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ABSTRACT. A low frequency approximation of a primitive equations ocean model with a horizon-
tally inhomogeneous layer is developed and shown to have a singular Hamiltonian structure and
the same set of integrals of motion as the original system. Disturbances to a reference state without
currents are Rossby waves and rearrangements of the buoyancy and depth fields that leave the
velocity field unaltered. Pseudoenergy and pseudomomentum integrals of motion are constructed
and their relationship with the instability of a basic state with currents is discussed.

RESUMEN. Se desarrolla una aproximación de bajas frecuencias a un modelo oceánico de ecua-
ciones primitivas con una capa horizontalmente inhomogénea. El nuevo modelo tiene una estructura
Hamiltoniana singular y las mismas integrales de movimiento que el sistema original. Las pertur-
baciones a un estado de referencia sin corrientes son ondas de Rossby y redistribuciones de los
campos de flotabilidad y profnndidad, que dejan al campo de velocidad inalterado. Se construyen
las integrales de movimiento de pseudoenergía y pseudomomentum y se discute su relación con el
problema de inestabilidad de un estado básico con corrientes.

PACS: 92.10.-c; 92.lO.Fj; 47.20.-k

l. INTRODUCTION

The shallow water equations, invented by the genius of Laplace for the study of tides (see
for instance, Refs. [1,2]), become the "primitive equations" (PE) once buoyancy etrects
are included, and constitute a powerful starting point for ocean modelling in time scales
larger than a few hours (see Acronyms and Notation in Appendix C). A very popular
vertical setup for the primitive equations model consists of a stack of homogeneous layers
(HLPEM), with a depth-independent velocity field in each one. The simplest of these
models has but one (active) layer, with evolution equations of the form

HLPEM. {8th + V'. (hu) = O,
. 8,u+ u. V'u + fi x u+tiV'h = O, (1)

where f = fo + py is the Coriolis parameter, and 1 am including neither forcing nor
dissipation -here and there()f~ for simplicity. The symbol ti represents the buoyancy of
the tal' (active) ocean layer relative to the bottom (passive) layer, i.e., g(p - Pdown)/ p. (In
Laplace tidal equations ti is gravity; here it is taken as a constant sorne three orders of
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magnitude smaller than g.) A very important theorem of (1) is that of potential vorticity
conservation,

(" ""')(/+z.V'xU)v, + u. v h = O. (2)

- The system (1) has both high and low frequency solutions, e.g. Poincaré and Rossby
waves, when linearized from a state of resto Many times the interest is on the non linear
behavior at long time scales, and then these equations are approximated by systems like
ihe "quasi-geostrophic" model (QGM) in which u '" z x V'</J = ug, where h = H + lo</J/1'J
(with H a uniform reference depth), and potential vorticity is defined as the expansion up
to linear terms in u, h - H and y, namely

1+ z . V' x u 1+ z . V' x ug - 10th - H)
h '" H = q. (3)

In terms of the streamfunction </J,qH = 1+ V'2</J- R;;2</J, where Rd = .j{)H /16 is the defor-
mation radius. The evolution equations are constancy of circulation in each disconnected
part of the boundary and the QG version of potential vorticity conservation, namely

or o,q + [</J, q] = O, where

HLQGM: (o,+ ug. V')q = O,

[A,B] = z. V'A x V'B

(4)

is the horizontal Jacobian. (Figure 1 shows the relationship between the different types of
models discussed in this Introduction.) Linearizing (4) from a state of rest, only Rossby
waves are found, there are no Poincaré wave solutions in this system.
One disadvantage of the popular HLPEM -or its low frequency approximation

HLQGM- is that they cannot incorporate thermodynamic effects since, by definition,
density is constant in each layer. To remedy this limitation, the primitive equations models
with inhomogeneous layers (ILPEM) were developed and used often in the last decade
or so (see references in [3]' where these models are generalized and their Hamiltonian
structure and conservation laws are derived) . For the simplest case of only one layer, the
system (1) is extended into

{

o,{) + u. V'{) = O,
ILPEM: o,h + V' . (hu) = O,

o,u+ u. V'u+/z x u+{)V'h+ thV'{) = O,
(5)

where now () is a (horizontal) position and time dependent field. In a recent paper [41
the normal modes of this systern, linearized with respect to a state of rest ({), h, u) =
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FIGURE 1. Homogeneous layer (HL) models are invariant submaniColds of the corresponding inho-
mogeneous layer (IL) ones. Quasi-geostrophic (QG) models are an approximation to the primitive
equations (PE) ones.

(e, H, O), were shown to be Poincaré and Rossby waves and a "force compensating mode",
for which ebh + tHMJ = bu = O. The potential vorticity equation derived from (5) is

(6)

instead of (2). It can be shown [5] that the right hand side of this equation is not a
deficiency of the model but, rather, the vertical average of the baroc1inic torque. This
potential vorticity q is not conserved if density gradients are allowed within the layer.
However, this equation plays an important role in low frequency dynamics [41. The pur-
pose of this paper is to develop a low frequency approximation oC (5), in the same sense
that (4) is an approximation of (1). In other words, the goal is to develop the inhomoge-
neous layers quasi-geostrophic model (ILQGM). In particular, the Hamiltonian structure
of the new model is discussed, because it provides a framework useful for dealing with con-
servation laws and with the stability /instability problem. Four different types of models
are compared in this papero their relationship is depicted in Fig. 1.1

1 The ILPE1.f and ILQGM are but an approximation oC more exact dynamics, obtaincd through
a vertical average oC the dynamical fields. In Re£. [4Jthis approximation is improved by allowing an
explicit vertical shear and variable density stratification. The models discussed here are denoted
by ILoPEM and ILoQGM in (4), where the superscrip! Oindicates the lack oC vertical variation.
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The HLPEM have, in the absence of forcing and dissipation, an interesting Hamiltonian
structure [6-8). The instantaneous state of the system can be seen as a point z on a
singular manifold MHLPEM (see, for instance Ref. [9]) whose evolution z(t) is controlled
by a Hamiltonian H[z); defined modulo the Casimir integrals of motion C[z] (the generators
of null transformations). H can be shown to be a "free energy", positive definite in the
deviation from a suitably chosen motionless reference state. The definiteness of H implies
that the free evolution of the system is bounded, i. e., solutions of the fully non linear
equations cannot "explode" from a state ofrest [lO]. Moreover, in the study of disturbances
8z(t) to a steady basic state Z, which might have sheared currents, an integral of motion
H + C is usually found (the so-called pseudoenergy), whose first variation at Z vanishes,
8(H + C) = O; for sorne Z, the second variation can be shown to be positive definite,
82(H +C) > O. Therefore those basic states are stable.
The HLQGM is a low frequency approximation that can be seen as a metric projection

into a subspace MHLQGM e MHLPEM [11], in which the Casimirs restrict the evolution of
the system more than in the HLPEM system. As a consequence, those models have more
powerful stability theorems, since there are sta tes that can be proved stable because the
second variation of the pseudoenergy is negative definite, 82(H + C) < O; this is the so-
called Arnol'd's second theorem. Moreover, there are also cases in which the total variation
C.(H +C) is definite, and therefore the finite amplitude growth of a disturbance 8z can be
bounded [7,12-14,3).
In Ref. [3] it is shown that the ILPEM have also a singular Hamiltonian structure, and

that MHLPEM is an invariant submanifold of the larger state space MILPEM (see Fig. 1).
There is a loss of Casimirs -or a "change in the rank" of the Poisson tensor [15]- when
going from MILPEM to MHLPEM (something that is not experienced when going from
MHLPEM to MHLQGM)' From a practical point of view, this is related to the non-existence
of suflicient stability conditions for the ILPEM.
The ILQGM (a low frequency approximation of the ILPEM) is developed he re and its

Hamiltonian structure and conservation laws are also discussed. It is shown that, just like
the ILPEM, there are not suflicient stability conditions. However the integrals of motion
can nevertheless be used to analyze the instability problem. These results are illustrated
with the problem of uniform f10w instability, which is peculiar of the inhomogeneous layers
models. A comparison of this ILQGM and that ofYoung [16), in terms of their Hamiltonian
structure and conservation laws is also presented.

2. THE ILQG MODEL

In Ref. [4] it was shown to be convenient to change variables from the layer thickness h
and buoyancy .,J fields to <p := ..¡;jh and 1:= ..¡;j. The model evolution equations (5) using
these variables take the form

8n+ u. VI = O,
8t<p + v. (<pu) = O,

8tu + ~Vu2 + (J + z. V x u)z x u + IV<p = O,
(7)
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where 1 have used u. V'u = t V'u2 + (z . V' x u)z X u. The referenee state used in [41 in
order to study the waves was one without eurrents, whieh corresponds to <p(x, t) = 01>and
,(x, t) = r(x), where 01>is eonstant but r(x) is an arbitrary field. The buoyancy and layer
thiekness fields in this reference state are then given by 8(x) = r2(x) and H(x) = oI>/r(x),
respectively. The same referenee state will be used here. Defining

<p(x, t) = 01>+ m 1/1(x,t) (m = Jo/oI»,

it is assumed that the velocity field is mainly in geostrophic balance, namely

(8)

The deviation fields 1/1and (¡- r) are considered to be small, but not necessarily infinites-
imal, unlike in the study of linear waves done in Ref. [41. The potential vorticity of the
primitive equations systern (7) is replaced here, like in quasi-geostrophic theory (3), by an
expansion up to linear terms in the deviation fields 81/1and 8" viz,

J + z. V' X ug - Jo(h - H)/ H f3y + V'. (H-1V'1/1) - m21/1 (9)
H "" H +m,=:q,

where 1 have used the linear relation 8<p/0I>"" 8h/ H + 8,/r. (Notice that the relative
vorticity is rnainly given by z. V' X ug = V'. (1I-1V'1/1).)
Even though the main contribution to the velocity field is the geostrophic one ug, higher

order terms are needed for the evaluatioIl of V'. (<pu), which is the driving term in (7b).
Thus, Eq. (7e) is approximated in the following way:

Jou == ,z x V'<p- (f3y + z. V' x u)u + z x a,u + tz x V'u2

"" ,z x V'<p- (f3y + z. V' X ug)ug + z x a,ug + tz x V'u~

= (2m, - q - H-l m21/1)Z x V'7/J- H-la, V'7/J+ tz x V'u~. (10)

This approximation consists of replacing u by the geostrophic approxirnation (8), unless
it is multiplied by Jo. Using this approxirnatioll of u in the evolution Eq. (7b) of 1/1,viz.
a,<p+ V' . (<pu) = ma,1/1+ V' . «01>+ m7/J)u) = O, gives a,(q - m,) = ug. V'A + B,
where A = (1 + m1/1/0I>)(2m, - q - H-1 m21/1) == 2m, - q + (2m, - q - mr)1/1/oI> and
n = mH-IV'. (7/JH-IV'a,1/1) + mtug. V'u~/oI>. Finally, A is replaced by 2m, - q, i.e.,
the second term is neglected, beca use it is 0«, - r)1/12, 1/13, f3y1/12),and n is similarly
neglected. This provides one of the equations for the new model; the other one is that of
" (7a), advected by the geostrophie velocity (8). Therefore, ILQGM dynarnics is set up
by the following two equatioIls:

ILQGM. {ao + ug • V', = O,. a,q + ug . V'q = mH-1[1/1, ,1; (11 )
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recall that ug • V'( ... ) = H(x)-ll,p, ... j. These equations hold on a certain horizontal
domain D; appropriate boundary conditions are vanishing normal flux and constant cir-
culations in each disconnected part aD; of the boundary, namely

ñ x V',p = O (x E aD), f H-1 V',p . ñdI = r; = const.,
aD¡

(12)

where ñ is the outward normal unit vector. This problem is well posed beca use the field
q and the conditions (12) uniquely determine the transport function 7/J (see Appendix A)
necessary to "advance" Eqs. (11). The evolution equations are then the set (11) plus
dr;jdt = O from (12b).

The physical nature of the approximation proposed here is the following. In the ILPEM,
potential vorticity (f + z . V' x u)1 h is not conserved; its rate of change (6), when written
in terms of the variables of the low frequency approximation, is given precisely by (lIb),
namely ~h-l[h,11] == h-1[cp,'Y] "" H-1[cp,-y]. Consequently, the new mode! is controlled
by the evolution equations of the buoyancy and potential vorticity fields, under the as-
sumptions that these fields do not depart much from their reference vallles and that the
velocity field u is mainly geostrophic; evalllation of q requires the leading non-geostrophic
contribution to u.

I have developed the ILQGM using cp and 'Y as variables becallse they give a particlllarly
simple representation of the "force compensating mode" and the free energy integral.
However, this is not the only possible choice. Qne cOllld work with the original variables
11and h, redefining

and

1+ z . V' x ug - 10th - H)I H
q= H '

instead of (8) and (9), respectively. (Recall that the reference state mllst be sllch that
8V' H + ~HV'8 = O). The whole formalism carries over with these variables, as long as
deviations from the reference state are corresponded in a linear fashion, e.g. 811"" 2f8-y.

I will show next that the system proposed here has the low freqllency solutions of the
original primitive Eqs. (7) or (5), is Hamiltonian, and has the right integra!s of motion.

2.1. Linear waves

An important comparison between the original and the new system is in the dispersion
relation of the linearized perturbations. Making

(13)
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(cis x = cos x + isin x) yields two eigensolutions,

or

force compensating mode

Rossby wave

{
w = O,
i' # O, 1/J = O,

{

,B. kw= k2 + R-2'
• d

• .I'H-1' ""'r k,=", Z.v x-w

(14)

(15 )

where R~(x) = r'P/ J6 is the local deformation radius and ,B(x) = -Hz x V[(Jo - fJy)/ Hj.
The eigensolutions of the primitive equations system are these two modes and the high-
frequency Poincaré waves, which obviously are not present here (see Ref. [4)); the only
difference between (13) and the results in Ref. [4j being that, in the latter, the squared
dcformation radius and the beta vector ficld are given by R~ = r'Po/ J2 and ,B= H-1z X

V(J H). This shows that the model in this paper, like quasi-geostrophic theory, requires
fJy « Jo and does not exhibit refraction of Rossby waves [17]' beca use the variation of
the deformation radius with the latitude is not modeled.

3. HAMILTONIAN STRUCTURE

The system (11) can be derived from the Hamiltonian functional

H[" '1,Tj := !JJ Hu~+m
2
1/J2

D

and the Lie- Poisson bracket

r r [1 óA l ÓI3]
{A,I3} := J J '1 ¡¡Tri' H Tri

D

[
I óA I ÓI3] [ I óA l ÓI3]

+r H Ó1' H óq +1 H óq' ¡¡Ó1

(16)

(17)

(see Appendix B.I). Recall that ug is the geostrophic velocity defined in (8) and 1/J is
a functional of b, '1, TI, as explained in Appendix A. Thus, for any functional of state
Ab, q,T,t]

(18)

In particular, using A = H in (18) implies that the value of the lIamiltonian is an integral
of motion, because aH/al = O and {H, H} = O by the antisymmetry of the Lie-Poisson
bracket.
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The brackel in Eq. (17) is singular, i.e., lhere are non-lrivial solulions of {A, C} = O VA;
lhese Casimirs C are of lhe form

C = JJ (qHA(,) +HBh)) +LDiTi,

D

(19)

where A(.) and B(.) are arbilrary differenliable funclions and Di are arbilrary conslanls
(see Appendix 13.2). Using A = C in (18), it follows that lhe value of a Casimir is also an
integral of motion because DC/Dt = O and {C,1i} = -{1i,C} = O by conslruclion.
If bolh the domain D and the field r(x) are x-independent, lhen lhere musl exisl a

momentum M such thal

r r (bl3 D, bl3 Dq)
{M,l3} = JJ b, Dx + bq Dx '

D

V l3[¡, q, TI. This momenlum is given by

M = JJ q(x, t)H(y) ::::(y), ::::'(y)= lI(y),
D

(20)

(21 )

modnlo Casimirs (see Appendix 13.3). Using l3 = 1i in Eq. (20) yields {M, 1i} = O because
the coordinate x does nol appear explicitly in definilion (IG) of1i. Thercfore, using A =M
in (18) and the facl lhat DM/Dt = O il is found lhal lhe value of lhe momenlum is also
an inlegral of molion.
Finally, nolice thal if lhe original buoyancy field is uniform, say , = r = consl., lhen lhe

system (11) reduces lo lhe classical quasi-geoslrophic model (4), which has new Casimirs
(namely lhe inlegral of an arbitrary function of q). In lhe language of Hamiltonian lheory,
it is said thal there is change in the rank of the Poisson lensor [151 when going from
lhe whole stale space ILQGM lo lhis invarianl submanifold I1LQGM (see Fig. 1). From
a praclical poi nI of view, lhese addilional Casimirs allow for lhe exislence of slabilily
lheorems in lhe homogeneous layer case, somelhing which will be shown below nOl lo be
possible whén \7, 't o.

3.1. Conse,-vation laws

The integrals of motion of the original system (7) or (5) are the circulalions TtE, the
energy [PE, lhe Casimirs CPE and, if lhe reference slale and domain are symmelric, lhe
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momentum MPE, given by (see Re£. [3])

TrE = fu. dx,
aD¡

[PE = ~ jj(hu2 + 19h) == ~ jj('P1-1u2 + 'P2),
D D

CPE = jj (qPEhA(l9) + hB(l9)) == ~ JJ (qPEhA(-y) + 'PB(-y))
D D

MPE = jj h(u - JaY - !¡3y2) == jj 'P1-1(U - JaY - !¡3y2),
D D

(22)

where qPE = (f + z. V x u)/h. The integrals of motion of the new system (11) are the
circulations Ti (12b), the lIamiltonian (16), the Casimirs (19), and, if the reference state
and domain are symmetric, the momentum (21). Since the original system ILPEM and
the low frequency approximation ILQGM have the same type of integrals of motion, it is
interesting to compare the corresponding expressions. One difference between the ILPEM
and the ILQGM is that in the former it is used: i) the complete velocity field u, not just
the geostrophic velocity ug, ii) the actual layer thickness h (= 'Ph), not just the one in
the reference state H (= 4>/r), and iii) the complete potential vorticity qPr;, not just the
approximation (9). In addition to this:

• The constancy of the circulations is a theorem for ILPEM, whereas for ILQGM it is
one of the equations of motion .

• Total energy (22b) seems to differ from the value of the Hamiltonian (16) in more
than the replacement of (h, u) for (H, ug) because 'P = 4>+ m'¡;. However, the
difference between the term lf 'P2/2 in (22b) and the term lf m2,¡;2 /2 in (16) is equal
to lf(m4>'¡; + !4>2), which is a Casimir. Consequently, 1i is a "free energy", i.e., the
energy minus a trivial constant of motion chosen so that the potential energy part is
quadratic (to lowest order) in the deviation from the reference state (this is usually
called "available potential energy") .

• For the Casimirs the only difference is the use of H instead of h, and q instead of
qPE .

• Finally, the momentum is an integral of motion which seems to be different in the
primitive equations ca.se (22d) or in the low frequency model proposed here (21).
However, the latter corresponds to the approximation M ~ lf qPEh =: = lf[oxv -
Oy(u - Jay - ¡3y2/2)]=:. On one hand, the term Dxv =:(y) integrates to zero because
the domain is assumed to be x-independent in order for M to be well defined. On
the other hand -lf Dy(u - JaY - ¡3y2/2)=:(y) can be integrated by parts to give
lf H(y)(u - JaY - ¡3y2/2) ~ lf h(u - JaY - ¡3y2/2), which is the expressiou for the
momentum of (5), plus a linear combination of the circulations. Therefore, both
expressions of thc momentum are cquivalcnL
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4. PSEUDO ENERGY-MOMENTUM AND THE INSTABILITY PROBLEM

Consider a steady basic state with currents, U = H-1z X V'w, and a finite amplitude
deviation from it, i.e.,

1/J = w(x) + o1/J(x, t), '"1 = f(x) + 0'"l(x, t).

In order to satisfy Eq. (11), the basic state must be such that [w, Q - mf] = O and
[w, f) = O, where Q = [l3y + V'. (H-1V'w) - m2w]1 H +mf == [j+ z. V' x U - m2wll H.
(Notice that the layer thickness in the basic state is not H but H +mW If.) Consequently

w = w(f) and Q = Q(f).

The pseudoenergy is defined as H + CE, where CE is a Casimir chosen so that H +CE has
a vanishing first variation on the basic state, o(H + CE) = o. That is, the pseudoenergy
is an integral of motion whose lowest order contribution in the perturbation (0'"1, oq, OT) is
quadratic, ~02(H +CE). In Appendix B.4 it is shown that for the low frequency dynam-
ics (11) represented by ILQGM it is

where

_ dQ
oq := oq - df OT

The variable oij IQy is equal to the variation of the meridional distance between the isolines
of q and '"1(see Re£. [4]). Since '"1is a Lagrangian constant, that distance would vanish if q
were also conserved. Consequently, oij is a measure of the non- conservation of potential
vorticity q.
If the basic state is not only steady but also x-symmetric, f = f(y) and W = w(y), a

conserved pseudomomentum M + CM can be similarly constructed choosing CM so that
oCM = -oM. The lowest order (quadratic) term in the perturbation is given by

(24)

Finally, the most general integral of motion in the symmetric case, quadratic to lowest
order in the perturbation, is an arbitrary combination of the pseudoenergy and the pseu-
domomentum, say H - aM + C, with C = CE - aCM, whose second variation is given by
(see Appendix B.4)
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This is an integral of motion for linearized dynamics.
In the case with homogeneous layers, there are two types of sufficient stability conditions

in QG models, namely

dw
dQ > O or (26)

everywhere for a general steady basic state, and

U-a
-- <O or
Q,y

U - a ,2
-->"Q,y

(27)

for all y and sorne a, in the steady and symmetric case2 [13,14,18]. The first or second
condition, known as Arnol'd's first or second theorem, guarantees positive or negative def-
initeness of the corresponding integral of motion: the pseudoenergy 62(H +CE) in the case
of conditions (26), or an arbitrary combination of pseudoenergy and pseudomomentum
62(H - aM +C) for conditions (27).
With illhomogeneous layers, on the other hand, the integrals of motion (23) and (25)

cannot be sign definite, i.e., there is no formal stability theorem for the model of this
paper, except for the case of a uniform f1ow. In this case, using a = U (= const.) in (25) it
is clearly seen that if -mdw /dr > O then the f10w is stable. [From (8) and (15) it follows
that in the ¡-plane, V'¡ = O, -mdw /dr equals the ratio of U to the long Rossby waves
phase speed.]

Even though there are no stability theorems, except for the case of uniform U, the
integrals of motion (23) and (25) can be used for the instability problem as in Ref. [191.
The idea is the following: if the basic state is unstable, then there must be growing pertur-
bations for which 62(H +CE) = O; also, in the symmetric case, 62(H - aM +C) = O for all
a. These conditions represent a balance between the positive and negative contributions
of the integrands in Eqs. (23) or (25).

For instance, if Q.y has only one sign, then the pseudomomentum integral (24) shows
that for a growing perturbation 6q and 6ij must be equally important, i.e., 116qll = 116ijll
in an £2 metric weighted by IH2/Q,yl. On the other hand, consider Eq. (25): If there is
a value of a such that (U - a)/Q.y < O and mdw /dr < O for all y, then for a growing
perturbation 6ij is more important than 6q, i.e. non-conservation of potential vorticity will
be an important ingredient of that type for instability. However, if (U - a)/Q,y < O but
mdw /dr > O then a perturbation could grow because 6"( is important, whereas 6ij and
6q are noto In SUIll, even though there are no stahility theorems, Eqs. (23), (24) and (25)
can be used as a means to classify the different types of instabilities. For instance, in a
calculation of the normal modes of an unstable basic sta te, the classification can be based
on the relative size of the different sign-definite contributions to those integrals of motion.

2 The positive constant ,x.2 depends on the geometry oC the dornaio. For instance, for an infinite
channel of width L., it is A-2 = (,,/L.)2 +R;/, whereas for a periodic channel of length L, it is
A-2 = (,,/L.)2 + (2,,/L,)2 + R;;2 (see, for instance ReL [14)).
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5. NORMAL MODES

Consider a basic state with a parallel f10wand an infinitesimal disturbanee on top, namely

"1 = r(y) +"r(y)G(y)eis[k(x - et)] + 0(,,2),
1/1 = w(y) +"q> F(y) cis[k(x - ct)] + 0(,,2), (28)

where F(y) and G(y) are two strueture funetions to be determined. The eurrent in the
basic state is given by U(y) = -H(y)-lW'(y), where the prime indieates a derivative with
respect to y. Upon substitution in Eq. (11) it is found that F(y) and G(y) must satisfy

(U - e)G + r' F = O,
(U - e) [(H-1F')' - H-1k2F - m2F] + (Q - 2mr)' F - mU G = O. (29)

If these equations are solved in the channel Yl :::::y :::::Y2, then appropriate boundary
conditions are kF = kG = O at y = Yl,2. This eigenvalue problem determines the values
of e(k); complex eigenvalues 1m (ke) '" O correspond to growing or decaying perturbations
to a normal- mode unstable basic f1ow.
If r' = O, the "equivalent barotropie" instability problem is reeovered (see for instan ce

Ref. [14]), whieh requires that (3- U" + R;¡2U to ehange sign if the basie f10w is unstable.
With r' '" O, there is a new type of instability, whieh result from the non linear eoupling
of a Rossby wave and "force eompensating mode" [4); this instability meehanism does not
require U' '" O. Fukamaehi et al. [2Q] studied the instability of the U = eonst. f10w in the
f-plane ((3 = O), within the eontext of the 1LPEM (5) and found very good agreement
with a similar ealeulation in a eontinuollsly stratified model, which is more precise. A
Ilniform f10w can be obtained from

r=roexP(JlY)} LIyl <-.
mW = lI1>[exp(-¡,y) -1) - 2

whieh eorresponds to U = Jllle2 / f, where e2 = ro1>. (The case stlldied by Fllkamaehi et
al. rollghly eorresponds to 1I = -1). Assllming JlL « 1 for simplieity, the eigensollltions
coincide with those fOllnd in Ref. [4) for the 1LPEM: F and G are approximately sinusoids
of the form sin[l(y + ~L)), where 1 = mr / L with integer n. The eigenvallles are given by

where K2 = (k2+12)e2/f2 and el = (i1>r~y/f)/(1+K2), whieh is the phasespeed ofRossby
waves, as can be seen from (15) with V' f = O, i.e., f3 = - f z x V' ln(r). 1nstability, 1m(e) '"
O, requires cjU < O, which implies w'r' > O, beeause U = -rw'/f. This is a predietion of
the conservation law for a eombination of pscudoenergy and pseudomomentum. Choosing
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Q = U in Eq. (25) it follows that if the basic state is unstable there must be growing
perturbations for which 62(1i - UM +C) = 0,3 which means

in order for both sides to be able to grow, the coefficient (-V' Ir') cannot be negative. More
information on this type of instability can be found in Refs. [201 and [41.

It may seem strange that a uniform f10w can be unstable, since instabilities are usually
associated to a shear of the basic current. However, one can interpret this instability as
a manifestation of baroclinic instability due to the implicit vertical shear given by the
"thermal wind balance" [21,51

6. CONCLUSIONS

¡oU" = -e,y = -2r r,y' (30)

Four types of models of ocean dynamics are considered in this paper, c1assified according
to whether they have hOlllogeneous or inhomogeneous layers (HL or IL), and whether they
are of the "primitive equations" (PE) or "quasi-geostrophic" (QG) kind. Three of them
are extensively used in the literature, whereas the fourth one, ILQGM, is the one proposed
here. Even though all the examples in this paper correspond to only one active layer of
fluid (on top of a motionless passive layer) the generalization to a finite nUlllber of layers
is straightforward.

HL models have a uniforlll buoyancy {J, whereas in the IL models treated here, {J may
vary with horizontal position and tillle.4 Since {J is conserved following fluid partic1es,
formally speaking, an HL model is a particular case of an IL one. On the other hand, PE
models have both high and low frequency f1uctuations (e.9. Poincaré and Rossby waves),
whereas the QG are low frequency approximations of the former.

The four types of model are compared in Table 1 in terms of i) their independent and
dependent fields and ii) the form of the free energy £ and Casimir C integrals of motion.
The "free energy" is the sllm of £ and one of the C, chosen so that its first variation from
a state of rest ({J = e, h = H, u = O) vanishes.5 Notice that the free energy is positive
definite in HL models, but only non-negative definite in IL models, owing to the existen ce
of the "force-compensating mode".

3 Just one normal mode (28) with lm(ke) l' O being an example.
4 The replacement oí the {) evolution equation by scparate equations roe the temperature and

salinity fields is straightforward.
5 The IL models can be posed using {J and h, or in terms 01 {J! (= -y) and 11! h (= '1'), as done

here. In either case, the potential vorticity q is defincd up to linear terms in the perturbation fields,
¡.e., in the lirst case it is used 11 = e + ó11'" r2 +2ró-y and h = H + óh '" ip/r + ó'l'/r - ó-y ip Ir2.
The free energy is exactly qlladratic in the corresponding fields, i.e., the available energy density
is given by ~e(óh + ~óiJ H le)2 or ~(Ó'l')2, respectively.
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TABLE I.

Model

HLPEM
HLQGM

ILPEM

ILQGM

Fiel"s Integral of Motion Density
Ind. Dep. 2 x Free Energy Casimir
h,u q,T hu'+19(h-H)' hF(q)

q, T h, U Hu' + 19(h - H)' H F(q)

19,h, u q, T hu' + ( ,fJ h - ,¡eH)' hq A(19) + h B(19)

19,q, T h, U Hu' + (,fJh - ,¡eH)' HqA(19) + H B(19)

N.B. F( ... ), A( ... ) and B( ... ) arbitrary

The independent variables ofthe new modeI (11) are (in addition to the buoyancy) those
of the elassicaI QGM (4), potential vorticity q and circulations T. This is not surprising
since, in fact, the HLQGM belnngs to an invariant submanifold of the ILQGM. The
main di/ference with the elassical HLQGM is that, with buoyancy gradients, q is not a
Lagrangian constant Dq/ Dt i' O. 1I0wever, the evolution equation for q is one of the
fundamental ones for low frequency dynamics. On the other hand, the new model has the
same integrals of motion (energy, momentum, and Casimirs) and low frequency solutions
(force-compensating modes and Rossby waves) than the original one, the ILPEM (5).
Young [16] developed a low frequency inhomogeneous layer model in the ¡-plane,

through a method quite di/ferent from the one employed here. A very interesting aspect
of Young's model is that he ineludes mixing of density and momentum and furthermore
he implicitly takes into account the e!fect of the vertical shear of the currents (through
the thermal wind balance). In the limit in which the inertial period is much larger than
the interval between momentum rñixing events, Young's equations can be shown to be
the {3= O case of the set (11). In the opposite limit (inertial period is much smaller than
the interva! between momentum mixing events) Young's equations can be written, in the
notation of this paper, as

on + ug . V, = O,
o,q + ug' Vq = mH-1 [,p,,) - ~TIt-211-I 11, V2,], (31 )

i.e., compared with the set (11) there is an extra ter m in the q equation, which models
the e!fect of the velocity vertical shear [5]. An interesting property of these equations is
that instead of satisfying dH/dt = O with H from (16), they fulfill

(32)

It is easy to see that H\, is a lIamiltonian for set (31), with tite same Lie-Poisson
bmcket (17). Consequently, I have shown that Young's model is Hamiltonian, in the ab-
sence oí forcing and dissipation, and that the Casimirs and momentum are those of (19)
and (21), but the pseudoenergy (23) has to be changed in arder to accommodate the
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"extra" termo Since the last ter m in (32) has a sign opposite to the other two, this en-
ergy integral does not prevent the possibility of an "explosion" of the system from initial
conditions arbitrarily close to a resting sta te [ID].
It is not difficult to evaluate the effect of the current vertical shear in the total energy if

one assumes, following [161, that the depth dependence of the buoyancy can be neglected.
In the "reduced gravity" case the dynamic pressure p vanishes at the base of the mixed
layer (z = -h), since its z derivative equals -y2, the vertical average of the buoyancy
within the layer (-h < z < O). Therefore, p = (z + hh2 = z-y2 + -Yip. Consequently, it
is 'Vp = -y'Vip + (2z + hh'V-y, the expression whose vertical average is -y'Vip, which is the
forcing term employed in (7b). However, if one keeps the vertical shear when calculating
the geostrophic velocity, the result is u = H-1z X '11/1 + (2zj H + l)m-1z x 'V-y and thus

Consequently, the total energy is given by

instead of the value of 11 in (16). Notice that, surprisingly enough, the "extra" ter m is
exactly that of the Hamiltonian 111' for Young's model [16]' defined in Eq. (32), but with
the opposite signo Consequently, 111' is not the free energy; its sign indefiniteness may be
rclated to the illlplicit mixing of density ami momentum (which correspond to an increase
and decrease of the energy of the systelll, respectively).

It is desirable to have a model of low frequency dynamics in an inhomogeneous layer
model in which a conserved free energy is positive definite. This could arrest the ex-
ponential growth of finite amplitude disturbances, something that the law (32) for the
system (31) of Young [16] cannot do. The ILPEM is improved in Re£. [51 by means of an
explicit representation of the velocity shear and density stratification. A finite value of the
vertical gradient of density allows for the construction of a positive definite free energy;
this may be the key to develop a simi lady well-behaved low frequency approximation, as
an improvement of the (lile developed here.
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A. UNIQUENESS

Let 1/JI and 1/J2be two solutions of v. (H-IV1/J) - m21/J = (q - m-y)H - {3y (x E D), and
fi x V1/J = O (x E 8D), J H-1 V1/J . fi di = T¡ (x E 8D¡). Defining .(b := 1/JI - 1/J2, it is easy
to see that .(b satisfies

V. (H-1V.(b) - m2.(b= O (x E D),

fi x V1/J = O (x E 8D),f H-1V.(b. fi di = O (x E 8D¡).
aD¡

Multiplying the first equation by 1/J and integrating gives

and therefore .(b == O, i.c., the solution is unique, because Hm2 is positive. O

B. GEOMETRICAL STRUCTURE

B.l. Hamiltonian

The functional H in (16) can be rewritten as

and then its first variation is found to be

6H = JJ H-1V1/J. V61/J + m21/J61/J

=¿iD,WI1/JV61/J. fi di - JJ 1/J(V. (W1V61/J) - m261/J)

= ¿1/J¡6T¡- JJ 1/JlI6(q - m-y),

(33)

where 1/J¡ is equal to the value of 1/J at 8Di, which is a constant in virtue of the first
boundary condition in (12). Consequently, the functional derivatives of the Hamiltonian
are

6H
- = -H1/J,
6q

6H
6-y = mH>/J,

8H
-8 = >/Ji'

Ti

Using these and the Lie-Poisson bracket defined in Eq. (17) yields the time derivative (18)
of a general functional of state.
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B.2. Casimirs

These integrals of motion are the solution of {A,e} = O VA, which either are C = ri

(because the circulations do not appear in the Lie-Poisson bracket) or must satisfy

Since A is arbitrary, the expressions multiplying its functional derivatives must both van-
ish. The second term gives ¡" 1l-1(8C/8q)] = O, which implies that C is the integral of

with CI and C2 arbitrary. The first term then gives

i.e., C2 = IlC3('Y). Consequently, C is of the form (19).

B.J. Momentum

In order to find the functional JVI, the bracket (17) is snbstituted on the leCt hand side of
Eq. (20) and the coefficients of the functional derivatives of A in both sides are equated.
Definition (20) then requires

and

[ 1l_18JVI] = IlEh
'Y, 8q Dx'

The second equation implies Dx[H-1(8M/8q)1 = O and Dy[H-I(M-1/8q)] = H(y). Using
this result in the first eqnation it is found that ¡" ll-I(8JVI/8'Y)] = O. Consequently, (20)
implies 8M/8'Y = O and ÓM/8q = =.(y)H(y), i.e., the momentum functional is given
by (21).

B.4. Pseudoenergy

In order to find this integral of motíon, a Casimir of the form (19) is chosen so that
8CE = -óft. Using 8ft[q, 'Y,TI from Appeudix 13.1, it easy to see that CE is determined by

ai = -l/J¡,

A(f) = w(r)/m,
Q(f)F'(f) + G'(f) = -w(f).
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Therefore, Q(r)F"(r)+G"(r) = -w'(r)-Q'(r)w'(r)/m. (The primes indicate derivatives
with respect to the argument.) The second variations are tben

fht= //H6u;+m26¡p2,

62CE = // Hw' (26q6-y - (Q' + m)6-y2);

adding these two equations, expression (23) is found.
In the case of a symmetric basic state, the pseudomomentum is similarly found choosing

CM so tbat 6CM = -6M. Using Eq. (21) in Eq. (19), implies

ai = O,
A(r) = -=:(y),

Q(r)F'(r) + G'(r) = O.

Consequently Q(r)F"(r) + G"(r) = -Q'(r)F'(r) wbere F'(r) = -H /r y. The second
variations are 62M = O and

Finally, using w'(r) = -HU/Qy in tbe last expression for 62(1{ + CE), expression (25)
follows immediately.

C. NOTATION ANO ACRONYMS

z vertical unit vector,
x horizontal position,
t time,
V' horizontal nabla operator,
iI(x, t) buoyancy,

• h(x, t) layer tbickness,
u(x, t) horizontal velocity,
11 Eartb 's angular velocity,
f (=.211. z) Coriolis parameter,
f3 northward gradient of f,
y northward coordina te .

• PEM: Primitive equations mode!. Tbese are Euler equations witb tbe Boussinesq
approximation (density variations are neglected, p "" p, except in buoyancy), the
"traditional" approximation (only the Coriolis force due to tbe vertical component
of 11 is inclllded) and the bydrostatic approximation (vertical pressure gradient in
balance witb buoyancy force).



Low FREQUENCY APPROXIMATlON OF A VERTICALLY AVERAGED OCEAN MODEL... 135

• QGM: Quasi-geostrophic mode!. A low frequency approximation of PEM. in which
the horizontal velocity is diagnosed from the geostrophic balance (between the hori-
zontal pressure gradient and the Coriolis force) .

• HL: Homogeneous layer(s) [model]. Density pis constant in each active layer (where
velocity is assumed depth independent) .

• IL: Inhomogeneous layer(s) [model]. Density may vary horizontally and with time in
each active layer, but not with depth (just like for the horizontal velocity field) .

• Main balances: Hydrostatic: between the vertical pressure gradient and buoyancy.
Geostrophic: between the horizontal pressure gradient and the Coriolis force (propor-
tional to the horizontal velocity). Thermal wind: between horizontal density gradient
and the vertical shear of horizontal velocity (this balance is but a consequence of the
hydrostatic and geostrophic ones) .

• Poincaré wave: High frequency oscillation (gravity wave affected by the Coriolis
effect). The period may not be larger than the inertial one, 27r/IJI .

• Rossby wave: Low frequency oscillation. The period is much larger than the inertial
one.
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