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ABSTRACT. We present an easy way (accessible to any beginning student) of generating nontrivial
central potentials of such a sort that, for an arbitrary [-wave, the exact eigenfunctions of the
pertinent radial equation can be analytically expressed in terms of elementary functions. No special
functions need to be invoked.

RESUMEN. En este articulo presentamos una manera simple de generar potenciales centrales no
triviales, de tal manera que, para cada valor del momento angular orbital [, la autofuncién solucién
de la correspondiente ecuacién radial puede ser expresada analiticamente en términos de funciones
simples. El método es accesible a cualquier estudiante de un curso introductorio de fisica cudntica,
puesto que no se necesitan funciones especiales para la construccién de la funcién de onda.

PACS: 03.67.Ge

1. INTRODUCTION

Situations in which Schrédinger’s radial equation can be exactly solved without recourse
to special functions are of great pedagogical interest, since the number of such instances
that are easily accessible to beginning students is very small indeed.

The radial equation can be analytically solved in closed form, for all values of the angu-
lar momentum quantum number [, in a restricted set of cases (essentially the square-well,
the Coulomb potential and the harmonic oscillator) [1]. Nevertheless, there are several
families of potentials for which one can express in closed form the | = 0 wave functions
in terms of different confluent hypergeometric series. This is the case of the Eckart po-
tentials [2], which with an appropriate choice of parameters yield the celebrated Hulthén
potential [3]. We can also mention the Hylleraas, the exponential and the Morse potentials,
that are also derived from the Eckart ones. These potentials have been used mostly in
connection with molecular physics [4].

Exactly solvable models constitute an invaluable tool in helping to develop quantum
intuition and are often useful in gaining deeper understanding into the workings of the
quantum world, as vividly illustrated by the recent work of Zakhariev et al. [5-8]. New
exactly solvable models have made it possible to formulate a unified quantum picture
in which both the direct and the inverse quantum problems are treated on an equal
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footing [5-8]. (Going from the interaction potential to the system’s properties constitutes,
of course, the direct problem, while going from certain specified properties the system is
to possess to the potential needed to that effect poses the inverse problem).

In what follows we shall focus our attention upon the inverse problem. As our aim
is that of helping the beginning student to develop quantum intuition, we shall demand
that, for an arbitrary [-wave, the exact eigenfunction be of a very simple functional form.
Moreover, as it is desirable for beginners without mathematical sophistication to avoid
invoking special functions, we shall look for radial equations such that their eigensolutions
be expressed just in terms of elementary functions.

In the one dimensional case, a new, infinite family of potentials of the polynomial
form has been recently shown to possess ground state wave functions of simple analytical
form [9] and it should be of pedagogical interest to find a radial analogue. As stated, this
is our goai here.

We shall show below how to construct central potentials of such nature that, for a
given, arbitrary [-wave, the pertinent eigenfunctions can be expressed in closed form in
terms of powers, polynomials and exponentials. In this sense, the present effort goes way
beyond the one of Ref. [9], where no methodology is given that may enable the student
to determine by himself potentials of the desired properties.

2. THE PRESENT METHOD

Using standard notation and atomic units (A = m = 1), the radial equation for the
reduced wave function wu,;(r) acquires the appearance

I(1+1)
27.2

2
d Unl
dr?

+ 2 [Eng - V(r) - uy =0, (1)

where, for bound states, u,; usually behaves like #'*! near the origin and should decay in
exponential fashion at infinity. Of course, normalization requires

fm dr |T£11i(r)|2 =L (2)
0

We shall restrict ourselves to central potentials of the form

(ax real) such that
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which guarantees the r'*! behaviour in the neighbourhood of the origin [see Eq. (1))
Notice that the expression (3) includes as particular cases the Coulomb potential and the
harmonic oscillator well. We advance the ansatz

Un (1) = 1 Pp(r) exp [_%AO - %Zz\i ril ; (5)

=1

with Pys(7) and M-th degree polynomial that guarantees the correct number of nodes. Ao
is a normalization constant and Aj,..., A, are real numbers to be determined in terms of
the potential-function coefficients ax. In addition, one must require A, to be positive. It is
easy to verify that the above mentioned boundary conditions are satisfied. There is a clear
reason for the particular choice of the form (5): it can be justified on Information Theory
grounds as the wave function that maximizes the so-called relative entropy [10, 11).

After introduction of (3) and (5) into (1) one realizes that determining the radial wave
function (wf) is essentially a matter of choosing the ); and the coefficients of Py in
such a way that corresponding powers of the radial coordinate match on both sides of
the radial equation. This is a straightforward but tedious task. However, it constitutes a
useful exercise, as techniques which give students practice in performing manipulations
leading to special solutions of Schrédinger’s equation should always be welcome.

If one adopts such a program, the first conclusion to be reached is that the number of
A’s to be used is given by the potential-function degree as

N N
1+?§n<2+?. (6)

The second (also an interesting exercise) is to investigate the validity of the method for
the Coulomb and the harmonic oscillator potentials. Both cases can be easily tackled with
it and one recovers the exact spectrum and analytical wf’s. However, it is here convenient
to abandon the general discussion, which would become too abstract to be pedagogically
useful, and focus our attention upon some concrete situations.

For example, for a nodeless wf (Py; = 1), which constitutes the simplest case, one finds,
in general, the following expressions relating the coefficients of the potential to those of
the wave function:

For 1 <k <n -2, k = even,

2

2 k/2
1/k+2 1 , . 1
ag = g (_2—) /\21=_+2_ + “I le(k + 2 —J)Aj/\k+2—j - Z(k + 2! +3)(k + 2)’\k+2;
J:

for 1 <k <n-2 k=odd.

; _ 1
_](k +2 —j)AJ')\;H_Q,j T E(llb + 2] + 3)(k T Q)Ak+2;
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forn—-1<k<2n-3, k= even,

2 k/2
1 [ket2 9 1 ; :
O = 3 (T) /\k_-g ot 1 Z J(k +2 = 3)Aj Aesa—js
j=k+2-n
forn—-1<k<2n-3, k=o0dd,
kt1
1 2
aw=7 > Jk+2-DNMesr, (7)
i=k+2-n
which are to be supplemented with
[+1 1 20+ 3
a_q =——§—A1, ag=E + gA%_TAQ (8)

(E is the pertinent energy eigenvalue), and
aap—-2 = %nzz\ﬁ.

After an appropriate inversion process, one finds the A;’s in terms of the ax. One will
immediately realize, however, that the a; cannot be chosen arbitrarily. They must fulfill
certain relations among themselves that can be referred to as posing “solvability condi-
tions” for the central field. Only those potentials (3) that comply with these “solvability
conditions” lead to reduced radial wave functions of the type that we are interested in
here.

3. NUMERICAL APPLICATIONS

To be specific, let us consider potentials of the type, say,
V(r) = agr® + asr® + asr’ + agr®, (10)

with ag > 0 (any other polynomial in 7 is to be treated in similar fashion). We immediately
find [cf. Eqs. (7)-(9)], the set of relations:

0 = %5/\2, a7 = dx3A5 = 0,

ag = 2M; + 2 A3h5 =0, as = 3X3Ms + 3 A2,

ag = 302 + Pighy+ 3Mids =0, i = gl + Tydg— 5“;3)/\5, -
a2 = 132+ Iaidg — (214 5)s, oy ey By et
aD:E+§,\f—2{j3A2:0, a.,lz—l—f;—l,\lz ;
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so that

2
A5 =5 2(13,

L

A1=)\3=A4=0,

2143 a5
2 2ag

In the concomitant process it becomes clear that

@37= A(l * 3)\/ 2ag,

a3
= 4ag’
the “solvability conditions” in the present instance. Only as and ag can be freely chosen,
but this is enough to provide one with an infinite family of radial potentials with nodeless
eigenstates that can be expressed just in terms of elementary functions. Of course, as
the “solvability conditions” involve [, for a given potential only one nodeless wf will be
exactly solved in the fashion that interests us here.

The solid curve of Fig. 1 represents the particular instance of (10) for which a5 = -1
and ag = 2 (leading to, for | = 2, a3 = —10 and a; = 1/8). The dot-dashed line depicts
the concomitant, effective potential (inciuding the centrifugal barrier for [ = 2). The
normalized 1d-reduced radial wf for a particle moving in such an effective potential is
portrayed in the same figure (dashed line). The position of the corresponding energy level
is also indicated.

As a second example consider now the potential function

E= (12)

(13)

V(r) = a7 + agr? + agr® + agr® + a5r® + agr®, (14)

with a5 = —1 and ag = 2, with a view to study its associated one-node-states. The
polynomial Py [¢f. Eq. (5)] adopts the simple form Py; = r — R. The pertinent matching
procedure will not only yield the energy eigenvalue and the A;’s of the wf but also the
position R of the node.

Here our “solvability conditions” read

as 2
ay =-— - +/2ag R,
! VZ2agR S

2
ay = —4—ai —v2ag R,
R (15)

a3 = _(l + 4)\/ 2ag,
V2ag

R L §

ag = —
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FIGURE 1. The potential 0.1257%—1073—7%+2r® (solid line) and its associated effective potential
including the effect of the centrifugal barrier (dot-dashed line) for I = 2. The 1d reduced radial wave
function u(r) o 73 exp(0.257% — 0.4 r®) (dashed line) is also shown together with the corresponding
energy level (dotted line).

while the matching procedure gives

Yas R+ —2_R? =142, 16
V2as — (16)

which yields R = 1.1269 for [ = 1. It is interesting to note here that Eq. (16) has only
one real and positive root. The energy eigenvalue for the potential (14) reads

2! + 5 ﬂ.s ]. 3 -
B ~ VZas RS, 1
T e B T Vo )

The potential function and its associated effective potential are displayed in Fig. 2. Of
course, since the “solvability conditions” (15) differ from those of Eq. (13), the potential
of this figure is not identical to the one of Fig. 1. The radial wf for the 2p-state is also
depicted in Fig. 2.

Additional examples can be easily construed. For the sake of brevity, however, we shall
content ourselves with the two instances discussed above.
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FIGURE 2. The potential —2.0962r — 2.12887% — 1073 — 1.7747 1% — 5 4 248 (solid line) and its
associated effective potential including the effect of the centrifugal barrier (dot-dashed line) for
! = 1. The 1p reduced radial wave function u(r) o« r?(r — 1.1269) exp(0.8874 7 + 0.2572 — 0.4 )
(dashed line) is also shown together with the corresponding energy level (dotted line).

4. CONCLUDING REMARKS

Summing up, we have here presented a straightforward algorithm that allows the begin-
ning student to try her (his) hand at determining, for general potentials of the type (3),
the “solvability conditions” that provide for specific realizations leading to exact reduced
radial wf of a quite simple form.
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