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Poisson structure for hyperbolic heat conduction
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ABSTRACT.We use the method of extending lhe space of macroscopic variables (Gambár and
Márkus, 1994) to construct a Hamilton-Lagrange scheme for hyperbolic transporto Specifically,
we propose a Lagrangian densily to obtain the telegraphist lype equations as the Euler-Lagrange
equation of a Hamilton variational principie. Two evolution equations for the components of a
conjugated variables space are obtained from the modified Hamilton principIe. These equations
are particular cases of a more general time evolution equations which contains a Poisson bracket
with lhe Hamiltonian density as the movemenl generator. The bracket salisfies the Jacobi's identity
giving us a Poisson structure for the problem. \Ve discuss sorne aspects of the time evolution of
fiuctuations ot the temperature in a rigid heat conductor solido

RESUMEN. En este trabajo se extiende el espacio de variables termodinámicas (Gambár y 1vlárkus,
1994) para construir un esquema hamiltoniano para el transporte hiperbólico de calor. Es-
pecíficamente se usa una densidad lagrangiana para obtener la ecuación del telegrafista como
la ecuación de Euler-Lagrange de un principio variacional tipo Hamilton. Se obtienen dos ecua-
ciones de evolución para las variables conjugadas del espacio termodinámico desde este principio
hamiltoniano. Estas ecuaciones son un caso particular de las ecuaciones de evolución definidas
por los parérentesis de Poisson con el hamiltoniano como generador de la evolución temporal. El
paréntesis satisface la identidad de Jacobi. Se discuten algunos aspectos de la evolución temporal
de las fluctuaciones de la temperatura en un conductor rígido de calor.

PACS: 05.60.+w; 0.5.70.Ln; 03.50.-z

l. INTRODUCTlON

The search of variational formulations of thermodynamics has a long history and has been
an active field since its beginnings. In the c1assical theory for equilibrium syslems the
properties of entropy may be stated in the form of a variational principIe for adiabatic
processes [1,2J. Although limited at first to non-dissipative cases, Hamilton's principIe
has been one of the most successful applications in non-equilibrium systems [3,4j. As it
is known, dissipative effects in real systems do not permit the direct use of Hamilton 's
principIe but they force us to introduce the so caBed principIes of the restricted type [5- IOj.
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Nevertheless, it has been a subject of discussion, if classical variational principIes may be
formulated in sorne way for real systems. One may recall that, if the operators appearing
in the macroscopic time evolution equations of the system are not self-adjoint, then a
classical variational principIe does not exist for them [11]. Since the operators of the
equations of dissipative systerns are not self-adjoint, the same conclusion follows. However,
as Grmela and Lebon have shown [12], it is possible to construct a Poisson scheme for
dissipative systems directly by defining a bracket that takes into account the dissipative
contribution without going through a variational formulation. Grmela and Lebon wrote
a general time evolntion e'luation which implies the basic equations derived in the linear
version of extended irreversible thermodynamics (EIT) and the dynamic equations are
generated by a functional that has the meaning of a free energy.
In a different perspective, some progress has been recently reported about the prob-

lem of the existence of a classical variational principie for real syslems. Sieniutycz and
Berry [13] conslruct a Lagrangian for lhe thermal field as the sum of a kinetic potential
and the scalar producl of lhe constrain expressions of the process and their Lagrange
multipliers. The kinetic potential depends on the field variables of an enlarged space
containing not only the classical variables but also the velocity of the entropy transfer.
Among the constraint expressions they include the product of entropy source and a La-
grange multiplier which is called the thermal phase. Under these conditions they develop a
variational principie for real fluids containing the first and second law of thermodynalllics.
This leads them to a modified class of balance e'luations of the conserved densities.
On a different approach, Gambár and Márkus [14-18] have developed a Hamilton-

Lagrange variational formalislll for the parabolic e'luations of intensive field 'luantities
fi in the linear regime of non-e'luilibrium thermodynamics (LIT). The basic idea lies in
the general method of construction of variational principies through the introduction of
potential functions associated to the intensive field 'luantities fk [19]. Since this point
of view shares some of the 1Il0tivations underlying this work, we sketch the Márkus and
Gambár's method. Their starting point are e'luations of the dilfu,ive type which take the
form

(1)

whcre 5ik and Lik are constant cocfficients, p is the mass dcnsity and Ui are given saurce
functions, 6> is the Laplace operator and fk,t == ºtit. By introducing new field 'luantities
ePi, whose definition depends on the intensive variable fi, they are able to obtain the
transport e'luations (1) as the Euler-Lagrange conditions of a classical variational prin-
cipIe. The introduction of these potential functions also allows one to find a Hamilton
formalism for the equations of the eP'sand the corresponding e'luations for the associated
momenta. Márkus and Galllbár use their forlllalism to derive other interesting results
of linear irreversible therlllodynalllics (LIT) as the balance equation for entropy and the
Onsager's reciprocal relations. The latter ones are obtained from the invariance properties
of the entropy production.
It is the aim of this work 1.0use the method of introducing the new potential functions

to construct a variational forlllulation for the hyperbolic transport e<¡uations of intensÍ\'e
field 'luantities. This kind of e'luations has had broad application in several fields of
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theoretical physics and biology and its derivation from first principIes has been studied
by Olivares-Robles and GarcÍa-Colín [201, Masoliver and Weiss [21] and Sancho [22].

In what follows, we will particularly show how to obtain a classical variational for-
mulation for the telegraphist equation by defining a potential function and an action
integral whose arguments are this potential and its derivatives up to second order. The
Euler-Lagrange equation of this action integral will be the telegraphist equation for the
field variable of interest and a corresponding equation for the potential function. Next we
will transform the Lagrangian density to obtain the associated Hamiltonian description of
the system by means of two equations of the Hamilton type. One equation describes the
potential, the other one the associated momentum defined through a well know relation
of classical mechanics. This momentum will have a direct interpretation in tenns of the
field variable and together with the potential function constitute a pair of conjugated field
variables for the system. In the next part of the work we will discuss the associated Poisson
structure of the problem. We will begin by defining a Poisson bracket which will permit
us to write a general time evolution equation for any function of the potential and the
conjugated momentum. This equation will particularly contain the Hamilton equations
for the conjugated variables. Finally, we will prove Jacobi's identity to close the Poisson
structure for the system. \Ve apply the scheme to the case of a rigid heat conductor where
we discuss sorne aspects about the time evolution of fiuctuations in the temperature field.

2. TIIE INTROOUCTION OF TIIE FIELO POTENTIALS ANO TIIE VAHIATIONAL PHOBLEM

In this part we see how a classical variational scheme for the tclegraphist equation may
be constructed by the introduction of a new ficld variable. The description of transport
phenomena based on the telegraphist equation requires, in principie, one dynamic field
variable iJ such that

1 2iJ tt + -iJ t = e 6{}.
• T' (2)

\Ve enlarge the initial spaee by defining a potential funetion 1> (the only requirement
on this function is that it must be a four times differentiable funetion) ,,-,sociated to iJ a,
follows:

1 . 2iJ = - -1> t + ¡P tt - e 6<p.
T' , (3)

It is then neeessary to find a Lagrangian density function from which Eq. (2) may be
obtained by the variation of the potential function 1>. Let a Lagrangian density function
L be depending on

whieh we take as

L = L(1), <P.t, <P,tt, <P,xx> ¡p,"y, 1>,,,), (4)

(5)
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and let us consider the classical variational problem

b JJ L dV dt = O,

with L given in Eq. (5)
As it is known, the Euler-Lagrange equation of Eq. (6) is

(6)

8L _ !!.- 8L +!!.- 8L + 8
2 --'!..!:- + 8

2 --'!..!:- + 8
2 --'!..!:- = O. (7)

84> 8t 84>" 8t2 84>,tt 8x2 84>,xx 8y2 84>,yy 8z2 84>."

Substitution of the Lagrangian density as defined in Eq. (5) into the Euler-Lagrange
equation (7) gives

18(1 2)8
2
(1 2)-- --4>,+4>tt-cD.</J +- --</J,+</Jtt-cD.</J +

T 8t T" 8t2 T' ,

282(1 2) 2
82
(1 2)c- --</J,+</Jtt-c6</J +c- --</Jt+</Jtt-c6</J +8x2 T" 8y2 T' ,

2 8
2

( 1 2 )
C 8z2 --:¡:</J,t+ </J,tt- C 64> = O,

which is the telegraphist equation (2) in virtue of Eq. (3). Thus, we have a Lagrangian
formulation for this equation.
Now we proceed to calculate the Hamiltonian density function H through a Legendre

transform on the Lagrangian density L, Eq. (5):

H = </J,t1l' - L,

where the conjugated momentum 1l' is, by definition

8L 1
1l' = - = --{J.

8</J" T

(8)

(9)

We note that the conjugated momentum 1l' has a direct physical meaning in terms of
the field variable {J and T, the relaxation time associated to {J.
Introducing 1l' in the Legendre transform, Eq. (8), we obtain

Observing that 4>,tis given by

1 1 2H = - -</J , {J - -{J .
T' 2

(la)

(11)
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we can rewrite H as

( 12)

Finally, in terms of the eonjugated momentum " we arrive to

(13)

where we have introdueed the d'Alembert operator O defined as

(14 )

At this point we pose the problem in terms of the modified Hamilton's variational
principie

6 j j("q", - H) dV dt = O, (15 )

in arder to arrive to the Hamiltonian equations for the eonjugated variables" and q"
where the Hamiltonian density H is given in Eq. (13). Observing that H depends on "
and Oq" Eq. (15) beeomes

jj [aH aH ]
dV dt "6q,,, + rI>,' 6" - a" 6" - ao" 60rl>

After sorne straightforward algebra we obtain that

= o.

( 16)

Being 6" and 6q, independent variations, the Hamilton equations are thus given by

aH
rI>., = a,,'

aH",=-0--., ao"

( 17)

( 18)

Equations (17) and (18) are the dynamie equations for q, and ". Jt may be shown that
Eq. (18) gives the telegraphist equation for the momentum " or for iJ aeeording to Eq. (9)
when the result ofEq. (13) is introdueed in i1. Eq. (17) gives the eq\lation for the poteutial
funetion q,

1 2 1
rI>,tt + -q" - e !:>rI> = -iJ,

Tq . T

whieh is precisely the definition of q,.

( 19)
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In the next section we address ourselves to formulate a convenient form for a Poisson
bracket to inelude Eqs. (17) and (18) as particular cases of a general time evolution
equation. This equation will have an important meaning since it will permit us to describe
the time evolution of any dynamic density depending on the conjugated variables 11: and
</; and, at the same time, it wil! exhibit that the Hamiltonian density H of Eq. (13) plays
the relevant role of the generator of the time evolution of the system.

3. POISSON STRUCTURE FOR IIYPERBOLIC TRANSPORT

Given the previous Hamiltonian formulation for the hyperbolic transport Eq. (2), it is
possible to formulate the problem in a natural way in terms of a Poisson bracket. This
bracket is defined for any pair of densities A and B as

bAt.B 6BbA
{A,B} = 6</; 611: - 6<f; 611:'

where we have introduced the operators 6~ and :. as

6 o o o
6</; == o</;- 'V. 0'V</;+ O 00</;'

and

6 o o o- == - -'V. --+ 0--.
611: 011: 0'V1I: 0011:

Here we have assumed that

A = A(</;, 'V</;, O</;, 11:, 'V 11:, 011:),

B = B(</;, 'V</;, O</;, 11:, 'V 11:, 011:).

(20)

(21)

(22)

(23)

(24)

Under these conditions the dynamic Eqs. (17) amI (18) may be regarded as particular
cases of the general equation

A.t = {A,H}, (25)

A being any density depending on the conjugated variables </; and 11:. If, for instance,
A = </; then Eq. (25) gives Eq. (17) and if A = 11:, Eq. (18) is obtained.
We complete the scheme by showing that the Poisson bracket satisfies Jacobi's identity,

namely

{A,{B,C}} + {B,{C,A}} + {C,{A,B}} = O.

Al! we need to see is that { , } as defilled by Eq. (20) is a linear operator

{A, A(B + C)} = A{A, B} + A{A, C}.

(26)
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But this is easy to prove since 6~ and :. are linear operators. Ir one expands each term
of Eq. (26) two kinds of expressions are obtained. One is of the form

<lA óB Ó2C
ÓX ÓX Ó(2 '

and the other one is

óA óB Ó2C
ÓX 6( ÓXó('

where X and ( may be either q, or 1f. Other terms are obtained by permutations of A, B,
and C in such expressions. Each one of these terms has its additive inverse in the complete
expansion of the left hand side of Eq. (26) giving the desired resulto Now we particularize
the aboye results for the case of a rigid solid heat cond nctor.

4. HYPEROOLlC IIEAT CONDUCTION

In this section we deal with the hyperbolic trallsport of heat in a rigid conductor solid
where the heat is propagating by conduction through waves at finite speeds [23]. The
theoretical importance of the problem may be appreciated in the extensive review of
Joseph and Preziosi [24,25] all(l it has been in the interest of many groups during the
last thirty years [26-34]. Here we eonsider the telegraphist equation for the temperature
as the model of hyperbolic heat conduction. This equation may be obtained through a
general constitutive equation for the heat flux derived by means of a variational principie
of the restricted type [35]. Up to seco lid order the constitutive equation reduces to

Tq iJiJq + q = - [('VT,
I

(27)

considering au homogelleons heat flux. This eqnation is a weH kllown resnlt in the theory
of viscoelastic fluids and solid, alld in relaxing gas dynamics.

By combining the balance eqnatioll

de
pdl=-'V'q, (28)

with the constitntive eqnatioll, Ec¡. (27) we arrive lo the correspolldillg hyperbolic trans-
porl equation for the rigid heal conductor solid

(29)

where Tq is the relaxalion lime of lhe heat flux and c2 = [(/pCvTq, with f{ lhe thermal
conductivity and Cv lhe specific heat.
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In the Hamiltonian context the heat conductor is then described by the conjugated
field variables <p and 7C, being the momentum proportional to the temperature

1
7C = --T.

Tq
(30)

The dynamic behavior of <p and 7C is given by the extremum conditions of the variational
principIe Eq. (15) or by the general evolution equation (25) with the Hamiltonian density
H defined as

and A equal to <p and 7C, respectively.
Now we use the time evolution Eq. (25) to describe the dynamic behavior of the fiuc-

tuations in the temperature of the hyperbolic heat conductor. This is possible because
we know the express ion for the fiuctuations of temperature in terms of the conjugated
momentum 7C. The statistics of the thermal fiuctuations in a rigid heat conductor was
studied by Jou el al. [36] within the framework of EIT based on the Einstein formula for
the probability of fiuctuations. Here we then take the fiuctuations with respect to a given
stationary state Te,' as

ThIlS, the time evolution of the fiuctllation is given by

abTDi = {bT, H}.

Solving, one obtains the telegraphist equation for bT

(31)

(32)

(33)

This means that the temperature fiuctuations inherit sorne of the properties of quan-
titíes being described by the telegraphist equation. On the other hand, if one makes the
calculation presented in Eqs. (31-33) for LIT within the Márkus and Gambár framework,
one finds that the temperature fiuctuations obey the diffusive type transport equation (1),
1. e.,

abTD _ D2 t:J.bTD = O
al '

(34)

where the subscript D, indicates that such fiuctuations are described by a diffusive mode!.
This fact introduces sorne differences in the dynamics of fillctuations between the two
schemes. In order to discllss such differences we have plotted in Fig. 1 for the two cases
the evolution of a fiuctllation in the temperature of an infinite conducting bar initial1y



20 F. VÁZQUEZ AND J.A. DEL Río

" "'

"

o-
•...~

02

00

."

1 a

~
~-t

o,

"'

00

.,

06

"'

o-

~ 02

00

." .,

1 e

b"J

"

1 b

~
l.:=:J--'

"

FIGURE 1. The time evolution of a Dirac's delta fluctuation oC temperaturc initially centered at
x = o. The values oC time are normalized aIHI d and t refer to diffusion and telegraphist respectiveJy.

centered at the ongm of the reference coordinate system. The f!uctuations have been
represented by Dirac's delta function which has been taken as the initial temperature
profile for the initial condition problem of the telegraphist and the diffusion equations.
The plots have been obtained directly frolll the analytic solution for the two e<¡uations [37].
In Fig. 2 we can see the description made from two fixed point in the bar, namely, 2a at
the origin and 2b at x = 5. Sorne comments are in order.
\Ve note in aH diagrams of Fig. I the existence of a wave front for the telegraphist

solution beyond which the f!uctuation in temperature of the bar vanishes. This is one
of the distinctive points of the dynamical behavior of perturbations in the hyperbolic
description. Signals are transmitted with a finite velocity throllgh the medillm. This may
also be appreciated in the evolntion of temperatllre at x = 5 in Fig. 2b where the tem-
perature rises in t = 5 and thcn increas(>s continllously. Before t = 5 thc pcrturbation
has not arrived to the point x = 5 of the bar. In contrast, the parabolic solution extends
beyond this point of the bar. The perturbations are transmitted with a velocity rnuch
greater than the velocity in the hyperbolic case. In Fig. 2b we see that the corresponding
temperature in the position x = 5 is not zero aH the time. Mention mllst be made that
the instantaneous jump in the temperature f!uctuation in the hyperholic case is due to
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FIGURE 2. It is shown the change in time of the tcmperature at two fixed poillts x = Oand x = 5.
Time is normalized and d and t have the same mealling as in Fig. 1

the nature of the delta function taken as the initial condition to find the solution of the
problem.
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\Ve now clase this discussion with sorne final remarks.

5. CONCLUDING REMARKS

In this work we find a classical variational principIe for the hyperbolic type transport
equations for intensive field variables. For simplicity, we restrict ourselves to systems
described by only one field quantity particularizing to the case of a rigid heat conductor.
To begin with, we enlarge the space of one variable by defining a potential function
which together with a defined momentum forms a pair of conjugated variables in the
classical sense. A Hamilton-Lagrange formalism is obtained through a variational principie
based with a conveniently defined Lagrangian density. Then we construct a bracket whose
main property is to satisfy Jacobi's identity getting a Poisson structure for the problem.
\Ve have written a general time evolution equation for any dellsity which contains as
particular cases the I1amilton equations of the field. Any dynamical property of the system
depending on the conjugated variables may be then described through the general time
evolution equation in terms of the Poisson bracket and the Hamiltonian density as the
generator of the movement in time. As an example we apply the formalism to a rigid heat
conductor solido \Ve find that the temperature of the solid plays the role of the conjugated
momenturr. in the Hamiltonian scheme. Finally, by writing the dynamic flnctuations of
the temperature as a function of the conjugated momentum we also find that they satisfy
the telegraphist equation and discuss sorne differences with respect lO the parabolic case.

The purpose to obtain a Hamiltonian structure for nonequilibrium processes was also
pursued by Sieniutycz and Berry. Their formalism also involves the idea of the enlargement
of the space of independent variables of the syslem. I1owever, this leads them to suggest a
modification for the balance equations of the syslem which is not the case of the method
of the potential functions used here.

The results obtained in this work deserve one additional commenl. The main goal is
the development of a classical variational scheme for systems whose dynamic behavior is
described by a telegraphist type equation. The way we construct the variational principIe
maintains the steps of those used by Cambár and Márkus based on the definition of a
potential function associated with each intensive quantity of the system. Nevertheless,
our physical problem is different. \Ve tackle problems which, from a thermodynamical
point of view, include inertial effects. This may be seen in the case of heat transfer where
we assume the Maxwell-Cattaneo- Vernotte equation for the heat flux instead of Fourier's
law, in order to obtain the corresponding transport equation.

\Ve would like to remark the fact that the fluctuations of the transported quantity
obey the same telegraphist equation. This may appear obvious, but from this macroscopic
perspective the Onsager's hypothesis on fluctuation regression seems to be a consequence
of the relation hetween the conjugated momenlum and the temperalure Eq. (30).
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