 when lÚ is conformally FTIW. Finally we summarize the results in Sect. 5.
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2. TIIE GEOMETRY

The actual version of the Kaluza-Klein theories is based on the mathematical stucture of
principal libre bundles [5,61. Iu this scheme, the unilication of the general relativity theory
with the gauge theories is a natural fact. Moreover, the reduction theorelll provides a metric
on (right) principal libre bundles P(¡\1, G) which is right-invariant under the act ion of the
structure group G on the whole space P. In the trivialization of the bundle this metric
reads [5,61

(1)

where the metric of the base space ¡\1 (generally identilied with the space-time of general
relativity) is g"{3 dx" ({)dx{3 while the metric on the libre (x" = const.) is ~m"wm (()w" and
{wm} is a basis of right-invariant I-forms on G. The quantities g,,{3, ~m" and A~ depend
only on the coordinates on Ú and the A~ correspond to Yang-tv!il1s potentials in the gauge
theory while lhe ~m" are the scalar lields.
In particular, the principal fibre buudle P(¡\1, U(I)) has lhe metric

(2 )

where the scalar field I correSI)(lIld to the radius of the internal space U(I) and 1/J is lhe
coordinate on U(I) too. !lowever, the magnilude of the internal radins I depends on lhe
particular ca.,es; cosmological or astrophysicalmodels (for details on units and magnitude
on the scalar lield I see Refs. [6,7]). For vanishing electromagnetic potentiaI. Ao = O. we
obtain the unification of go{3 with lhe scalar field 1:

By using Eq. (3) we compute the Ricci tensor

Ro:4 = 01

ÍI" = -101,

(3)

(4)

(5 )

(6)

where greek indices run on 0,1,2,3 and the label "4" corresponds to the fift h dimensiono
Usually the base space Al of P(Iil, G) is identilied as lhe space-lime; in this paper we

adopt the vcrsion whcre t}¡e I!ase space A~J of P( ..\I,U(l)) is conformally tll(' spacc-tinH'
¡H of general relalivily, '.C., M = JM. That is to say, we start with the metric (compare
Re£. [8]):

(7)
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where g,,{J dx" 0 dx{J is the space-time metric. Then by using Eq. (7) we obtain the Ricci
tensor

R,,{J = R"{J + ~ (¡-lO 1 - 1;>.1;>')g,,{J - ~ ¡-21;" 1;{J,

Ro4 = 0,
- 2 >.R44 = -1 O 1 + 1;>.1; .

In what follows, we use the signature (-,+,+,+) for the space-time metrlc on !vI.

3. PERFECT FLUJO STRUCTURE

(8)

(9)

(10)

The field equations on P( tM, U(l)) in vacuum with cosmological constant 1\ are given by
R- j¡ - , - . . 1 fAH -- "29AB = H 9AB or In eqUlva cut onu

(11)

(13)

(12)

where A, B run on greek indices a ami 4.
By using Eqs. (8)-(10) ami (11) we obtain

Ro{J = ¡-2 (~1;>.1;>'g,,{J + ~l;ol;{J) - ¡-lO° 1 +~I\)go{J,
01 = ~1,>.1;>'+ ~1\.

By substituting the field equation for 1 IEq. (13)1 into the Ricci tensor IEq. (12)] we
obtain the equivalent system of equations

(14)

(15 )

(16)

On the other hand, by using the Einstein equations without cosmological constant,

T
R,,{J = T,,{J - 2g,,{J,

and Eq. (14), we can define the energy-momentum tensor associated with the scalar field 1:

T - 3[-2 [[ (31-2[ [,>, [-1,),,{J - '2 ;,,;{J + -:¡ ,>. + H g,,{J' (17)

This energy-mOlnentum tensor is covariantly conserved, To{J,{J = 0, as follows from the
field equation for [. Finally, by compariug the aboye energy-momentum tensor associated
with the scalar field [ with that of au imperfect fluid;

(18)
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where p is the energy density of fluid, U" the velocity, q" the heat flux vector, p the
pressure, ""p the anisotropic stress tensor and

is the projection orthogonal to the velocity, we conclude [1)

qQ = O,

7rcx¡3 = O,

where the velocity has been choosen in the form 111

(19)

(20)

(21 )

(22)

(23)

(24)

That is to say, Eqs. (20)-(23) imply that Eq. (17) has the structure corresponding to a
perfect fluid. Moreover, if A = O then Eqs. (17) and (20)-(23) correspond to the so caBed
"Zeldovich ultrastiff matter" fluid, p = p (see ReL [1J).

4. EXAMPLE: TIIE !'.F.II. P(iFRW, U(I))

\Ve start from the metric

(25)

where I = I(t) on account of the isotropy and homogeneity of the FR\V metric. In this
case the Eqs. (14), (15) read

(26)

(27)

(28)
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where dot means derivation with respect to the cosmological time t. These equations are
equivalent to the Einstein equations for FRW with perfect fluid as source, pravided that

p=H~r-G)A,
3(j)2 (1)

P = 4 1 + 1 A.

(29)

(30)

By the way, the field equation for I [Eq. (28)1 is the covariant conservation of To{3,
To{3;{3 = O

5. CONCLUSION

P+3(~)(P+P)=0. (31)

\Ve have shown that the field equations with cosmological constant A on the principal
fibre bundle P(tM, U(l)) are equivalent to the Einstein equations without cosmological
constant on M and with perfect fluid as source. In order to show it, we start from the field
equations on P(tM, U(l)), RAB = -~A9AB, and separate them in their 4-dimensional
and fifth dimension parts. We have found that fram the 4-dimensional part of these
equations it is possible to define an effective energy-momentum tensor To{3 and that it is
covariantly conserved, being To{3;{3 = O equivalent to the field equation for l. Finally, we
applied the above result to the particular bundle P(tFRW, U(l)).
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