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On the relativistic hydrogen atom
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ABSTRACT. In the present article we revisit the problem of a relativistic Dirac electron. Using
a second order formalism which reduces the problem of finding the energy spectrum to solving
the Whittaker equation, we show that the only physical solution is obtained by truncating the
hypergeometric series. Therefore the energy spectrum does not depend on any free parameters for
119 < Z < 137.

RESUMEN. En el presente artículo se estudia el problema de un electrón relativista de Dirac.
Haciendo uso de un formalismo de segundo orden que reduce el problema de encontrar el espectro de
energía a resolver la ecuación de vVhittaker, se muestra que la única solución físicamente aceptable
se obtiene truncando la serie hipergeométrica. Por consiguiente, el espectro de energía no depende
de ningún parámetro libre para 119 < Z < 137.

PACS: 03.65,-w; 11.10.Qr; 4.90.+e

l. INTRODUCTION

The Dirac equation is a system of four coupled partial differential equations which de-
scribes the relativistic electro n and other spin 1/2 partides. Despite the considerable effort
made during the last decades in order 1.0 find exact solutions describing the relativistic
electro n in the presence of external fields, the number of solvable problems is relatively
few [11 Perhaps the most remarkable success of the Dirac theory of the electron is the
prediction of the hydrogen atom energy spectrum [2,31. This problem has been exten-
sively discussed in the literature [4-7], and different techniques have been suggested for its
solution. Essentially, all the approaches, after separating the angular variables from the
radial and time dependence, reduce the problem 1.0 solving a system of coupled first order
differential equations, whose solution can be expressed, in almost all the standard repre-
sentations of the Dirac matrices, as a combination of conflnent hypergeometric functions.
Motivated by the idea of obtaining a Dirac spinor solution similar 1.0 the one obtained in
studying the free-electron problem in spherical coordinates, Biedenharn [81has solved the
Dirac-Coulomb problem in a representation which diagonalizes the Dirac ¡( operator and
gives as a result spinor solutions with a radial dependen ce having the same form as for
the nonrelativistic Coulomb problem. Using the Biedenharn approach, the solutions for
bound states of the Dirac-Coulomb cquation have bccn computed by \Vong and Ych [9].
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Here the equations governing the radial dependence of the spinor are reduced to two de-
coupled second order Whittaker equations. Recently the Dirac-Coulomb problem has been
revisited [ID]. After sorne algebra, the authors transform the coupled system of differential
equations for the radial dependence of the wave function into two second order Whittaker
differential equations. They choose as solution of this system the functions lV.I,,,(z) [11j,
obtaining in this way, not only the standard hydrogen energy spectrum, but sorne physical
implications for 119 < Z < 137.
The purpose of the present article is twofold: first, we show that the reduction of the

system of equations governing the radial Dirac wave solution to a system of \Vhittaker
equations can be obtained with the help of a similarity transformation which gives as a
result a solution equivalent to the one obtained by Wong [91, Second, we show that the
solutions reported in Re£. [10] are unphysical and therefore no anomalous behavior should
be expected for 119 < Z < 137.

2. SEPARATION OF VARIABLES IN THE DIRAC EQUATION

In this section we separate variables in the Dirac equation

(1)

where for the Dirac-Coulomh prohlem the only nonzero component of the vector poten-
tial A" is Ao = -Ze2 Ir, the curved gamma matrices satisfy the commutation relations
{i",y} + = 2g"" and r" are the spin connections [12J. If we choose to \York in the fixed
Cartesian gauge, the spinor connections are zero and the i matrices take the form

iD = -yo = 'Yo,

i1 = [(-yI COS'l'+-y2sin'l')sin{) +-y3cos{)] = 'Y1,

1 -2
i2 = ;: [(-yl cos'l' + -y2 sin '1') cos {) - -y3 sin {)] = :

1 -3
i3 = -.-{) (_-y1 sin '1' + -y2 cos '1') = ~{)'rsm rsm

and the Dirac equation in the fixed tetrad frame (2) beco mes

(2)

(3)

In order to separate variables in the Dirac e<¡uation, we are going to \York in the diagonal
tetrad gauge where the gamma matrices id are

.:;0 _ ",0
Id - I ,

-1 1Id = "'(, - 2 1 2-Yd = --y
r

-3 1 3
-Yd = -.-{)-Y

TSm
(4)
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Since the curvilinear matrices 7" and 7d satisfy the same anticommutation relations,
they are related by a similarity transformation, unique up to a factor. In the present case
we choose this factor in order to eliminate the spin connections in the resulting Dirac
equation. The transformation S can be written as [131

1 ( <P 1 2) ({) 3 1)S = r(sin {))1/2 exp -"2"( "( exp -"2"( "( a = So a, (5)

where a is the constant non singular matrix given by a = !h1"(2_"(1"(3+"(2"(3+1), which
applied on the gammas's acts as follows:

(6)

the transformation S acts on the curvilinear 7 matrices, reducing them to the rotating
diagonal gauge as follows:

(7)

then, the Dirac equation in spherical coordinates, with the radial potential V(r), in a
locally rotating frame reads

(8)

where we have introduced the spinor \)!, related to ,¡, by the expression ,¡, = S\)! = Soa \)! ,
and "(" are the standard Dirac flat matrices.

Applying the algebraic method of separation of variables [14,15], it is possible to write
Eq. (8) as a sum of two first order linear differential operators kl, [(2 satisfying the
relation

then, if we separate the time and radial dependence from the angular one, we obtain

. [ "(3]1(2<f>= "(2a~ + sin{)al" "(0"(1<f> = -ú,<f> ,

[(1<f> = r ["(oa, + "(la, + m + i"(oV] "(0"(1<f>= i,,<f>,

(9)

(10)

(11)

(12)

with \)! = "(0"(1<f>, where we have made the identification i" = .\. Notice that (11) is the
angular momentum [( obtained by Brill and Whcelcr [12].

Here it is necessary to remark that the operator [(2 appearing in (11) is not single
valued and does not satisfy the properties of a "good" angular momentum operator. The
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true angular operator should be obtained from /(2 with the help of the transformation
5 (5)

since 51'''5-1 = i", we obtain

[

-3-0-1 -3-0-1]
-2-0-18 + l' l' l' 8 + -2-0-158 5-1 + l' l' l' 58 5-1 .•..__ ' .•..l' l' l' ~ . {) <p l' l' l' ~ . {) <p ••• - 1".••,

SIn SIn

where 5<l>= 4>.
Using the explicit form of 5 given by (5) we have

(13)

(14)

substituting (15) into (14)

[ -0-3-1]-0-2-18 + l' l' l' 8 + -o .•.._ ...•..l' l' l' ~ '.a <P l' .••- ", .••,
Sll1v

expression that can be written as follows:

The operator /( satisfies the relation

and the eigenval ue k is related to j as follows:

3. 50LUTlON OF TlIE RADIAL EQUATION

( 16)

(17)

(18)

(19)

In order to reduce Eq. (12) to a system of ordinary differential equations, we choose to
work in the following representation of the gamma matrices [161:

. (O"Y' = .a'
o (-i"Y = O (20)
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Then, substituting (20) into (12) we obtain

(dr -~) <1>¡+ CT¡(E - V - m)<1>2= O,

(dr +n<1>2- CT¡(E - V + m)<1>¡= O,

where the spinor <1>has the form

(21)

(22)

(23)

Taking into account the structure of the system of Eqs. (21 )-(22), we can gather the first
and forth components of <1>,<1>1= e <1>4= ( as follows:

(dr - nu (E - V - m)( = O,

(dr+ n(- (E - V +m)~ = O;

(24)

(25)

the system of Eqs. (24)-(25), after substituting V = -Zo)r, is just the standard one
governing the radial dependence of the wave equation in Dirac-Coulomb problem. After
introducing the auxiliary spinar e defined by

the system (24)-(25) reduces to

(26)

(dr + mCT¡+ i(E - V)CT2 - ~CT3) e = o. (27)

Here, in order to solve (27), we do not proceed in the standard way [17,5], but with
the help a similarity transformation T, we try to reduce (27) to an equivalent system of
Whittaker equations. Here the idea is to present a solution, as in the nonrelativistic case,
where the components of the spinor solution are not a sum of two special functions. The
transformation T can be written as follows [101:

T = (Jm+E -Jm-E)
"¡m + E "¡m - E

= ~ [(Jm+E+ Jm - E) (1- iCT2)+ (Jm+ E - Jm - E) (CT3+CT¡)]. (28)
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The matrix transformation T (28) acts on the Pauli matrices a¡ as follows:

T T-l _ 1 [ (vm+E vm-E) . (Vm+E vm-E)]0"2 - - 0"2 - r~==; + ----;===;0 + U13 -,,== - ----;====; ,
2 vm - E vm + E vm - E vm + E

T T-l _ 1 [. (vm + E vm - E) (vm + E vm - E)]al - - 1,0"2 -r==o¡ - -r=~ - a3 -,,== + -r=~ ,
2 vm - E vm + E vm - E vm + E

(29)

then, after substituting (29) into (27) and introducing the variable p = 2vm2 - E2r, we
arrive at

where

(p.:!:.- - ZCiE + ~) cf>+ + (~n=,=z=Ci=_ k) cf> = Odp -vrm~2~_~E"'2 2 vm2 _ E2 -,

(p.:!:.-+ -----rZ=¡¡=Ci=E"='"_ ~) cf> _ (-----rm=¡¡=Z=Ci"='"+ k) cf> = Odp vm2 - E2 2 - vm2 - E2 -,

Te = (:~).

(30)

(31)

(32)

Substituting (30) into (31) and vice-versa, we obtain the following Whittaker equation:

(
d2 1 (ZCiE 1) 1 Z2Ci2 - k2 +~)(1)+) _---+ :I:- -+----- - Odp2 4 Vrn~,2~_~E"'2 2 p p2 <f> _ - , (33)

where we have made the substitution 1>" = pl/2<f>". The solutions of (33) are given by

with Jl = Vk2 - Z2Ci2, where M( a, c, z) is the confluent hypergeometric fllnction which is
regular at the origin and ex are constant coefficients. Substitllting (34) into (30) we find

k _ mZCi
vm2 - E2

ZCiE c_.
Ji - -----r===..,1m2 - E2

Since the hypergeometric series diverges as p --+ 00, we have that

ZCiE
Jl - V 2 E2 = -n,m -

(35)

(36)
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where n is a nonnegative integer. Then we obtain

(37)

Here it is worth mentioning that the eonfluent hypergeometrie M(a, e, z) funetions reduce
to Laguerre polynomials when eondition (36) is satisfied. In this case we obtain a orthonor-
mal set of eigenfunetions. If we try to use the seeond family of funetions Uta, e, z) [101
in order to solve (33) we will not be able to find well behaved sollltions in the asymp-
totic regions. In faet, eonsidering the funetions U(a,e,z), the solution of the system of
eqllations (30)-(31) takes the form

where d10 are eonstants to be fixed from (30) and (31). Using the reeurrenee relation

a(e - a - 1)U(a + 1, e, z) + aU(a, e, z) + z dU(:~c, z) = O,

we obtain

k _ mZa
.¡:¡nz - E2

d+ = 2 2 2 d_.
2 Z a E

/l - E2 - m2

(39)

(40)

Sinee the transformation T does not depend on eoordinates, we have that the eomponents
<1>10of the spinor (38) should satisfy

(41)

Expression (41) is a trivial eonsequenee of the normalization eondition on the spinor wave
fllnetion. The absenee of a weight funetion in the prodllet is the result of working in
the loeally rotating frame. Sinee the fllnetions Uta, e, z) have the following asymptotie
behavior for small z and Re e > O:

l_cf(c-1)
U(a,c,z)~z f(a)'

then, in the vicinity of zero, <1>+must take the form

<1> d -" -p/2 f(2I') .
+ ~ 10P e ( ZaE) ,

f /l- --====vm2 - E2

(42)

(43)
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a solution that makes the integral diverge (41) at zero unless /l < 1/2 or a = -no Taking
into aeeount that /l > O, we obtain O < k2 - Z2a2 < 1/4, whieh implies

(44)

Sinee k = :!:I, :!:2, :!:3, .. " we have that for k = 1, no polynomials regular solutions of the
form (38) for the Whittaker equation are possible if

118.6 < Z < 137.

Here it is necessary to point out that the Wronskian of the solutions gives

lV{M(a,e,z),U(a,e,z)} = -~i:~z-ce"

and the relation for el O,:!:I, :!:2,

(45)

(46)

U( ) r(1 - e) '1( ) r(e - 1) l-c '1( 2) (4-,)a, e, z = ( )JY a, e, z + r() z ,,1 + a - e, - e, z .rl+a-e a

Al(a, e, z), and Uta, e, z) are linearly dependellt for nonnegative integer values of -(L.

Therefore, non polynomial regular solutions of the Whittaker equation (44) are only pos-
sible in terms of Uta, e, z) if the eonditioll (44) is fulfilled.

Now we proeeed to analyze sorne properties of the anomalous solution found. This
solution has been reported in the literature by Armstrong 118], and more recently has
been quoted by de Lange and Raab [191, but it is also the solution presented in Ref. [10),
The expression (38) renders their solutions physieally unsatisfaetory. The first problem
is found when we try to verify the orthogonality property. In faet, with the help of the
definite integral [201

where lVk,~(X) is given by the expression lVk,¡,(x) = x~+1/2e-x/2U(! - k + /l, 2Jl + I,x),
then putting k = =f-2

1+ Zf¡EE2' x = P wc find that thc functiol1s cI>:t givcn by (38) allo.jm -

related to the solution of the Whittaker equation (33) by <i>olc = pl/2<1>olc do not satisfy the
orthogonality relation

faOO cf>olc(k, J/., p) <l>olc(>', J/., p) dp = O, for k I >.. (49)
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This result means that two solutions of the Dirac equation associated with two different
values of the energy, with a radial dependence given by (38), and with /1 < 1/2 , are not
orthogonal unless the condition (36) is satisfied. AIso we have that the expectation value
of the Coulomb potential in the basis given by (38)is not finite. In fact, the integral

100ZOi
2ZOivm2 - E2 -<Poi(k,/1,p) <PjJA,/1,p) dp

O P

is divergent because the argument has the following behavior as p ---> O:

(50)

(51)

the same situation occurs when we compute the kinetic energy of the Dirac partide. There-
fore, the solutions of the Dirac equation given in terms of U(a, e, z) with /1 < 1/2 should
be regarded as non physical, eonsequently, no anomalous behavior should be expected for
119 < Z < 137.
In order to condude this section we have to say that the result obtained by Wong [9), for

the wave spinor of the Dime Coulomb-Problem, can be obtained fram (32) after applying
the transformation Q:

1 [( Ek)I/2 ( Ek)I/2 e_] 1 [( Ek)I/2 ( Ek)I/2 e_]Q = - m - - + m + - - + - m - - - m + - - aJ.
2 A A e+ 2 A A e+

(52)
The following matrix transformation allows us to work with the two component spinor
e (32) instead of <P, we have

(53)

this transforms the spinor <P(23) as follows:

(54)

and therefore the upper two eomponents of (54) satisfy the eoupled system of equa-
tions (30)-(31). Notice that C-1 = C and therefore it is straightforward to go back to
the original representation.

4. CONCLUSIONS

In this artide we have rederived the energy speetrulll of the relativistic IIydrogen atom.
In order to separate variables we have worked in the diagonal (rotating) tetrad gauge.
After separating variables, we have reduced the radial equations to a system of Whittaker
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equations without introducing the Lippmann and Johnson [21] operator. AIso we have
shown that the energy spectrum obtained in this way is that already reported in the
literature. The result presented by Cohen and Kuharetz [lO] on the dependence of the
energy spectrum on a free para meter for 119 < Z < 137 is shown to be unphysical. Sorne
comments regarding the self adjointness of the Dimc Hamiltonian are in order. In fact, as
it was pointed out by different authors [22,231 the Dimc operator is essentially self adjoint
for Z < 119. Any self adjoint extension for 119 < Z < 137 requires a clear physical
meaning. A good criterio n for that selection is that expectation value of each component
of the Hamiltonian be finite in the basis selected. In particular the wave functions should
possess finite kinetic energy [24]. It is straigthforward to verify that solution (38) fails
to satisfy the finiteness condition of the kinetic energy, and the expectation value of the
Coulomb potential is also divergent (50). A self adjoint extension in the basis of the
hypergeometric functions given by (34) is physically acceptable for Z < 137.
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