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ABSTRACT. A new quasi-statistical description of digital binary patterns is presented here. The
method is based on mapping the configuration space of a primary image onto the smaller config-
uration space of an auxiliary system called here local scanning basis. A theorem is proved which
establishes the relationship between the new representation and the corrcIatían moments oC an
image-signal. The method's application to description, classification and possible encoding of pat-
teros, especially to anes having texture and/or local syrnrnetry, is discussed hefe on a basic level.

RESUMEN. Presentamos una nueva descripción cuasi-estadística de los patrones digitales binarios.
El método se basa en el mapeo del espacio de configuración de una imagen primaria en un espacio
de configuración menor de un sistema auxiliar que llamamos base local de análisis (local scanning
basis). Demostramos aquí un teorema que establece la relación entre la nueva representación y
los momentos de correlación de una imagen.señal. La aplicación del método a la descripción,
clasificación y codificación posible de patrones, especialmente aquellos que poseen textura y/o
simetría local, es indicada aquí a un nivel básico.

PACS: 89.70.+c; 89.80.+h; 89.90.+n

1. INTRODUCTION

In order to be digitally processed, any real image-signal has to be prepared in appropriate
manner and, for that reason, a signal passes throngh the following stagcs: sampling of a
signal and quantization of samples to any of [( discrete levels.

Let us consider a possible way for preparing a full-color picture to be digitally processed.
In order to simplify the consideration we can first perform spectral filtering of a picture
and, thus, to get the latter as a monochrome picture image. A continuous monochrome
intensity distribution of the image can be sampled to canvert the image into a set of
continuous-valued functions on a grid, which has been chosen for sampling. The next step
is to divide the range of the intensity variation into [( discrete levels, and then to prescribe
the intensity on each element of the grid to one of [( discrete levels to have the intensity
distribution quantized. This is a typical way of picture digitalization. I3eing prepared in
this way, an image-signal is kept in matrix or vector space representation, which are the
basic representations [1-6J .
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In general, a picture ~ is partitioned according to the characteristic features, which
are usually the equivalence relations, into a collection of nonempty subsets SI, S2, ... , SK
such that Ur:.1Si = ~ and Si n Sj = 0 for í i' j. Any partition of ~ into segments
SI, S2, ... ,SK can be represented by K -valued function having í's at the points of the
subset Si, 1 ~ í ~ K. For example, each Si is the set of pixels of ~ having gray level
í, when ~ is partitioned into sets of constant gray leve!. For a picture of L x M pixels
this representation requires (L x M) log2 K bits. The storage requirements of this basic
representation are the same for all partitions of ~ into a given number of sets. An important
special case occurs when K = 2, í.e., ~ consists of a set S and its complement S. This is
the case of the binary representation of a digital picture ~, having l's at the points of S
and O's elsewhere (or ::1:1,respectively).
Finding and studying representations which are more efficient for sorne special partitions

is a problem of great practical interest. Referring to [2] for a more detailed description of
representations, we only list he re such of them as mns, binary trees, maximal blocks and
quad trees which are based on maximal runs or maximal blocks of constant value. These
approaches represent each Si as the union of maximal runs or blocks that are contained in
it. Another class of approaches to representation makes use of the fact that the sets Si are
determined by specifying their border sequences. The feature we would like to emphasize
here is that these representations are derived from the primary matrix representation and
they are one to one mappings.
lt is well recognized [1-61 that the problem of finding an adequate and simple enough

representation for digitized patterns is very much significant for image processing and
computer vision due to the large amount of information to be stored andJor processed,
providing efficient noise protection of information. A certain motivation for searching new
representations can be found in the problem of encoding digital data including error-
control techniques for digital communication [7,12,13]. One of the principal conclusions
of Re£. [7] is that encoding binary data by noise-like images is preferable at low signal to
noise ratios, and it provides extremely low probabilities of error for information storage
and transmission. That is why it is very useful and convenient to have such a representa-
tion that combines deterministic and random features of image signal analysis, especially
when one needs to analyze textured andJor speckle patterns [10,11]. In addition, this
representation could be useful for purposes of hierarchical organization and processing of
information, specially for problems of image-signal classification.
\Ve propose one of the possible approaches for solving the problem indicated aboye.

The approach to the picture description, which we develop here, stems out of the coor-
dinated cluster representation (CCR) for noncrystalline solids [8,91. Our goal here is to
introduce the idea and discuss the fundamentals of the new representation for digital data
processing.
In this work we consider binary digital images, that is, finite arrays of two-valued func-

tions. For example, in the two dimensional case these images are naturally represented by
(rectangular) matrices So = {slm} or vectors. The last representation is readily obtained
from the matrix one. Each element Slm (1 = 1, ... , L; m = 1, ... ,M) of the matrix can
take on one of the two values sh,. =::1:1 (black or white colored pixel for +1 and -1 value,
respectively). Note that, when it do es not cause a confusion, we will sometimes use the
values "1" and "O" for the elements slm' The Greek superscript a labels he re different
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FIGURE 1. Local Scanning Basis. Given is lhe pallern of lhe size L x M = 5 x 10 pixels wilh lhe
reclangle of lhe size 3 x 7 pixels as lhe objecl. LSB of lhe size 3 x 4 pixels is placed in lhe posilion
wilh lhe lefl upper comer al lhe poinI (2,5).

images and takes on values in the range Q = 1, ... , 2N, since configurational space of N
numerated binary pixels consists of 2N distinguishable patterns.

2. BASIC CONCEPTS OF TIIE REPRESENTATlON

Now we proceed to the formal description of the transform, which we call the coordinated
cluster representation (CCR). This transform is developed here only for binary signals.
Let us suppose that a binary image is given as a 2-D array of L x M = N pixels. This

image can be represented by a (L x M) matrix of the binary image inlensilies S" = {slm}'
Let us introduce into consideration an auxiliary system of pixels, called here local scanning
basis (LSB). LSB is a smaller size 1 x J = NI matrix B = {b¡j} superimposed for scanning
onto the primary matrix S" (i = 1,... ,1 :'S L and j = 1, ... , J :'S M). At each given
position of the matrix D onto the primary pattern, while scanning consecutively with one
position step (or with a few steps, if it is desired) over all the rows and the columns of the
primary image, the elemenls b¡j take on the values of the associated slm they coincide with
(see Fig. 1). In sorne sense the LSB can be considered as a rectangular scanning "window"
with the linear sizes of 1 x J pixels.
The configuration space of LSB consists of all possible combinations (states, configura-

lions) of the sel of NI numerated binary pixels. There are 2N¡ such configuralions. While
scanning with the LSB, as il has been just described, one meelS different stales of lhe
matrix B and keeps in mind the frequencies of occurrence of each Slale. In lhis way we
can introduce inlo consideration a so called distribution function, which is defined on lhe
configuration space of the LSB. This funclion gives the frequencies of occurrence of each
possible configuration of lhe LSB while scanning over all lhe primary image. Thus we
gel the transform of a paltern S° = {s1:,.} inlo the space of distribution funclions (DF)
defined on lhe configuration space of the system B = {b¡]}. In other words we associate
any given piclure S" = {slm} with ils corresponding DF F{I,J)(b) of lhe discrete argu-
ment b which, in fact, numbers lhe states of the system B, ¡.e., b runs through the range
of b = 1,2, ... , 2N,. The subscri]>t of DF explicitly indicates lhe size of LSB laken for
scanning of an image. The lransform, which has been just defined, is lhe core of the new
description (represenlalion) of a digilal image-signa!.
Configuralion spaces of digitized'patlerns, which we used to work with, are counlable

(even finite) ones and, thercfore, lhe states of any given space can be easily numbered.
A simple way to number the stales is, firsl, lo convert a 2-D image inlo lhe veClor form
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by column (or row) stacking operation of an image matrix sa = {srm} and stringing the
elements together in a long vector (I-D object). Then, a vector with binary components
is naturally considered as a number on the base 2, which can be readily converted into a
decimal number. Therefore, hereafter for the configuration space of any given LSB we use
numbers of sta tes as representation of corresponding states.
It should be noted that the scanning procedure, which has been described aboye, can

also be considered as a template matching, where the templates are sequentially taken out
of the configuration space of LSB.
The considered map is related to the problem of covering a pattern with overlapping

covering elements, which have been called coordinated clusters in Refs. [8,9]. In the case
of digital patterns the coordinated clusters are simply configurations of LSB of the size
1 x J = NI' For the case of one step scanning the following relation,

I: F{l,J)(b) = (L - 1 + 1) x (M - J + 1) == A¡,
b

is valid for any pattern sao Equation (1) gives the sum of DF over the configuration space
of the scanning system B = {bij} via the number of positions which the "window" B
occupies while scanning a pattern sa. On can easily see that the distribution function
Fc'I,J)(b) is, in fact, a histogram on the configuration space of LSB, and, hence, the sum
in Eq. (1) is the area of this histogram.
The distribution function F{i,J)(b) is the only representation of a pattern sa, if the

LSB is chosen. So it is natural to discriminate pictures and find a resemblance between
them via their DFs. If patterns sa and Sli are represented by matrices sa = {srm} and
Sli = {s1m}, the similarity between them is usually defined by the Hamming normalized
distance

dH(Sa, Sli) = (2N)-¡ I: Isrm - sfml.
I,m

(2)

In the case of CCR we define, correspondingly, un- and normalized distances between
pictures as follows:

p(sa,sli) = I: lFc'i,J)(b) - F0,J)(b)l,
b

(3)

(4)p(sa,sli) = (2A¡)-1 I: 1Fc'I,J)(b) - F0,J)(b)[,
b

where the normalization factor A¡ is given by Eq. (1).
The unnormalized measure p(sa, Sli) can be used not only for the patterns of equal size

but even for those of unequal size. Due to this particularity the measure is not restricted,
i.e., the distance between unequal size pictures can be arbitrary large. The normalized
measure p(sa, Sli) is applied only to the equal size pictures and it is restricted by the
value p(sa, Sli) $ 1.
After the new description of digital images has been formally defined, we may now pro-

ceed to the consideration of fundamental properties of the representation and its possible
applications.
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FIGURE2. Dislribulion functions of lhe given pallern for four differenl LSB of lhe sizes {I x J} =
{1 x 1;1 x 2;2 x 1;3 x 3).
1. F(1,l)(O) = 25, F(l,l)(l) = 10. 2. F(1,2)(0) = 16, F(1,2)(I) = 4, F(1,2)(2) = 4, F(1,2)(3) = 6.
3. F(2,l)(0) = 12, F(2,l)(l) = 6, F(2,I)(2) = 6, F(2,l)(3) = 4. 4. F(3.3)(26) = 1, F(3.3)(36) = 1,
F(3.3)(50) = 1, F(3.3)(57) = 1, F(3,3)(60) = 1, F(3,3)(120) = 1, F(3,3)(152) = 1, F(3.3)(176) = 1,
F(3,3)(211) = 1, F(3,3)(288) = 1, F(3,3)(292) = 1, F(3.3)(312) = 1, F(3,3)(406) = 1, F(3,3)(463) = 1,
F(3,3)(487) = 1.

3. ILLUSTRATIONANO DISCUSSIONOF BASICAPPLICATIONSBY SIMULATION

3.1. Uniqueness and different LS B

The transformation considered aboye is not, in principIe, unambiguous. But the connec-
tivity of the representation plays a significant role for the uniqueness of the cúnsidered
mapping and, hence, for converting the CCR into another representation. One can suppose
that the greater the overlapping of LSB in adjacent sites, the more the uniqueness of the
"representation" .
lt is easy to see that the smallest possible size of the scanning basis is equal to [ x J =

1 x 1 = 1. In this case there is no overlapping between adjacent covering elements and all
the patterns with equal number of black and white pixels are not distinguishable, since
they have the samedistribution function. So, all patterns are separated into the equivalent
classes -each class contains all images having a common DF, which simply gives us the
numbers of black and white pixels. This limit case of the representation contains little
information about pictures.
However, if we increase the size of LSB and, consequently, the c.onnectivity of covering,

then in the opposite extreme case, when [ = L and J = M, we certainly have one to one
map. In an intermediate case, if the size of LSB is reasonably chosen, one can keep almost
all the information about any taken picture via its distribution function. More will be said
in our consideration of translationally invariant (periodic) signals. The detailed analysis
of the uniqueness problem and that of the questions related with it needs to be done, and
it is now under intensive study.
To demonstrate this transform in the process and to emphasize its main features we give

below this pattern representation in application to pictures with rather simple synthesized
geometrical objects.
Figure 2 shows picture of the field size L x M = 5 x 7 pixels with the reclangle of

the size Y r ~ X r = 3 x 4 , taken as the object. The left upper corner of lhe rectangle
is at the point (Yro, Xro) = (2,3). The paltern in Fig. 2 is followed by the sel of DFs,
each being the distribution funclion of lhe considered picture but for different LSB. \Ve
take here four different LSn of the size {I x J} = (1 x 1; 1 x 2; 2 x 1;3 x 3) pixels,
correspondingly.
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The configuration space of the smallest size LSB with 1= J = 1 consists of two sta tes
-one is black and the other is white pixel. The DF corresponding to this situation gives
us simply the number of black and white pixels in the picture. Other distribution functions
corresponding to increasing sizes of LSBs give us examples of different possible represen-
tations of the pattern. The choice of a LSB's dimension for the representation depends on
the spatial scale of an image texture or a temporal scale of a signal to investigate, and
degree of uniqueness needed. If there is no a priori knowledge of the scale, in arder to find
out the latter, one can choose sequentially different sizes of LSB. Moreover, one can take
a combination of distribution functions corresponding to different LSBs for simultaneous
pattern representation -this increases uniqueness. A detailed discussion of this question
is out of scope of this work. The set of LSB can be easily extended till the largest size
1 = L = 5 and J = Al = 7, when one has as simple distribution function as

{
O,

F{S,7)(b) = 1, if b = bO,
(5)

XOx
oxo.
xox

where bO is a number in the range b = 1, ... ,235 matching the configuration So. This limit
case of LSB gives us an example of one to one map as it has been mentioned aboye.

3.2. Text"re classification and discrimina/ion

A typical scene usually contains various objects whose appearance displays a micro-
structure or a texture. That is one reason why the synthesis and c1assification of textures
is a fundamental task in image analysis applications. Without going to depth, we give here
a simple example of artificial structure and discuss capabilities of the CCR far problems
of texture analysis and c1assification.
Let us consider a 2-D chessboard texture on the rectangular lattice S = {Slm: 1 ~ 1 ~

L, 1 ~ m ~ Al} of L x Al = N si tes (pixels). In matrix representation this pattern is
given with the matrix S = {81m: 81m = ((-1 )I+m - 1)/2), where zero and unit value matrix
elements can be considered as white and black pixels, correspondingly.
The DFs for chessboard image, i.e. L = Al = 8, for different LSB of the size {I x J} =

{1 x 3; 3 xl; 3 x 3; 3 x 4} and the only configurations of LSB which contribute to the
corresponding DF are as follows:
1. F(l,3)(2) = 24, F(l,3)(5) = 24, (2) oxO, (5) xox.

O x

2. F(3,1)(2) = 24, F(3,1)(5) = 24, (2) x, (5) O.
O x

OXO
3. F(3,3)(170) = 18, F(3,3)(341) = 18 (170) Xox, (341)

OXO
xoxO oxox

4. F(3,4)(1445) = 15, F(3,4)(2650) = 15, (1445) oxox, (2650) xoxO.
xoxo oxox
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The DFs for the chessboard-like image with L = 11,M = 20 for different LSB of the
size {I x J} = {1 x 3; 3 x 1; 3 x 3; 3 x 4; 4 x 3} are very much similar to that given aboye
for chessboard image. In fact we have the following data:
1. F(l,3)(2) = 99, F(l,3)(5) = 99, (2) oxO, (5) xox.

O x
2. F(3,I)(2) = 90, F(3,I)(5) = 90, (2) x, (5) O.

O x

OXO xox
3. F(3,3)(170) = 81, F(3,3)(341) = 81. (170) Xox, (341) oxO.

oxo Xox
XOXO

4. F(3,4)(1445) = 77, F(3,4)(2650) = 76, (1445) oxox, (2650)
xoxo

oxox
XOxo.
oXoX

xox oXo
oXo xox

5. F(4,3)(1365) = 72, F(4,3)(2730) = 72, (1365) xox' (2730) OXO'

OXO Xox
Qne can easily see that the contributing configurations of LSI3 are the same ones, and

the only difference, caused by differellt dimellsions of the patterns, appears ill the values
of DF on the corresponding configurations of LSI3 (the height of spikes of corresponding
histograms) .
Certain observations, based on analysis of CCR for chessboard and other textures, can

be made.
As compared with the DFs of the pattern in Fig. 2, the DFs of chessboard structure is

found to be more regular and simpler ones. This is obviously related to global and local
symmetry of the chessboard texture. Thus, we can state the following proposition.

PnoPOSITION 1: A textured pattern with local or global symmetry posses a simpler DF
structure, which displays only few sharp spikes in the corresponding histogram.

This general property of the CCR, together with measures given by Eqs. (3) and (4),
can be readily used for synthetic alld natural texture classification and discrimination.
It somehow reminds the situation when one needs to pracess only sinusoidal signals.

The latter can be readily described with only three parameters: amplitude, frequency and
phase shift of a signal. Moreover, to some extent, one can think of the CCR-transform as
a tool for a kind of "spectral analysis" in the configuration space of LSI3. It means that
different configurations of LSI3 are considered as counterparts of harmonic (sine- or cosine-
like) functions, and the values of the distribution functioll on different configurations of
LSI3 can be considered as analogs of Fourier components. I3ut, at the moment, this analogy
does not go Turther, because of the lack of the inverse transformo
Local symmetry in a pattern is also manifested by all invariant part of the DF under

the local symmetry operations. In other words, let a texture posses symmetrical elements,
i. e., there. is a certain space symmetry graup for these elements. When extended fram a
texture element to the elltire pattern, any operation of this symmetry group is called here
local symmetry operation. Then, we can state the following praposition.
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PROPOSITION 2: lf the size of a LSB is smaller than or equal to that of the symmetrical
elements, then all the spikes of the DF, which arise from the scanning of the area, occupied
by symmetrical elements, will remain unchanged under the local symmetry operations. It
is obviously true for the case of patterns with a global symmetry and an arbitrary size of
a LSB.

AIso, it should be noted that for the chessboard texture case, one can unambiguously in-
vert the CCR into the matrix representation, which is related with the "global" symmetry
of the pattern. Later on, we give more proofs of the regularities noted aboye.

3.3. I-D tcxturcd and mndom signals-proccsscs

To investigate sorne peculiarities of CCR concerned with correlation analysis of patterns
we consider here a 1-D periodic signa!. The primitive cell of the carrying periodic signal
consists offive binary pixels which take on the values in the sequence PC; = 1, PC2 = -1,
PC3 = 1, PC4 = 1, PC5 = -1, i.c., in black and white pixel representation the primitive
celllooks like the sequence, x O x x o. The total periodic signal is obtained by 1000-fold
replication of the primitive cell.
Distribution functions of the considered periodic signal for six LSBs of the size J =

2,3,4,5,6,7 are as follows (here we give only non-zero values of DFs and corresponding
configurations of LSB, the values of the DF on the rest of configurations of the corre-
sponding LSB are all equal to zero):

1. F(2)(1) = 2000, F(2)(2) = 1999, F(2)(3) = 1000, (1) XO, (2) ox, (3) xx.

2. F(3)(2) = 999, F(3)(3) = 1000, F(3)(5) = 1999, F(3)(6) = 1000, (2) oxO, (3) x XO,
(5) Xox, (6) OXX.

3. F(4)(5) = 999, F(4)(6) = 1000, F(4)(10) = 999, F(4)(11) = 999, F(4)(13) = 1000,
(5) XoxO, (6) oxxO, (10) oxox, (11) xxox, (13) xoxx.

4. F(5)(11) = 999, F(5)(l3) = 1000, F(5)(21) = 999, F(5)(22) = 999, F(5)(26) = 999,
(11) xxoxo, (13) xoxxO, (21) XOXox, (22) oxxox, (26) OXoxx.

5. F(6)(22) = 999, F(6)(26) = 999, F(6)(43) = 999, F(6)(45) = 999, F(6)(53) = 999,
(22) oxxoxO, (26) oxoxxO, (43) xxoxox, (45) xoxxox, (53) XOxoxX.

6. F(7)(45) = 999, F(7)(53) = 999, F(7)(86) = 999, F(7)(90) = 998, F(7) (107) =
999, (45) xoxxOxO, (53) Xoxoxxo, (86) oxxoxox, (90) oxoxxox,
(107) XXOXOXX.

Qne can easily observe the regularity such that any of the DFs of the considered periodic
signal has no more than five non-zero spikes. This fact is naturally related to the size of
the primitive cell, "nd we can generalize it to the following proposition.

PROPOSITION 3. Let a binary periodic signal have a primitive cell of size T pixels. Then,
any DF in the coordinated cluster representation takes no more than T non-zera values
on the corresponding configuration space of LSB.
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The proof to the last proposition is quite obvious. We should only mention that any
LSB, having been displaced from any initial position to the new one distant for the period
T (primitive cell length) from the primary position, encounters the same configuration,
because of the periodicity of the signal. Prom this observation the proof follows.
We can quite straightforwardly extend Proposition 3 to the following theorem.

THEOREM 1: Given is a translationally invariant N-dimensional binary image-signal,
which is presented as a matrix S"(m), where m = (m¡, ... , mN) is an N-dimensional inte-
ger valued index vector. Let a primitive cell be constructed on the primitive lattice-matrix
translations T" along the corresponding axes (n = 1,2, ... ,N), their lengths T" = IT"I be-
ing measured in "pixels". Then, any distribution function F{Í" ...,1N) (b) in the coordinated
cluster representation takes no more than T = rr;;=l Tn non-zero values on a configuration
space of the corresponding N-dimensional LSB.

Proo/: Consider any N-dimensional LSB located in an arbitrary initial position on an
image matrix S"(m). Note that the LSB, having been displaced from the initial position
to the new one, which is at the distance of the primitive translation T" (n = 1, ... , N)
from the primary position, encounters the same configuration, because of the translational
invariance of the image-signal. Hence, the LSB, while scanning from the initial position,
encounters the new configurations, if and only if translations (scanning shifts) of the LSB
do not go out of the volume of the primitive cell. But, the latter is equal to T = rr;;=l Tn.
QED.

We should mention that periodicity and translational invariance are considered he re
up to boundary effects. Turning back to the chessboard texture we find out that it is
composed of the primitive cell with 2 x 2 pixels, but the latter is symmetric with respect
to rotation by angle 1r and to reflection. That is why the DF of chessboard texture has
only two (Jess than four) non-zero spikes, which is in accordance with Theorem 1.

Theorem 1 and Proposition 3 can be used for recognition of periodical and/or transla-
tional invariant images-signals. Later on we shall indicate how it can be used to find out
quasi-periodical and translationally quasi-invariant signals, ¡.e., translationally invariant
signals subject to noise.

Noise affects an image signal and will certainly change its DF in CeRo One of the
traditional ways to study fuzzy or random images is to make correlation analysis. The
autocorrelation function of an 1-D signal-process is given by the express ion

M

G(k) = (S"(m + k)S"(m)) = lim M-1 L 5"(m + k) 5"(m),M-oo m=l
(6)

where pixels 5"(n) are supposed to take on values :1:1, m is a positive integer position of a
pixel, and k is a positive integer distance-separation between pixels. It can be readily seen,
that the only configurations of LSB of the length (k + 1), on which DF is not equal to zero
and which have value ":1:1" for the first and the same valuc for the last pixels of LSB and
arbitrary values for the pixels between them, contribute positively to the autocorrelation
function G(k) of the signal. But those, on which DF is not equal to zero and which have
opposite values for the first and for the (k + 1)-th pixels, contribute negatively to the auto
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correlation function G(k). The numbers of the LSB(k+¡) configurations, which contribute
positively and negatively to the autocorrelation function G(k), are readily calculated from
the corresponding DF. Thus, one can readily calculate the autocorrelation function G(k)
of any signal represented by its DF in CCR.
A similar consideration for multi-dimensional images signals leads us to the fol!owing

theorem.

THEOREM 2: Let sn(m) be a matrix of N-dimensional binary digital image-signal, where
m = (m¡, ... ,mN) is an integer valued position vector of a pixel and the size of the
image-signal is defined with the positive integer valued vector M = (M¡, ... , MN). Let
Fn (K ¡,... ,/<N) be the distribu tion function corresponding to the image signal sn (m)
in the Coordinated Cluster Representation with Local Scanning l3asis of the size R: =
(K¡, ... ,KN).
Then, for any integer valued separation vector k = (k¡, ... , kN) between "pixels" such

that Ik¡j < K¡, Ik21< K2, ... , IkNI < KN, the autocorrelation function

(

N )(-¡) M
G(k) = (sn(m + k)Sn(m)) = lim IIMn L Sn(m + k) Sn(m)

M-oc n=l ñi
(7)

can be \lniquely reconstructed from FtK¡ ....,l(N). Here Kn and 1/ln :5 Mn are positive
integers, kn are integers (n = 1, ... ,N).

Proa/: Note that we can set the one to one correspondence between each term sn(m +
k)sn(m) in Eq. (7) and each LSB position on the matrix sn(m), while scanning the
image-signa!. For example, for each element of the sum we can prescribe the LSI3 position
with the left upper pixel in the point m.
It can be readily seen that for any given separation k = (k¡, ..kN) between "pixels"

such that Ik¡j < K¡, Ik21 < K2, ... , IkNI < KN, the only configurations of LSI3, which
contribute positively by a unit value to the autocorrelation function G(k), are those, on
which the distribution function FtK¡ ....,l(N) is not equal to zero and which have the same

value ":il" on both, the "first" and the k-th (k-separated) pixels of LSI3, and arbitrary
values on other pixels of LSI3. 13ut those configurations, on which the distribution function
is not equal to zero and which have the opposite values for both the "first" and the k-
separated pixels, contribute negatively by a value "-1" to the function G(k).
The type (positive or negative) of contribution for each LSI3 configuration is easily

defined. So, in order to calculate G(k) one needs to find out the contribution type of each
LS13(1?) configuration on which the distribution function FtK" ...,KN) has a nonzero value
and, then, sum the values of the DF multiplied by the corresponding contribution signo
That proofs Theorem 2 in a constructive manner.
The most important consequence of the Theorem 2 is that a relation between DF

and corresponding autocorrelation function does existo The latter proves the intuitive
assumption that for an image-signa! sn(lñ) its DF based on the LSB of the size R: =
(1<1, ... , K N) contains al! the information based on and related to correlations between
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pixels (samples) separated by a vector k = (k¡, ... , kN) which can be enclosed in the
volume of LSB.
To illustrate the relationship between CCR and correlations of an image we proceed to

investigate the periodic signal given aboye, but the latter is subject to the random change
of pixel values with the probability q = 0.05, that is, in average, 95% of pixels keep their
values unchanged.
For the pure periodic signal we give here the correlation function G(k) calculated accord-

ing to Eq. (6): G(O) = 1; G(I) = -.59992; G(2) = .19968; G(3) = .20032; G(4) = -.60008;
G(5) = 1; G(6) = -.59992; G(7) = .19968; G(8) = .200032; G(9) = -.60008; G(10) = 1.
The correlation function GF(k), calculated by means of the distribution function F(7)

with LSB of7 pixels in length, takes on the following values: GF(O) = 1; GF(I) = -.59992;
GF(2) = .19984; GF(3) = .20024; GF(4) = -.59992; GF(5) = 1; GF(6) = -.59992.
The functions G(k) and GF(k) naturally demonstrate periodicity with period T = 5

pixels, and perfectly coincide with each other up to negligible boundary elfect of the order
IL - 1 - kl/(M - k) « 1, where k is a separation between pixels, M is the duration of a
signal and L is the length of a LSB.
The periodic signal alfected by noise, as described aboye, has correlation function G( k)

as follows: G(O) = 1; G(I) = -.48709; G(2) = .15886; G(3) = .16109; G(4) = -.48559;
G(5) = .81822; G(6) = -.48778; G(7) = .16122; G(8) = .16827; G(9) = -.48587; G(10) =
.82284.
The correlation function GF(k) for the same "fuzzy" signal has the following values:

GF(O) = 1; GF(I) = -.48698; GF(2) = .15899; GF(3) = .16099; GF(4) = -.48538;
GF(5) = .81818; GF(6) = -.48778.
According to Theorem 2, the correlation functions G(k) and GF(k) calculated by the

two dilferent ways demonstrate excellent coincidence up to the boundary effect due to the
finite duration of the signal. The quasi periodicity of the signal is clearly seen from the
correlation function.
We should note here that in matrix (vector) representation of a signal, one has to

perform correlation analysis to observe guasi periodicity. But in coordinated cluster rep-
resentation one can find out the quasi periodicity directly from DF, because in the DF of a
fuzzy signal the fundamental spikes of the DF of the primary periodic signal are still kept
prominent, yet reduced in values, on the background of other possible spikes which have
been caused by noise. The configurations of LSB which give a prominent contribution into
the DF of a fuzzy signal can be readily used to reconstruct the carrying periodic signal.
For that purpose one can use, for example, a combinatorial technique.

3.4. Specijic features of an objecl

In practice, we are interested in particular objects present in a pattern. lIence, it is im-
portant to see how individual an object is in the representation discussed here. In other
words, are there any characteristic spikes inherent to the object in the histogram of the
distribution function and, if it is so, how stable are they with respect to the boundary
conditions? The following patterns illustrate the answer.
Figure 3 represents digitized binary images with the field size of L x M = 5 x 7 pixels

and with the objects as following: 1) circle centered at the point (Yo,Xo) = (3,4) with
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0000000 o XOOOOO o x 00000
OOOXOOO o XOOOOO o x OXOOO
OoxoxOO o xOOOOO o x XOXOO
OOOXOOO o x 00000 o x OXOOO
0000000 o x 00000 o x 00000

J 2 3

FIGURE 3. Charaeteristie peaks of DF. Iloundary and noise infiuenee.
J. Fr'3.3)(J) = J, F(~.3)(4) = J, Fr'3,3)(S) = J, F(I,,3)(JO) = J, F(13,3)(2J) = J, Fi3,3)(32) = J,
Fi3,3)(34) = J, F(~,3)(64) = J, Fi3,3)(Sl) = 1, Fr'3,3)(J36) = J, Fi3,3)(J60) = 1, Fi3,3)(J70) = J,
F(I,,3)(256) = 1, Fb)(276) = J, F(I,,3)(336) = J. 2. Fi3,3)(O) = 9, F(23,3)(73) = 3, F(23,3)(146) = 3.
3. F(\3¡(1) = 1, F?3,3)(S) = J, F(\3)(10) = 1, F(33.3)(2l) = J, F?3,3)(64) = 1, F(~.3)(Sl) = 1,
F?3,3)(J07) = J, F(33,3)(J36) = J, F?3.3¡(150) = J, F(33,3)(J70) = 1, F(33,3)(J7S) = J, F?3,3)(233) = 1,
F(~.3)(336) = J, F?3,3) (349) = J, F?3.3)(402) = J.

the radius Yb = Xa = J; 2) rectangle (straight liue) of the size Yr = 5, Xr = J with the
Icft upper corner at the point (Yro, X ro) = (1,2); 3) superposition of the objects given
aboye. The system of 1 x J = 3 x 3 pixels is taken here to be LSB. The conliguration
space of LSB consists of 2N1 = 29 = 512 states. OFs are delined on the discrete interval
b = 0,1, ... ,511 and they discriminate the patterns given aboye. One can observe that
there are sorne peaks in the OF for the pattern ofFig. 3 (picture J) (for example, numbered
with J, 8, JO, 2J, 64, ... ) which retain in the OF for the superimposed pattern of Fig. 3
(picture 3), but there are no peaks of the distribution function for the pattern of Fig. 3
(picture 2). To clarify the meaning of this question one can make the following simulation
with one of the objects.
Let us increase the size L x M of a pattern keeping an object unehanged. As soon as the

object, "dressed" into the coveriug coordinated clusters (that is the set of conligurations
of LSB which have, at least, one pixel in commou with the object), stops being in touch
with the border then the characteristic part of the distribution function remains constant,
even if the pattern is increased. Hence, if an object is present in the pattern, one can get
pure characteristic peaks in the OF only in the case when "dressed" object does not touch
the border of the pattern or any other object. A similar conclusion is obtained in the case
of pattern recognition affected by noise.
Particularly, the previous results lead us to the conelusion that for the purpose of

tracking an object one has to choose as large a LSI3 as the "dressed" object stays in touch
with olle of the edges of the pattern lield or with the set of other simpler objects used as
a rcference system.

4. CONCLUDlNG REMARKS

In this paper we presented the fundamentals of a Ilew quasi statistical description, called
he re the Coordinated Cluster Ilepresentation, oí binary digital images. Two theorems have
been proved, one of which gives the structure of the distribution function in the CCIl for
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translationa11y invariant images, and the other one establishes the relationship between
CCR and seeond order statistics of an image. The theorems provide mathematieal basis
for CCR's applieations to image feature extraetion and texture diserimination, speeia11y
when one needs to analyze the elements of local symmetry and/or statistieal properties
of an image-signa!. Moreover, the CCR can be effieiently used for the problem of image
classifieation, sinee it provides an important eharaeteristic feature due to Theorem 2. The
other promising applieation of CCR is in digital data eneoding for economieal and noise
tolerant information storage and transmission, but, in the general case, it sti11 needs to
have the inverse problem to be solved.
The representation has been explieitly formulated here only for digital binary signals.

General eoneepts, sueh as the rneasure of pattern resemblanee, the problem of uniqueness
of the mapping, effeets of noise, whieh are neeessary eomponents for applieations, have
been diseussed and i11ustrated.
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