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ABSTRACT. \Ve present an casy way (accessible to any beginning student) of generating nontrivial
central potentials of such a 50rt that, for an arbitrary l-wave, tlle exact cigenfunctions of tite
pertinent radial equation can be analytically expressed in terms of elcmentary functions. No spedal
functions nced to be invoked.

RESUMEN. En este artículo presentamos una manera simple de generar potenciales centrales no
triviales1 de tal manera que, para cada valor del momento angular orbital I, la autofunción solución
de la correspondiente ecuación radial puede ser expresada analíticamente en términos de funciones
simples. El método es accesible a cualquier estudiante de un curso introductorio de física cuántica,
puesto que no se necesitan funciones especiales para la construcción de la función de onda.

rAes: 03.67.Ge

l. I:<TRODUCTIO:<

SiIualions in which Schriidinger's radial equalion can Le exaclly sol ved wilhout recourse
to specia! functions are of great pedagogical interest, since the number of such instances
that are easi!y accessible lo beginning students is very small indeed.
The radial equalion can be analYlically solved in closed form, for all values of the angu-

lar momentnm quanlum number 1, in a restricted set of cases (essentially lhe square-well,
the Coulomb potential and lhe harmonic oscillalor) [1]. Nevertheless, lhere are several
families of potentials for which one can express in closed fonn the 1 = O wave Junetions
in terms of different conAuenl hypergeometric series. This is the case of the Eckart po-
tenlials [2], which with an appropriate choice of parameters yield the cclebrated Hulthén
potenlial [3]. \Ve can also mention the lIylleraas, lhe exponential and the Morse potentials,
that are also derived froll! the Eckart ones. These potentials have been used mostly in
connection with molecular physics [4].
Exactly solvable models constitute an invaluaLle tool in helping to develop quanturu

intuition and are often useful in gaining deeper understanding into the workings of the
quantum world, as vividly illustrated by the recent work of Zakhariev et al. [5-8). New
exactly solvable models have ruade it possihle to formulate a unified quanlum picture
in which both the direct aJl(I the im'erse quantull! problems are treated on an equal
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footing [5-8). (Going from the iuteraetion poteutial to the system's properties eoustitutes,
of eourse, the direet problem, while going from eertain speeified properties thc system is
to possess to the potential needed to that effeet poses the inverse problem).
In what follows we shall foeus our attention upon the inverse problem. As our aim

is that of helpiug the beginniug student to develop quautum intuitiou, we shall demand
that, for an arbitrary l-wave, the exaet eigenfuuetion be of a vcry simple funetioual formo
"loreover, as it is desirable for beginners without mathematieal sophisticatiou lo avoid
invoking speeial funetions, we shall look for radial equations sueh that their eigensolulions
be expressed just in terms of elementary fuuetions.
Iu the one dimensional case, a new, iufinite family of potentials of the polyuomial

form has been reecntly showu lo possess grollnd stale wave funetions of simplc aualYlieal
form 19] and it should be of pedagogical iuleresl to fiud a radial aualogue. As sI aled, this
is our goai here.
\Ve shall show below how lo eoustruct ceutral potcutials of sueh uature lhat, for a

given, arbitrary ¡-wave, the prrtincnt eigcnfllllctioIlS can be cxpressed in clmwd form in
terms oC powers, polynomials and cxponentials. In t.his scnsc, thc present cffort goes \,,'ay
beyond lhe one of TIef. [9), whcre uo melhodology is giveu lhal may euable lhe sludenl
to determine by himself pOlcnlials of lhe dcsircd properties.

2. Tm: I'RESEJ"T ~IETIIOD

Usiug slandard uolation and atomie uuits (h = 111 = 1), the radial equatiou for the
redueed wave fuuetiou "nl(1') aequires the appearauec

d2"nl [ l(l + 1)]
--2- + 2 Enl - \1(1') - 2 "ni = O,
d1' 21'

(1)

where, for bouud states, "ni usually behaves like 1'1+1 ucar the origiu aud should deeay iu
exponential fashiou at infiuity. Of eourse, uormalizatiou requires

\Ve shall restriel ourselves lo eculral potcutials of the form

v

\1(1') = L ak"k.
":=-1

(ak real) sueh that

lim 1'2\1(1') = O,,-o

(2)

(3)

(4 )
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which guarantees the rl+1 behaviour in the neighbourhood of the ongm [see Eq. (1)1.
Notice that the expression (3) ineludes as particular cases the Coulomb potential and the
harmonic oscillator well. ,Ve advance the ansatz

Un/(r) = rl+11'M(r) exp [-tAO - t t Ai riJ '
1=1

(5)

with l'M (r) and ¡\[-th degree polynomial that guarantees the correct number of nodes. AO
is a normalizatioll ('onstant and >\} 1 ••• ,.-\n are real numbers to be determincd in terms of
the potential-function coefficieuts Uk. In addition, one must require An to be positive. It is
easy to verify that the above meutiolled boundary conditions are satisfied. There is a elear
reason for the particular choice of the form (5): it cau be justified on Information Theory
grounds as the wave function that maximizes the so-called relative entropy [10, 11].
After introduction of (3) and (5) illto (1) one realizes that detennining the radial wave

function (wf) is essentially a matter of choosing the Ai and the coefficients of 1'M in
such a way that corresponding powers of the radial coordiuate match on both sides of
the radial equation. This is a straightforward but tedious task. However, it constitutes a
useful exercise, as techniques which give studeuts practice in performing manipulations
leading to specia! solutions of Schrodiuger's equation should always be weleome.
If one adopts such a program, the first cOllelusion to be reached is that the number of

A'S to be used is given by the potential-function degree as

N N
1 + 2 :s 11 < 2 + 2' (6)

The srcond (also an intrresting exercise) is to investigate the validity of the method for
the Coulomb and the harmonic oscillator potentials. I30th cases can be easily tackled with
it and one recovers the exact spectrum and analytical wf's. However, it is here convenient
to abandon the general discussion, which would brcome too abstract to be pedagogically
llseful, and focus Ollf attt'lltion UPOll somc concrete situations.
For example, for a nodrless wf (1'.11 = 1), which constitutes the simplest case, one finds,

in general, the following expressions relating the ('oe!ficients of the potential to those of
t}¡c wave fUllction:
For 1 :s k :s " - 2, k = even,

2 k/21(k+2) 2 1",. . 1
Uk = 8 -2- A'i' + 4 ¿](k + 2- ])A]Ak+Z_j - 4(k + 2/+ 3)(k + 2)Ak+Z;

]~1

for 1 :s k :s 11 - 2. k = odd.
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for n - 1 :s k :s 2n - 3, k = even,

1 (k + 2) 2 1 k/2
ak = 8" -2- A~ + :1 . L j(k + 2- j)AjAk+2-j;

)=k+2-n

for n - 1 :s k :s 2n - 3, k = odd,

which are to be supplemented with

(7)

1 + 1
a-1= --2-A1,

1 2 21 + 3
ao = E + -Al - --A28 2 (8)

(E is the pertinent energy eigenvalue), and

After an appropriate inversion process, one finds the A¡'S in terms of the IIk. One will
immediately realize, however, that the IIk eannot be eho"en lI,.bitmrily. They must fulfill
certain relations among themselves that can be referred to as posing "solvability condi-
tions" for the central field. Only those potentials (3) that comply with these "solvahility
conditions" lead to reduced radial wave functions of the type that we are interested in
here.

3. NU~tERICAL APPLICATIO:-;S

To be specific, let us consider potentials of the type, say,

V(,.) = 112,.2 + 113,.3 + 115,.5 + 118""' (10)

with 118 > O (any other polynomial in,. is to be treated in similar fashion). \\'e immediately
find [eI Eqs. (7)-(D)]' the set of relation,:

25 ,2as = "'8/\5' (1, = 5)q"\5 = O.

1 3(1+2)
111 = 2A1A2 - 2 A" = O.

(11)
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so that

Al = A3 = A4 = O,

E- 21+3 ~
- 2 ';208'

In the concomitant process it becomes clear that

03 = -(1 + 3)';208,

(12)

(13)
02

Q. _ 5
2 - 4as 1

the "solvability conditions" in the present instance. Only Os and Os can be freely chosen,
but this is enough to provide one with an infinite family of radial potentials with nodeless
eigenstates that can be expressed just in terms of elementary functions. Of course, as
the "solvability conditions" involve 1, for a given potential only one nodeless wf will be
exactly solved in the fashion that interests us here.
The solid curve of Fig. 1 represents the particular instance of (10) for which as = -1

and as = 2 (leading to, for I = 2, !l3 = -10 ami a2 = 1/8). The dot-dashed line depicts
the concomitant, effective potential (including the centrifngal barrier for I = 2). The
normalized 1d-reduced radial wf for a particle moving in such an effective potential is
portrayed in the same figure (dashed line). The position of the corresponding energy level
is also indicated.
As a second example consider now the potential function

V(r) = !lIr + !l2r2 + 03r3 + 04r4 + asr5 + osrs, (14)

with !ls = -1 and !ls = 2, with a view to study its associated one-node-states. The
polynomial PM [cf. Eq. (5)] adopts the simple form PM = r - R. The pertinent matching
procedure will not only yield the energy eigenvalue ami the Ai'S of the wf but also the
position R of the node.

Hcre our "solvability conditions" rcad

al = ~ 2y2a8 R ,

!l3 = -(1 + 4)';208,

)20s
04 = - ----¡¡- ,

(15 )



FIGURE l. The potential 0.125,' -lO r3 -,' +2r' (solid line) and its a$sociated effective potential
including the effect of the centrifugal barrier (dot-dashed line) for 1= 2. The Id reduced radial wave
function u(r) ex:r3 exp(O.25r2 -0.4 r5) (dnshed line) is abo showll together w¡th the rorresponding
energy level (dotted line).

while the matching procedure gives

which yiclds R = 1.1269 for 1 = 1. It is interesting lo note here that Ec¡. (16)
one rea! and positive rooL The energy eigeIl\"a!ue for the potential (14) reads

21 + 5 "5 1 ~ 3¡;; = ---- - -- + V2"H R .
2 .)2"8 2R2

(16)

has on!y

(Ji)

The potentia! fuuction ami its associaled elfective poten tia! are disp!ayed iu Fig. 2. Of
course, siuce the "soh.abilily couditious" (15) di!Ier frolll those of Ec¡. (13), the poteutia!
of this figure is uol ideutica! to the oue of Fig. 1. The radial wf for the 2J1~slate is also
depicted iu Fig. 2.

Additional ('xampit's cau he casil)' cOllstrued. Fol' t.Ite sake of brevit.y, how('\'('r. \\'(' s}¡all
('ontent oUfselv('s witll the two illstalH'ps di::;cllssrd a!Jo\"(',
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FI(;UIlE 2. The pOlenllal -2.09G2r - 2.12881'2 - 101'3 - 1.;;4;1'" - 1" + 21'8 (salid line) and its
a..o;;sociatedeffectivc potf'lItial inclllding the cff('ct of the centrifugal uarricr (dot-da..¡;¡hed Hne) for
1 = 1. The 1p redu('('d radial wave function u(1') oc 1'2(1' - 1. 12G9)exp(0.88;41' + 0.251'2 _ 0.41")
(d;L<.;hec!lille) is also showll togcthef with the corrcsponding (,Ilergy level (dotted line).

4. CO:"CLtllll:-l(; IlE~IAIlKS

Sumtlling up, we have hen' presenled a slraighlfonvard a!gorilhm Ihat allows the begin-
ning student lo try her (his) hand at detertllining, for general potentia!s of the type (3),
the "soh'ability condilions" that provide for specific realizations leading to exaet redueed
radial wf of a <¡uite simple fOl'ln.
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