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ABSTRACT. In the present article we revisit the problem of a relativistic Dirac electron. Using
a second order formalism which reduces the problem of finding the energy spectrum to solving
the Whittaker equation, we show that the only physical solution is obtained by truncating the
hypergeometric series. Therefore the energy spectrum does not depend on any free parameters for
119 Z <137:

RESUMEN. En el presente articulo se estudia el problema de un electrén relativista de Dirac.
Haciendo uso de un formalismo de segundo orden que reduce el problema de encontrar el espectro de
energia a resolver la ecuacién de Whittaker, se muestra que la tinica solucién fisicamente aceptable
se obtiene truncando la serie hipergeométrica. Por consiguiente, el espectro de energia no depende
de ningiin pardmetro libre para 119 < Z < 137.

PACS: 03.65,~w; 11.10.Qr; 4.90.+e

1. INTRODUCTION

The Dirac equation is a system of four coupled partial differential equations which de-
scribes the relativistic electron and other spin 1/2 particles. Despite the considerable effort
made during the last decades in order to find exact solutions describing the relativistic
electron in the presence of external fields, the number of solvable problems is relatively
few [1] Perhaps the most remarkable success of the Dirac theory of the electron is the
prediction of the hydrogen atom energy spectrum [2,3]. This problem has been exten-
sively discussed in the literature [4-7], and different techniques have been suggested for its
solution. Essentially, all the approaches, after separating the angular variables from the
radial and time dependence, reduce the problem to solving a system of coupled first order
differential equations, whose solution can be expressed, in almost all the standard repre-
sentations of the Dirac matrices, as a combination of confluent hypergeometric functions.
Motivated by the idea of obtaining a Dirac spinor solution similar to the one obtained in
studying the free-electron problem in spherical coordinates, Biedenharn [8] has solved the
Dirac-Coulomb problem in a representation which diagonalizes the Dirac K operator and
gives as a result spinor solutions with a radial dependence having the same form as for
the nonrelativistic Coulomb problem. Using the Biedenharn approach, the solutions for
bound states of the Dirac-Coulomb equation have been computed by Wong and Yeh [9].
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Here the equations governing the radial dependence of the spinor are reduced to two de-
coupled second order Whittaker equations. Recently the Dirac-Coulomb problem has been
revisited [10]. After some algebra, the authors transform the coupled system of differential
equations for the radial dependence of the wave function into two second order Whittaker
differential equations. They choose as solution of this system the functions W), ,(z) [11],
obtaining in this way, not only the standard hydrogen energy spectrum, but some physical
implications for 119 < Z < 137.

The purpose of the present article is twofold: first, we show that the reduction of the
system of equations governing the radial Dirac wave solution to a system of Whittaker
equations can be obtained with the help of a similarity transformation which gives as a
result a solution equivalent to the one obtained by Wong [9]. Second, we show that the
solutions reported in Ref. [10] are unphysical and therefore no anomalous behavior should
be expected for 119 < Z < 137.

2. SEPARATION OF VARIABLES IN THE DIRAC EQUATION

In this section we separate variables in the Dirac equation
{#(0u - Tw = i4,) + m}w =0, (1)

where for the Dirac-Coulomb problem the only nonzero component of the vector poten-
tial A, is A9 = —Ze?/r, the curved gamma matrices satisfy the commutation relations
{7*,%"}, = 2¢"” and T', are the spin connections [12]. If we choose to work in the fixed
Cartesian gauge, the spinor connections are zero and the ¥ matrices take the form

P =1 =4,

= |(4! cosnp+725incp)sin19 +’y3c0319] =~

1 3? 2
42 = ;[('ylcosgo-}—'y?Sin(p)cosﬁ—'73Sin1.9]=l, @)
b
! .
~3 _ _ O 2 == ’Y
E rsim?( TS ) rsind’
and the Dirac equation in the fixed tetrad frame (2) becomes
{7“(& +iV(r) + 58, + —0y + — d, + m} v =0. (3)
r rsind

In order to separate variables in the Dirac equation, we are going to work in the diagonal
tetrad gauge where the gamma matrices 74 are

. 1
== g = 73' (4)

0_ 5 —
d=7 W=7 r rsind
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Since the curvilinear matrices ¥* and 74 satisfy the same anticommutation relations,
they are related by a similarity transformation, unique up to a factor. In the present case
we choose this factor in order to eliminate the spin connections in the resulting Dirac
equation. The transformation S can be written as [13]

1 ) )
- L _¥a 2) B iY..
Em )i P ( 57 7 )exp (=577 Ja="503, ()
where a is the constant non singular matrix given by a = 3(v*9? —v'73 ++2y® +1I), which
applied on the gammas’s acts as follows:

aytal=73, aqfal=at, anfai=d, (6)

the transformation S acts on the curvilinear § matrices, reducing them to the rotating
diagonal gauge as follows:

STIZ1G = ghint = "é‘ (no summation), (7)

then, the Dirac equation in spherical coordinates, with the radial potential V(r), in a
locally rotating frame reads

3

2
{qﬂat +~10, + 7;3,? - By +m+ i’yoV(r)} ¥ =0, (8)

rsind

where we have introduced the spinor ¥, related to T by the expression U =S¥ = Spal,
and 7* are the standard Dirac flat matrices.

Applying the algebraic method of separation of variables [14,15], it is possible to write
Eq. (8) as a sum of two first order linear differential operators K, K, satisfying the
relation

[Rl,Kz] =0, {IA{1+R’2}(I’=O, (9)
K1® = \® = —K,®, (10)

then, if we separate the time and radial dependence from the angular one, we obtain

3
Ky® = [723,, + _i—aw] 1O1® = —ik®, (11)
sin

1% =7 [706; ++'8, + m+ ifyOV] AN = ikd, (12)

with ¥ = 7%41®, where we have made the identification ix = A. Notice that (11) is the
angular momentum K obtained by Brill and Wheeler [12].

Here it is necessary to remark that the operator K, appearing in (11) is not single
valued and does not satisfy the properties of a “good” angular momentum operator. The



4 VicTor M. VILLALBA

true angular operator should be obtained from K, with the help of the transformation
5 (5)

3
2 g 0,.1¢-1 o : 13
5 I:'y g + Siwaw] Y'Y STISP = —ikSD; (13)

since Sy#*S~1 = 5# we obtain

3,70,71

sin

i 8, +723°5180,51 +

2201 e i|.& 2
2.0~ = N "
[7 Yy O + S 50,57 | &= —ix®,  (14)

where S& = &.
Using the explicit form of S given by (5) we have

S89S™' = Jcotd + L(cosp — Yy sinp)yy! 58,571 = 3 (15)

substituting (15) into (14)

[@Ufyzf‘ylaﬂ 4 '70,:’3:’1 9, +7°| @ = ik, (16)
sin v
expression that can be written as follows:
K =" [(sL) + 1. a7)
The operator K satisfies the relation
RP=7+1, P=(L+io), (18)
and the eigenvalue k is related to j as follows:
=i+ +1=(i+3) (19)

3. SOLUTION OF THE RADIAL EQUATION

In order to reduce Eq. (12) to a system of ordinary differential equations, we choose to
work in the following representation of the gamma matrices [16]:

P=(n 9 *=(3 Y (20)
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Then, substituting (20) into (12) we obtain
k
(dr—F) '1’1+0"1(E—-V-m)‘1’2 = ) (21)
k
(dr + ;) &y -0 (E-V +m)® =0, (22)

where the spinor ¢ has the form

- (2)

Taking into account the structure of the system of Eqgs. (21)-(22), we can gather the first
and forth components of ®, ®; = £, &4 = ( as follows:

(drﬁg)f-i-(E—V—m)C:O, (24)
(dr+§)c—(E-v+m)5=o; (25)

the system of Eqs. (24)-(25), after substituting V = —Za/r, is just the standard one
governing the radial dependence of the wave equation in Dirac-Coulomb problem. After
introducing the auxiliary spinor © defined by

o=(()

the system (24)—(25) reduces to
. k
(dr +moy +i(E —V)op — ;03) e =0, (27)

Here, in order to solve (27), we do not proceed in the standard way [17, 5], but with
the help a similarity transformation T, we try to reduce (27) to an equivalent system of
Whittaker equations. Here the idea is to present a solution, as in the nonrelativistic case,
where the components of the spinor solution are not a sum of two special functions. The
transformation T can be written as follows [10]:

T_(\/r_n+E —\/m—E)
“\vVm+E vm-F

= %[(\/T’fT-}-E-F\/TR—E) (l—iag)-i-(\/m-i-E—\/m—E) (U3+01)]. (28)
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The matrix transformation 7' (28) acts on the Pauli matrices o; as follows:

TosT™! = oy,

y 1 vm+E m-FE . \/m+E_\/m—E
T _Z[Uz(dm—E+\/m+E)+ws(\/m—E \/m+E)’ (29)
TO_T—I_l B vm+E m-FE . vm+E +m-FE
T\ m-F vmiE \vm—-EFE vm+tE)|’

then, after substituting (29) into (27) and introducing the variable p = 2v/m? — E2r, we
arrive at

d ZaFE 0 mZao
L T Y k). = 30
(pdp \/m2—E2+2) ++( m? — B2 k) & (30)
d ZaFE p) ( mZao )
—t - |0 - | ——=—=+k)P_ =0, 31
(pdp vVm2 —E2 2 vm? — E? (31)
where
— (®+
TO = (@&). (32)

Substituting (30) into (31) and vice-versa, we obtain the following Whittaker equation:

2 1 ZaE N1 Z2?-k*+ 1) (&,
(W‘a*(mz—_m”*a)fT“ 5 ) =" (33)

where we have made the substitution &4 = p!/2®,. The solutions of (33) are given by

P Zak i 1
&, =cypttl/2e 2 g ((,u - (\/ﬁ) == 5) to 2t P) : (34)

with p = vVk? — Z2aZ, where M (a,c,2) is the confluent hypergeometric function which is
regular at the origin and c4 are constant coefficients. Substituting (34) into (30) we find

B mZa
vm? — E?
Gy = n:LZaE - (35)
Y — o
Since the hypergeometric series diverges as p — oo, we have that
ZaFE
B e = —m, (36)
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where n is a nonnegative integer. Then we obtain

F%.8 \~IA
E=m(1+zﬂga§) (37)

Here it is worth mentioning that the confluent hypergeometric M(a, ¢, z) functions reduce
to Laguerre polynomials when condition (36) is satisfied. In this case we obtain a orthonor-
mal set of eigenfunctions. If we try to use the second family of functions Ul(a,c, z) [10]
in order to solve (33) we will not be able to find well behaved solutions in the asymp-
totic regions. In fact, considering the functions Ul(a,c, z), the solution of the system of
equations (30)—(31) takes the form
YA
(I)j: = dip}‘e_f’/zU ((,U - (Wj—%) + %) + %, 2[1 -+ ]., P) 5 (38)

where d4 are constants to be fixed from (30) and (31). Using the recurrence relation

dU(a,c, z)

alc—a—-1)U(a+1,¢,2)+aU(a,c,2) + 2 5 = (39)
we obtain
b mZa
i = B
dy = —F————d_. 40
+ 5 Z2O:2E2 ( )
A P

Since the transformation T' does not depend on coordinates, we have that the components
®, of the spinor (38) should satisfy

/om(tﬁi)2 dr < o0. (41)

Expression (41) is a trivial consequence of the normalization condition on the spinor wave
function. The absence of a weight function in the product is the result of working in
the locally rotating frame. Since the functions Uf(a,c, z) have the following asymptotic
behavior for small z and Rec > 0:

_T(e=1)
—3 1 C_— 42
Ula,c,z) — 2 T(@) (42)
then, in the vicinity of zero, ®; must take the form
(2
b, — dyp e P2 (21) ; (43)

ZakE )’
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a solution that makes the integral diverge (41) at zero unless u < 1/2 or a = —n. Taking
into account that u > 0, we obtain 0 < k? — Z%2a? < 1/4, which implies

p2 -1
§>Z>T4. (44)

Since k = £1,+2,£3, ..., we have that for kK = 1, no polynomials regular solutions of the
form (38) for the Whittaker equation are possible if

118.6 < Z < 137. (45)

Here it is necessary to point out that the Wronskian of the solutions gives

Lie) .
2)} = ——L 77 Ce* 46
W{M(a,c,z),U(a,c,2)} 1_\(a)z g%, (46)
and the relation for ¢# 0,+1, £2,
['(1-e¢) I'e-1) ;.
S S ———————— . - 2 - . 4
U(a,c,z2) I‘(1+a—c)M(a’c’z)+ T'(a) 27 °M(l+a-c, ,2) (47)

M(a,c,2), and U(a,c,z) are linearly dependent for nonnegative integer values of —a.
Therefore, non polynomial regular solutions of the Whittaker equation (44) are only pos-
sible in terms of U(a, ¢, z) if the condition (44) is fulfilled.

Now we proceed to analyze some properties of the anomalous solution found. This
solution has been reported in the literature by Armstrong [18], and more recently has
been quoted by de Lange and Raab [19], but it is also the solution presented in Ref. [10].
The expression (38) renders their solutions physically unsatisfactory. The first problem
is found when we try to verify the orthogonality property. In fact, with the help of the
definite integral [20]

e 1
-1
%4 114 i =
fo W Wagall) Wa gl =
I 1
X - , |Rep| <1, (48)
[F(%—k+#)1“(%—/\~u) D(3 —k—p)0(3 - A+n) ’
where Wy ,(z) is given by the expression Wy ,(z) = :c"“/ze‘x/zU(% —k+p,2p+1,1),
then putting & = :F% 4 Vn—zlf’_i,-, x = p we find that the functions ®4 given by (38) and

related to the solution of the Whittaker equation (33) by &4 = p!/2®, do not satisfy the
orthogonality relation

/ Di(k,p,p) @1 (A pt,p)dp =0, for k # A. (49)
0
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This result means that two solutions of the Dirac equation associated with two different
values of the energy, with a radial dependence given by (38), and with x < 1/2 , are not
orthogonal unless the condition (36) is satisfied. Also we have that the expectation value
of the Coulomb potential in the basis given by (38)is not finite. In fact, the integral

% Z
2Zavm? - E'*’fu 7(1 Dy (kypy0) P (A 1, p) dp (50)

is divergent because the argument has the following behavior as p — 0:
gl L, (51)

the same situation occurs when we compute the kinetic energy of the Dirac particle. There-
fore, the solutions of the Dirac equation given in terms of U(a,c, z) with 4 < 1/2 should
be regarded as non physical, consequently, no anomalous behavior should be expected for
119 < Z < 137.

In order to conclude this section we have to say that the result obtained by Wong [9], for
the wave spinor of the Dirac Coulomb-Problem, can be obtained from (32) after applying
the transformation Q:

| Ek\/? EkNY?c ]l 1 Ek\1/? Ek\Y? c_
Q_§ (m—T) +(m+T) a +§ (m—T) —(m+T) Z 3.

(52)
The following matrix transformation allows us to work with the two component spinor
© (32) instead of ®, we have

L=11+7-iv'? - vy, (53)

this transforms the spinor ® (23) as follows:

€ §
LO="C JT‘; = f} , (54)
¢ X

and therefore the upper two components of (54) satisfy the coupled system of equa-
tions (30)-(31). Notice that £7! = L and therefore it is straightforward to go back to
the original representation.

4. CONCLUSIONS
In this article we have rederived the energy spectrum of the relativistic Hydrogen atom.

In order to separate variables we have worked in the diagonal (rotating) tetrad gauge.
After separating variables, we have reduced the radial equations to a system of Whittaker
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equations without introducing the Lippmann and Johnson [21] operator. Also we have
shown that the energy spectrum obtained in this way is that already reported in the
literature. The result presented by Cohen and Kuharetz [10] on the dependence of the
energy spectrum on a free parameter for 119 < Z < 137 is shown to be unphysical. Some
comments regarding the self adjointness of the Dirac Hamiltonian are in order. In fact, as
it was pointed out by different authors [22,23] the Dirac operator is essentially self adjoint
for Z < 119. Any self adjoint extension for 119 < Z < 137 requires a clear physical
meaning. A good criterion for that selection is that expectation value of each component
of the Hamiltonian be finite in the basis selected. In particular the wave functions should
possess finite kinetic energy [24]. It is straigthforward to verify that solution (38) fails
to satisfy the finiteness condition of the kinetic energy, and the expectation value of the
Coulomb potential is also divergent (50). A self adjoint extension in the basis of the
hypergeometric functions given by (34) is physically acceptable for Z < 137.
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