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ABSTRACT. In the present work we show that the Einstein equations on M without cosmological
constant and with perfect fluid as source, can be obtained from the field equations for vacuum
with cosmological constant on the principal fibre bundle P (3M,U(1)), M being the space-time
and I the radius of the internal space U(1).

RESUMEN. Mostramos que las ecuaciones de Einstein sobre M sin constante cosmoldgica y con
fluido perfecto como fuente, pueden obtenerse a partir de las ecuaciones de campo para vacio con
constante cosmoldgica sobre el haz fibrado principal P (%M ,U(1)), donde M es el espacio-tiempo
e I el radio del espacio interno U(1).

PACS: 11.10.Kk; 98.80.Dr

1. INTRODUCTION

In a recent work [1] it has been shown that vacuum solutions in scalar-tensor theories
are equivalent to solutions of general relativity with imperfect fluid as source. The above
models have the defect that the scalar fields do not arise from a natural framework of
unification, but they are put by hand as in the inflationary models (2] and are therefore
artificial fields in the theory. On the other hand, we know that the geometric formalism of
principal fibre bundles [3, 4] is a natural scheme to unify the general relativity theory with
gauge field theories (Abelian and Non-Abelian). If the principal fibre bundle P(M,U(1))
is endowed with a metric “dimensionally reducible” to M by means of the reduction
theorem [5], i.e., if the metric can be built out from quantities defined only on M, then
the scalar fields arise in a natural way. Therefore, it is important to study the above model
in the context of [1] for the particular principal fibre bundle P(%M,U(l)), M being the
space-time and I the scalar field. This paper is organized as follows: in the next section we
review the geometric formalism of principal fibre bundles while in Sect. 3 we deduce the
Einstein equations without cosmological constant and perfect fluid as source from the field
equations on P(%M’,U(l)) for vacuum and cosmological constant. We give an example in

Sect. 4 when M is conformally FRW. Finally we summarize the results in Sect. 5.
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2. THE GEOMETRY

The actual version of the Kaluza-Klein theories is based on the mathematical stucture of
principal fibre bundles [5, 6]. In this scheme, the unification of the general relativity theory
with the gauge theories is a natural fact. Moreover, the reduction theorem provides a metric
on (right) principal fibre bundles P(M, G) which is right-invariant under the action of the
structure group G on the whole space P. In the trivialization of the bundle this metric
reads [5, 6]

§ = fop d2® ®@ dzl + Emn (W™ + AT dz®) @ (W™ + A daP), (1)

where the metric of the base space M (generally identified with the space-time of general
relativity) is §op dz© ® dz? while the metric on the fibre (z® = const.) is & W™ @w™ and
{w™} is a basis of right-invariant 1-forms on G. The quantities §ag, {mn and A7 depend
only on the coordinates on M and the A? correspond to Yang-Mills potentials in the gauge
theory while the &,,, are the scalar fields.

In particular, the principal fibre bundle P(M,U(1)) has the metric

§ = Japdz® @ dz? + I (dyp + A, dz®) @ (dy + Ag daP), (2)

where the scalar field I correspond to the radius of the internal space U(1) and ¢ is the
coordinate on U(1) too. However, the magnitude of the internal radius I depends on the
particular cases; cosmological or astrophysical models (for details on units and magnitude
on the scalar field I see Refs. [6, 7]). For vanishing electromagnetic potential, A, = 0, we
obtain the unification of g,3 with the scalar field I:

§ = Gap daz® ® dz® + I* dyp*. (3)

By using Eq. (3) we compute the Ricci tensor

-Raﬂ = Ra,@ = I—l I;aﬂa (4)
Rag = 0, (5)
Ry = ~-I0O1, (6)

where greek indices run on 0,1,2,3 and the label “4” corresponds to the fifth dimension.

Usually the base space M of P(M,G) is identified as the space-time; in this paper we
adopt the version where the base space M of P(M,U(1)) is conformally the space-time
M of[ general relativity, v.e., M = %Mr. That is to say, we start with the metric (compare
Ref. [8]):

1 ;
§ = 79ap da® © da” + I* dy?, (7)
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where gop dz® ® dz” is the space-time metric. Then by using Eq. (7) we obtain the Ricci
tensor

Rap = Rag + § (171 01 = In 1) gap - 31" La I, (8)
RQ4 = 01 (9)
By = P OT+ I\ 17 (10)

In what follows, we use the signature (—,+,+,+) for the space-time metric on M.

3. PERFECT FLUID STRUCTURE

The field equations on P(%Mr, U(1)) in vacuum with cosmological constant A are given by
Ragp — {i}gw = A jap or in equivalent form
Rap = —2Ajas, (11)

where A, B run on greek indices « and 4.
By using Eqgs. (8)—(10) and (11) we obtain

Rop = I~* (%I;,\I;/\ Gap t %I;al;ﬁ) —~J= (%DI+ %A) CLLE (12)
1
B = }-I;,\I’)‘ + 2A. (13)

By substituting the field equation for I [Eq. (13)] into the Ricci tensor [Eq. (12)] we
obtain the equivalent system of equations

Rap = %1_2 LaLp—17"Agap, (14)
0l = %I;,\I?’\ + 2A. (15)

On the other hand, by using the Einstein equations without cosmological constant,
Rap = Tap — ggaﬂa (16)

and Eq. (14), we can define the energy-momentum tensor associated with the scalar field I:
Top = 3172 LaLg+ (=310 I + I7'A) gag. (17)

This energy-momentum tensor is covariantly conserved, il 5 =0, as follows from the
field equation for I. Finally, by comparing the above energy-momentum tensor associated

with the scalar field I with that of an imperfect fluid:

Top = pUaUp + 2q(oUpy + P hap + Tagp, (18)
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where p is the energy density of fluid, U, the velocity, g, the heat flux vector, p the
pressure, T,z the anisotropic stress tensor and

haﬂ = gap + UaUﬁ (19)

is the projection orthogonal to the velocity, we conclude [1]

ga =0, (20)
Tag = 0, (21)
o=~ - 2, (22)
p=—3I"2[,I*4 % (23)

where the velocity has been choosen in the form [1]

L,
NNy

That is to say, Eqs. (20)—(23) imply that Eq. (17) has the structure corresponding to a
perfect fluid. Moreover, if A = 0 then Eqgs. (17) and (20)—(23) correspond to the so called
“Zeldovich ultrastiff matter” fluid, p = p (see Ref. [1]).

=
I

4. EXAMPLE: THE P.F.B. P(}FRW, U(1))

We start from the metric

+ I*(t)dv?,  (25)

w. . A | w3 2 dr? 2 192 ) 2
g_I(t)[ dt® + R*(t) (1—kr2+r df* + r°sin“ 8 do

where I = I(t) on account of the isotropy and homogeneity of the FRW metric. In this
case the Egs. (14), (15) read

(27)

G) A, (28)
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where dot means derivation with respect to the cosmological time t. These equations are
equivalent to the Einstein equations for FRW with perfect fluid as source, provided that

30
=30+ (0)s -

By the way, the field equation for I [Eq. (28)] is the covariant conservation of Tyg,
Ty =
B

p+3(g) (p+p) =0. (31)

5. CONCLUSION

We have shown that the field equations with cosmological constant A on the principal
fibre bundle P(3M,U(1)) are equivalent to the Einstein equations without cosmological
constant on M and with perfect fluid as source. In order to show it, we start from the field
equations on P(%M, U(1)), Rap = —%A dap, and separate them in their 4-dimensional
and fifth dimension parts. We have found that from the 4-dimensional part of these
equations it is possible to define an effective energy-momentum tensor T,z and that it is

covariantly conserved, being Tor 5 = 0 equivalent to the field equation for I. Finally, we
applied the above result to the particular bundle P(%FRW,U(I)).
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