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Attraction domains in a Hebb-like neural network with
unequally weighted patterns: temperature dependence
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ABSTRACT. A long range Ising NeuraI Network is considered, where a finite number p of uncor-
related patteros has been stored with dilfereut embeddiug strengths w" according to a modified
Hebb rule. A systematic study of the size of the basins of attractiou as a fuuctiou of the weights
{w"l and the noise level T is performed for p ~ 4. This is done by iteratiug numerically the flux
equations for the overlaps betweeu the stored patteros and the dynamical state of the system. The
temperature above which aH spurious minima disappear as a function of the embedding strengths
is obtained. This temperature is found to take Its highest value in the Jlebb case.

RESU~1EN. Se considera una red neuronal de Ising con interacciones de largo alcance en la cual un
número finito p de patrones ha sido almacenado con pesos diferentes W¡..¿ de acuerdo con una regla
de aprendizaje tipo Hebb modificada. Para p :5 4 se hace una evaluación sistemática del tamaño
de las cuencas de atracci6n de este sistema, como funci6n de los pesos {w¡..¿} de las memorias
y del nivel de ruido T. Esto se hace mediante la iteración numérica de las ecuaciones de flujo
para los traslapes entre los patrones almacenados y el estado dinámico del sistema. Se obtiene la
temperatura T., como función de {w¡..¿}, por encima de la cual desaparecen los estados espurios.
Se encuentra que esta temperatura toma su valor más alto en el caso de Hebb.

PACS: 87.30; 75.10; 64.60.1

1. INTRODUCTION

The face of theoretical physics has changed dramatically during the last few years and a
large amount of new ideas, concepts and vocablllary such as disordered systems, dynamical
systems alld chaos has emerged. One of the new paradigms that has come out is that of
nenral networks (NN), as complex, disordered systems which show properties as content
addressable memories. In NN the information is not stored explicitly, what is sto red is
the affinity of the net to "be" in some particular states, which act as attractors of the
dynamics of the system.

In living beings we find that 1I0ise is inherent to the functioning of their nervous systems.
In the modelling of NN, this factor was first cOllsidered by Little [1]' who introduced it
as the temperature T analogue of spin systems. Since then, the beneficial role played
by a moderate amount of uoise T in the recoverability of sto red informatiou, in tbis
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kind of systems, has been recognized: This noise allows the system to overcome small
barriers and to get to deeper, and therefore more important minima, thus avoiding sorne
possible minima related to non nominated patterns. Amit et al. [2) have found that for T
aboye 0.461 no spurious memories exist at all in a NN with a Hebb learning prescription.
However, it should be clear that in the presence of any amount of noise there are no
fixed points, ¡.e. in the equilibrium state the system is fluctuating among microscopically
different but macroscopically equivalent sta tes.

In this paper we will evaluate the effect of noise on the size of the basins of attraction
for a modified Hebb model of NN, as a function of the load parameter (}= p/N, where p
is the number of stored patterns {~n,and N is the number of neurons in the system. \Ve
will also evaluate the importance of "spurious memories", which are attractors related
to mixtures of sto red patterns that jeopardize the recovery of meaningful information.
For this purpose we consider a Hebb-like learning rule in which patterns are stored with
different embedding strengths {W,.} in order to reflect various degrees of training [31.

The size of the basins of attraction is an important parameter to evaluate because it
is directly related to the recoverability of information. Gardner defined stability parame-
ters [41 which were assumed to give an idea about the sizes of the domains of attraction;
however, for this model it was demonstrated that these parameters are not a direct mea-
sure of the absolute sizes of the attraction domains [51. Therefore, the use of a more direct
method is necessary. For our purpose, we define the cumulative size of the attraction
domains !p as the total fraction of states leading towards any of the p stored memories,
that is !p = 22:::=1 !p(/l) (the factor of 2 comes from the symmetry (,. - -~:), where
!p(jl) is the ratio between the number of initial states which eventually evolve towards
the jl-th pattern and the total number of possible states, when p patterns are stored.

The evaluation of !p can be done at the microscopic level, by carrying out the actual
simulation of the dynamics in an N-element NN where p elements are stored [6]. Instead,
we will make this evaluation at the macroscopic level, by iterating the flux equations
for the p overlaps q,. between the present microstate {Sil of the system and each of the
p stored patterns {~n,starting from random initial states. This level of treatment is
particularly convenient as microscopical details of the system are generally irrelevant.

A similar evaluation has already been done, in the noiseless case, for small values of
p (p ~ 4), with sorne interesting results [71: It was found that in sorne regions in the
weights {W,.} space, the flux equations for the overlaps have no attractive fixed points
related to mixtures of patterns (these would be characterized by having simultaneously a
macroscopic value for two or more overlaps q,.). This means that any initial state leads
the system towards one of the stored patterns. In the case p = 3, the region where all
attractors correspond to any of the stored patterns, so no spurious memories exist, is
defined by W2 + W3 < WI, where the convention O < W3 ~ W2 ~ W¡ = 1 was used.

2. TlIE FLUX EQUATIONS

\Ve will consider a system composed of N neuron like Ising elements Si, whose (symmet-
rical) interactions Jij between pairs (ij) reflect the storage of a finite number p of random
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unbiased patterns (~n= :1:1, with Ji = 1, ... ,p, according to a modified Hebb rule [8],
as given by

P

Jij = ~ 'Lw,,~:'~j(1- bij),
,,;1

(1)

where w" > O, is the weight associated to the Ji-th pattern, and w" 2: Wv for v > Ji, and
w¡ = 1. In the case where aH embedding strengths are equal (w" = 1 for aH Ji), Eq. (1)
reduces to the Hebb rule. FoHowing Coolen and Ruijgrok [9], we will derive the flux
equations for the overlaps; for that end, we wiH assume that each spin has a plObability
w( Si - - Si) to f1ip, given by

(2)

where (3 is a fictitious temperature inverse (3 = I/T, introduced to account for the noise
level, and hj is the "field" at site j due to the presence of the rest of the neulOns. TherefOle,
the time evollltion of the probability p(S, t) of finding the system at time t in a given state
S = (S¡,S2, ... SN) is given by

(3)

where Fj is a spin f1ip operator acting on the j-th neuron. We intend to rewrite this
express ion in the overlaps space, by using the definition of the overlap vector ij whose
Ji-th component is given by

(4)

together with the connection fOlmnlae fOl the microscopic probability p(S, t) and its
macroscopic counterpart P(ij, t), given by

P(ij, t) = 'Lp(S, t) b(ij - ijg).

s
(5)

After sorne mathematical manipulation, and assuming that in this limit (N - 00, a - O)
stlOng averaging applies [IOj, the master equation for the system can be written as

(6a)
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(6b)

FIGURE 1. Cumulative size of the spurious basins of attraetion !, = (i - !p) (multiplied by lOO),
in the parameters {lO"} spaee for several values of T: a) T = O, b) T = 0.1 e) T = 0.2, and
d) T = 0.3. Notiee that as we eonsidered O< 103 =:; 102 =:; 101 = l. only the region below the line
W2 = W3 should be takcn ¡uto account.

with F(ij) given by

F(ij) = \\" tanh {fi211O,M, } ))_

"where the double braeket (( ))i¡ indieates averaging Over the 2P corners '1E {-1, l}p. For
synchranous dynamics the corresponding equations are given by

ij(n + 1) = F(ij(n»), (i)

with F(ij) given by Eq. (6b). Therefore, Jiumerieal iteration of this equation, starting
fram auy initial value for ij will prediet the time evolution of tbis parameter until a fixed
point of the dynamies is reaehed; that is, until Fn(,J) = F',-I (ij), for some n.
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FIGURE 2. There is a line in the parameter space dividing the regioos where rnixed spurious
memories do and do BOtexist; this line can be written as W2 +w, = C(T). Diamonds (o) in Fig. 2
show C(T) VS. T as obtained from the simulations. while the asterisk (*) indicates the analytical
prediction of this temperature for the Hebb model (w¡ = W2 = W, = 1) [2.11].

3. DVNAMICAL EVOLUTION

The regions delimited by the planes ií. ij = O are convex for any p value, which means
that if ifo is within one of them, F(ifo) is also there. 13ecause of this, it is appropriate to
define the set Op e RP

(8)

Due to the convexity of this set, it has been used to calculate a lower bound to the fraction
Ip at T = O [7]. It has been found that for p = 1,2 and T = O all ifo E Op evolve in one
single time step towards the ¡I-th pattern. In the case p = 3 and T = O, the behaviour
in the pararneters' space {wp} is divided by the line W2 + W3 = w¡ = 1 into two different
regimes: a) If W¡ > W2 + W3 then F2(ij) = F(ij), for all ij. In this way, if ifo E Op,
then F(ij) = (O, ... , sgn [qp], O, ... ), so its elernents evolve towards the ¡I-th pattern in
one single time step; on the other hand, if ifo ~ UOp the system will evolve towards a
spurious rncmory in a single time step. b) For W¡ < W2 + W3, no spurious nlinima exist,
so the systelll will evolve towards any of the sto red patterns in either one or more time
steps depending on whether ifo is, or is not, inside a regio n O". For p = 4 there are also
small regions in the {wp} space, where no spurious minima exist; however these regions
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FIGURE3. Cumulalive size of lhe basins relaled lo spurious memories f. = (1- fp) (mulliplied by
100) as a funclion ofT far a lypical case wilh W2 = .7, W3 =.4 (filled cirdes.) and for lhe Hebb
mode! (open cirdes o). In lhis model, lhe Hebb case is lhe one who looses ils spurious memories al
a higher temperature. The iuset shows an enlargement of the region with low T, fOI the modified
Hebb mode!.

are not so clearly defined as in the case p = 3, and the transition between regions with
and without spurious memories is soft (second order) [7).

We iterated Eq. (6b), for several noise levels T, in order to find fp for several tempera-
tures, with initial values for qo, given by a gaussian distribution with zero mean and width
a = 10-5, which would correspond to a system of size N ~ 1010 This is the only size
dependence of our results, since the Eqs. (6b) are exact in the thermodynamicallimit; how-
ever a was chosen within the range where results were found to vary very little as a function
of a. As expected, for p = 1,2 we found identical results to those in the noiseless case: there
are no spurious minima and the basins of attraction are clearly defined by the regions nw

Figure 1 shows the cumulative size of lhe spurious basins of attraction f, = (1 - fp)
(multiplied by 100) for p = 3, for various noise levels, in the parameters space {w,,}. As we
can see, f. has a behaviour similar to that found at T = O:It presents an abrupt transition
between two regions where spurious minima do and do not exist; the size of the regio n with
spurious minima, in this space, diminishes as T grows. These two regions are separated by
a line which can be written as W2+W3 = C(T); Fig. 2 shows C(T) for several temperatures,
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where the diamonds' length indicates the uncertainty in the measurements. C(T) is an
important quantity because the mixed spurious states composed by 3 memories are the
ones which disappear at higher temperatures; therefore, if we know the value for W2 +W3,
we can estimate from this graph, the temperature aboye which no spurious memories exist
for p = 3. Although the estimation of this temperature from C(T) beco mes less accurate
as we get closer to the upper limit of our model, the Hebb model, the tendency towards
the theoretical prediction for the latter, T"" 0.46 [2,111, can be clearly observed, this is
shown by an asterisk (.) in Fig. 2.

Figure 3 shows the percentage of states occupied by the cumulative basin of attraction
of the spurious memories, as a function of the noise level T, for a particular case with
p = 3, W2 = .7, W3 = .4 (filled circles '), and for the Hebb learning prescription (open
circles o). The domain size Ip of this model has its lowest value in the case w" = 1, for
all /1, that is, for the Hebb model (for any p). We also considered a few cases for p = 4,
and found regions with no spurious states for all T; however,in this case, there is a second
order transition between the two kinds of regions.

1t can be concluded that this model presents the following characteristics as compared
with the usual model with the Hebb learning prescription: First, it accounts for different
degrees of training, since the size of the basins of attraction can be controlled by varying
the relative sizes w,,/wv' Second, it has a higher cumulative size Ip than that for the Hebb
prescription, therefore the possibility of the system getting trapped by any of the spurious
minima is much lower. Finally, the arnount of noise necessary to improve retrieval is also
lower.

ACKNOWLEDGEMENTS

One of the authors (LV) wishes to thank Me. Armando Reyes for his computing support.
This work was partially financed by project DGAPA IN100294 of the National University
of México.

REFERENCES

1. W.A. Little, Math. Biosei. 19 (1975) 101.
2. D.J. Amit, H. Gutfreund and H. Sompolinsky, Phys. Rev. A 32 (1985) 1007; Phys. Rev. Lett.

55 (1985) 1530.
3. L. Viana, J. Physique 49 (1988) 167.
4. E. Gardner, J. Phys. A21 (1988) 257.
5. A.C.C. Coolen, Europhys. Lett. 16 (!V91) 73.
6. L. Viana, E. Cota and C. Martínez, in StatisticaJ Mechanics of Neural Networks, L. Garrido,

Ed. Lecture Notes Phys. Springer Verlag 368 (1990) 97; C. Martínez, E. Cota and L. Viana,
Rev. Mex. Fís. 36 (1990) 415.

7. L. Viana and A. C. C. Coolen, J. Phys. 1Franee 3 (1993) 777.
8. D.O. Hebb, The Organization o/ Behaviour, Wiley, New York (1949).
9. A.C.C. Coolen and Th. W. Ruijgrok, Phys. Rev. A38 (1988) 4253.
lO. J.L. Van Hemmen, D. Grensing, A. Huber and R. Kuhn, Z. Phys. B 65 (1986) 53.
11. D.J. Amit, Modeling Brain Funetion, Cambridge University press (1989).


