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ABSTRACT. A low frequency approximation of a primitive equations ocean model with a horizon-
tally inhomogeneous layer is developed and shown to have a singular Hamiltonian structure and
the same set of integrals of motion as the original system. Disturbances to a reference state without
currents are Rossby waves and rearrangements of the buoyancy and depth fields that leave the
velocity field unaltered. Pseudoenergy and pseudomomentum integrals of motion are constructed
and their relationship with the instability of a basic state with currents is discussed.

RESUMEN. Se desarrolla una aproximacién de bajas frecuencias a un modelo ocednico de ecua-
ciones primitivas con una capa horizontalmente inhomogénea. El nuevo modelo tiene una estructura
Hamiltoniana singular y las mismas integrales de movimiento que el sistema original. Las pertur-
baciones a un estado de referencia sin corrientes son ondas de Rossby y redistribuciones de los
campos de flotabilidad y profundidad, que dejan al campo de velocidad inalterado. Se construyen
las integrales de movimiento de pseudoenergia y pseudomomentum y se discute su relacién con el
problema de inestabilidad de un estado bédsico con corrientes.

PACS: 92.10.—c; 92.10.Fj; 47.20.-k

1. INTRODUCTION

The shallow water equations, invented by the genius of Laplace for the study of tides (see
for instance, Refs. [1,2]), become the “primitive equations” (PE) once buoyancy effects
are included, and constitute a powerful starting point for ocean modelling in time scales
larger than a few hours (see Acronyms and Notation in Appendix C). A very popular
vertical setup for the primitive equations model consists of a stack of homogeneous layers
(HLPEM), with a depth-independent velocity field in each one. The simplest of these
models has but one (active) layer, with evolution equations of the form

[ Oh+ V- (hu) =0,
HLPEM'{6£u+u-Vu+f2><u+19Vh=0, (1)
where f = fo + [y is the Coriolis parameter, and I am including neither forcing nor
dissipation —here and thereof— for simplicity. The symbol 9 represents the buoyancy of
the top (active) ocean layer relative to the bottom (passive) layer, t.e., g(p — pdown)/p- (In
Laplace tidal equations ¥ is gravity; here it is taken as a constant some three orders of
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magnitude smaller than g.) A very important theorem of (1) is that of potential vorticity
conservation,

(2)

(6t+u-V)(£va—u)=0.

h

" The system (1) has both high and low frequency solutions, e.g. Poincaré and Rossby
waves, when linearized from a state of rest. Many times the interest is on the nonlinear
behavior at long time scales, and then these equations are approximated by systems like
the “quasi-geostrophic” model (QGM) in which u = 2z x V¢ = uy, where h = H + fo/9
(with H a uniform reference depth), and potential vorticity is defined as the expansion up
to linear terms in u, A — H and y, namely

f+i-V><uzf+i-qug—fg(hmH)
h H

=q. (3)

In terms of the streamfunction ¢, ¢H = f+V2¢—R52¢, where Rq = \/9H/ f# is the defor-

mation radius. The evolution equations are constancy of circulation in each disconnected
part of the boundary and the QG version of potential vorticity conservation, namely

HLQGM: (9, + u, - V)g = 0, (4)
or 8iq + (¢, q] = 0, where
[4,B]=3-VAx VB

is the horizontal Jacobian. (Figure 1 shows the relationship between the different types of
models discussed in this Introduction.) Linearizing (4) from a state of rest, only Rossby
waves are found, there are no Poincaré wave solutions in this system.

One disadvantage of the popular HLPEM —or its low frequency approximation
HLQGM— is that they cannot incorporate thermodynamic effects since, by definition,
density is constant in each layer. To remedy this limitation, the primitive equations models
with inhomogeneous layers (ILPEM) were developed and used often in the last decade
or so (see references in [3], where these models are generalized and their Hamiltonian
structure and conservation laws are derived) . For the simplest case of only one layer, the
system (1) is extended into

3t19+uV19 = 0,
ILPEM: { 8:h + V- (hu) = 0, (5)
du+u-Vu+ fz x u+19Vh+%hV19=0,

where now 9 is a (horizontal) position and time dependent field. In a recent paper [4]
the normal modes of this system, linearized with respect to a state of rest (¥, h, u) =
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Fi1GURE 1. Homogeneous layer (HL) models are invariant submanifolds of the corresponding inho-
mogeneous layer (IL) ones. Quasi-geostrophic (QG) models are an approximation to the primitive
equations (PE) ones.

(©, H, 0), were shown to be Poincaré and Rossby waves and a “force compensating mode”,
for which ©6h + %H&S‘ = du = 0. The potential vorticity equation derived from (5) is

(B +u-V) (f—Jigl"—“) — 1h[h,9), (6)

instead of (2). It can be shown [5] that the right hand side of this equation is not a
deficiency of the model but, rather, the vertical average of the baroclinic torque. This
potential vorticity g is not conserved if density gradients are allowed within the layer.
However, this equation plays an important role in low frequency dynamics [4]. The pur-
pose of this paper is to develop a low frequency approximation of (5), in the same sense
that (4) is an approximation of (1). In other words, the goal is to develop the inhomoge-
neous layers quasi-geostrophic model (ILQGM). In particular, the Hamiltonian structure
of the new model is discussed, because it provides a framework useful for dealing with con-
servation laws and with the stability /instability problem. Four different types of models
are compared in this paper: their relationship is depicted in Fig. 1.!

! The ILPEM and ILQGM are but an approximation of more exact dynamics, obtained through
a vertical average of the dynamical fields. In Ref. [4] this approximation is improved by allowing an
explicit vertical shear and variable density stratification. The models discussed here are denoted
by IL°PEM and IL°QGM in (4], where the superscript 0 indicates the lack of vertical variation.



120 P. Rira

The HLPEM have, in the absence of forcing and dissipation, an interesting Hamiltonian
structure [6-8]. The instantaneous state of the system can be seen as a point z on a
singular manifold MyLpem (see, for instance Ref. [9]) whose evolution z(t) is controlled
by a Hamiltonian H([z], defined modulo the Casimir integrals of motion C[z] (the generators
of null transformations). H can be shown to be a “free energy”, positive definite in the
deviation from a suitably chosen motionless reference state. The definiteness of H implies
that the free evolution of the system is bounded, i.e., solutions of the fully nonlinear
equations cannot “explode” from a state of rest [10]. Moreover, in the study of disturbances
dz(t) to a steady basic state Z, which might have sheared currents, an integral of motion
H + C is usually found (the so-called pseudoenergy), whose first variation at Z vanishes,
6(H + C) = 0; for some Z, the second variation can be shown to be positive definite,
62(H 4 C) > 0. Therefore those basic states are stable.

The HLQGM is a low frequency approximation that can be seen as a metric projection
into a subspace MuLqam C Murpem [11], in which the Casimirs restrict the evolution of
the system more than in the HLPEM system. As a consequence, those models have more
powerful stability theorems, since there are states that can be proved stable because the
second variation of the pseudoenergy is negative definite, §2(H + C) < 0; this is the so-
called Arnol'd’s second theorem. Moreover, there are also cases in which the total variation
A(H +C) is definite, and therefore the finite amplitude growth of a disturbance 6z can be
bounded [7,12-14, 3].

In Ref. [3] it is shown that the ILPEM have also a singular Hamiltonian structure, and
that Myppem is an invariant submanifold of the larger state space My pem (see Fig. 1).
There is a loss of Casimirs —or a “change in the rank” of the Poisson tensor [15]-— when
going from Myrpgm to MupLpem (something that is not experienced when going from
MurpeEmM to MuLQcMm)- From a practical point of view, this is related to the non-existence
of sufficient stability conditions for the ILPEM.

The ILQGM (a low frequency approximation of the ILPEM) is developed here and its
Hamiltonian structure and conservation laws are also discussed. It is shown that, just like
the ILPEM, there are not sufficient stability conditions. However the integrals of motion
can nevertheless be used to analyze the instability problem. These results are illustrated
with the problem of uniform flow instability, which is peculiar of the inhomogeneous layers
models. A comparison of this ILQGM and that of Young [16], in terms of their Hamiltonian
structure and conservation laws is also presented.

2. THeE ILQG MODEL

In Ref. [4] it was shown to be convenient to change variables from the layer thickness h
and buoyancy ¥ fields to ¢ := v/@h and 7 := V4. The model evolution equations (5) using
these variables take the form

dy+u-Vy=0,
dp+ V- (pu) =0, (7)
atu+%Vu2+(f+ﬁ-Vxu)ﬁxu+'yV<p=D,
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where I have used u- Vu = $Vu®+ (2 -V x u)z x u. The reference state used in [4] in
order to study the waves was one without currents, which corresponds to ¢(x,t) = ® and
~v(x,t) = I'(x), where ® is constant but I'(x) is an arbitrary field. The buoyancy and layer
thickness fields in this reference state are then given by @(x) = I'}(x) and H(x) = ®/I'(x),
respectively. The same reference state will be used here. Defining

p(x,t) = +myp(x,t)  (m=fo/®),
it is assumed that the velocity field is mainly in geostrophic balance, namely
ux H 1z x Vi = u,. (8)
The deviation fields ¥ and (7 —I') are considered to be small, but not necessarily infinites-
imal, unlike in the study of linear waves done in Ref. [4]. The potential vorticity of the

primitive equations system (7) is replaced here, like in quasi-geostrophic theory (3), by an
expansion up to linear terms in the deviation fields é¢ and év, viz,

5 -1 2
f+z qugH fo(h H)/Hzﬂy+v (HHV¢) mw—f-m’y::q, 9)
where I have used the linear relation ép/® =~ 6h/H + 6v/T. (Notice that the relative
vorticity is mainly given by Z2-V x ug = V- (H~1V).)

Even though the main contribution to the velocity field is the geostrophic one u,, higher
order terms are needed for the evaluation of V - (¢u), which is the driving term in (7b).
Thus, Eq. (7c) is approximated in the following way:

fou E'yixmp—(ﬁy-l-é-Vxu)u+2x8tu+%ixVu2
zryﬁngp—(ﬁy—i—ﬁ-Vxug)ugq}-ixatug—f-%ixVug
= (@2my—q- H 'm*)2 x Vi - H'9,Vy + 12 x Vul. (10)

This approximation consists of replacing u by the geostrophic approximation (8), unless
it is multiplied by fo. Using this approximation of u in the evolution Eq. (7b) of %, viz.
O+ V- (pu) = moy + V- ((2 + my)u) = 0, gives 8(¢ — my) = u, - VA + B,
where A = (1 + my/®)(2my — ¢ — H'm?y) = 2my — ¢ + (2my — ¢ — mI')¢/® and
B = mH™'V - (yH™'Vo) + miuy - Vul/®. Finally, A is replaced by 2my — g, i.e.,
the second term is neglected, because it is O((y — I')¥?, ¥3, Byy?), and B is similarly
neglected. This provides one of the equations for the new model; the other one is that of
7, (7a), advected by the geostrophic velocity (8). Therefore, ILQGM dynamics is set up
by the following two equations:

dy+uy-Vy=0,

B + ug - Vg = mH1[, 7]; (11)

ILQGM: {
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recall that ug - V(---) = H(x) ![¢,-+]. These equations hold on a certain horizontal
domain D; appropriate boundary conditions are vanishing normal flux and constant cir-
culations in each disconnected part dD; of the boundary, namely

AxVy=0 (xe€aD), j{ B ol ) = 7y = o, (12)
aD;

where fi is the outward normal unit vector. This problem is well posed because the field
g and the conditions (12) uniquely determine the transport function 9 (see Appendix A)
necessary to “advance” Eqs. (11). The evolution equations are then the set (11) plus
dri/dt = 0 from (12b).

The physical nature of the approximation proposed here is the following. In the ILPEM,
potential vorticity (f +2 -V x u)/h is not conserved; its rate of change (6), when written
in terms of the variables of the low frequency approximation, is given precisely by (11b),
namely 3h™'[h,9] = h™l[p,7] = H [p,7]. Consequently, the new model is controlled
by the evolution equations of the buoyancy and potential vorticity fields, under the as-
sumptions that these fields do not depart much from their reference values and that the
velocity field u is mainly geostrophic; evaluation of ¢ requires the leading non-geostrophic
contribution to u.

I have developed the ILQGM using ¢ and = as variables because they give a particularly
simple representation of the “force compensating mode” and the free energy integral.
However, this is not the only possible choice. One could work with the original variables
¥ and h, redefining

u, = f5'2 x (6VA+ 3HVY),

and

g = {2 xuy = folh— H)/H
H )

instead of (8) and (9), respectively. (Recall that the reference state must be such that
OVH + %HVG = 0). The whole formalism carries over with these variables, as long as
deviations from the reference state are corresponded in a linear fashion, e.g. 69 = 2I'é~.
I will show next that the system proposed here has the low frequency solutions of the
original primitive Eqgs. (7) or (5), is Hamiltonian, and has the right integrals of motion.

2.1. Linear waves

An important comparison between the original and the new system is in the dispersion
relation of the linearized perturbations. Making

(ﬁ)=(?)+£(T'};‘L)cis(fk-dx—wt)+0(62) (13)
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(cisz = cosz + isinz) yields two eigensolutions,

w=2~0
force compensating mode ¢ . . 14
pemsES {7 #0, 9= "
or
8-k
w=——sjs,
Rossby wave k?+ Ry (15)

_ H13- VI x k

where R%(x) = I'®/f¢ is the local deformation radius and B(x) = —Hz x V[(fo — 8y)/H|.
The eigensolutions of the primitive equations system are these two modes and the high-
frequency Poincaré waves, which obviously are not present here (see Ref. [4]); the only
difference between (13) and the results in Ref. [4] being that, in the latter, the squared
deformation radius and the beta vector field are given by R2 =T'®y/f* and B = H 13 x
V(fH). This shows that the model in this paper, like quasi-geostrophic theory, requires
By < fo and does not exhibit refraction of Rossby waves (17|, because the variation of
the deformation radius with the latitude is not modeled.

3. HAMILTONIAN STRUCTURE

The system (11) can be derived from the Hamiltonian functional
Hlv; gy7] = %j/ Hug + m2y? (16)
D

and the Lie-Poisson bracket

164 168
wor= sl wa

[ S| o[ Lo -
T BEoy Bl 7B B oy

(see Appendix B.1). Recall that ug is the geostrophic velocity defined in (8) and ¥ is
a functional of [y, ¢, 7], as explained in Appendix A. Thus, for any functional of state

Alv, ¢,7,1]

dA _ 9A _ 04 6ADY | BA 3(])
Fr e o L f/ (57 ot T 5q ot 8}

In particular, using A = H in (18) implies that the value of the Hamiltonian is an integral
of motion, because dH/dt = 0 and {H,H} = 0 by the antisymmetry of the Lie-Poisson
bracket.
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The bracket in Eq. (17) is singular, i.e., there are non-trivial solutions of {A;C} =0¥A:
these Casimirs C are of the form

¢ = [D [ @A) + HB(M) + Y aim, (19)

where A(.) and B(.) are arbitrary differentiable functions and a; are arbitrary constants
(see Appendix B.2). Using A = C in (18), it follows that the value of a Casimir is also an
integral of motion because 9C/dt = 0 and {C,H} = —{H,C} = 0 by construction.

If both the domain D and the field I'(x) are x—independent, then there must exist a
momentum M such that

6Boy 6B Bq)
== 2
M, B} = //(6’73:1: bq 0x)’ (20)
V B[y, ¢, 7]. This momentum is given by

M= /Df o, H(y) (), =(y) = Hy), (21)

modulo Casimirs (see Appendix B.3). Using B = H in Eq. (20) yields {M, M} = 0 because
the coordinate z does not appear explicitly in definition (16) of . Therefore, using A = M
in (18) and the fact that 9M /0t = 0 it is found that the value of the momentum is also
an integral of motion.

Finally, notice that if the original buoyancy field is uniform, say v = I' = const., then the
system (11) reduces to the classical quasi-geostrophic model (4), which has new Casimirs
(namely the integral of an arbitrary function of g). In the language of Hamiltonian theory,
it is said that there is change in the rank of the Poisson tensor [15] when going from
the whole state space ILQGM to this invariant submanifold HLQGM (see Fig. 1). From
a practical point of view, these additional Casimirs allow for the existence of stability
theorems in the homogeneous layer case, something which will be shown below not to be
possible when YV~ # 0.

8.1. Conservation laws

The integrals of motion of the original system (7) or (5) are the circulations 7FE, the
energy £FF. the Casimirs CPE and, if the reference state and domain are symmetric, the
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momentum MFYE_ given by (see Ref. [3])
P = f u - dx,
1
EFE = ajf(hu2+ﬂh)safj ey u? + ¢?),
D
CPE — f/ ("EhAW) + hB()) = jf (47BhA() + 0B()

MPE=] hu — foy = 160%) = [[ 017w = foy - 380,

(22)

o

where ¢"F = (f +Z -V x u)/h. The integrals of motion of the new system (11) are the
circulations 7; (12b), the Hamiltonian (16), the Casimirs (19), and, if the reference state
and domain are symmetric, the momentum (21). Since the original system ILPEM and
the low frequency approximation ILQGM have the same type of integrals of motion, it is
interesting to compare the corresponding expressions. One difference between the ILPEM
and the ILQGM is that in the former it is used: i) the complete velocity field u, not just
the geostrophic velocity ug, i) the actual layer thickness h (= ¢/7), not just the one in
the reference state H (= ®/T), and i) the complete potential vorticity ¢*F, not just the
approximation (9). In addition to this:

e The constancy of the circulations is a theorem for ILPEM, whereas for ILQGM it is
one of the equations of motion.

e Total energy (22b) seems to differ from the value of the Hamiltonian (16) in more
than the replacement of (h, u) for (H, u,) because ¢ = ® + my. However, the
dlfference between the term [[ ¢?/2 in (22b) and the term [f m?9?/2 in (16) is equal

to [[(m®y + 1@2) which is a Casimir. Consequently, H is a “free energy”, i.e., the
energy minus a trivial constant of motion chosen so that the potential energy part is
quadratic (to lowest order) in the deviation from the reference state (this is usually
called “available potential energy”).

e For the Casimirs the only difference is the use of H instead of h, and ¢ instead of
PE
e

e Finally, the momentum is an integral of motion which seems to be different in the
primitive equations case (22d) or in the low frequency model proposed here (21).
However, the latter corresponds to the approximation M = [[ ¢"EhZE = [[[0;v —
dy(u — foy — By?/2)|=. On one hand, the term d;v =(y) integrates to zero because
the domain is assumed to be :c—independent in order for M to be well defined. On
the other hand — ffa (u — foy — By?/2)=(y) can be integrated by parts to give
[ H(y)(u — foy — By*/2) = [[ h(u — foy — By?/2), which is the expression for the
momentum of (5), plus a linear combination of the circulations. Therefore, both
expressions of the momentum are equivalent.
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4. PSEUDO ENERGY-MOMENTUM AND THE INSTABILITY PROBLEM

Consider a steady basic state with currents, U = H~1z x V¥, and a finite amplitude
deviation from it, i.e.,

Y = ¥(x) + 6v(x, t), v =I[(x) + 6v(x,t).

In order to satisfy Eq. (11), the basic state must be such that [¥,Q — mI] = 0 and
[,T] =0, where Q = [By + V- (H1VT) — 21I!]/H+1nt‘ [f+2-V xU-m?V|/H.
(Notice that the layer thickness in the basm state is not H but H +mV¥/T".) Consequently

U=¥T) and Q= Q(T).

The pseudoenergy is defined as H + Cg, where Cg is a Casimir chosen so that H + Cg has
a vanishing first variation on the basic state, §(H + Cg) = 0. That is, the pseudoenergy
is an integral of motion whose lowest order contribution in the perturbation (v, 6g, 67) is
quadratic, 362(H + Cg). In Appendix B.4 it is shown that for the low frequency dynam-
ics (11) represented by ILQGM it is

252 dv av oo ~2)
§*(H +Cg) = //(H&u +mP8y’ — mH -6y +HdQ(6q 6q), (23)

where

aQ

0G := g — T

=0
The variable 6/Q, is equal to the variation of the meridional distance between the isolines
of g and vy (see Ref. [4]). Since v is a Lagrangian constant, that distance would vanish if ¢
were also conserved. Consequently, 6§ is a measure of the non- conservation of potential
vorticity gq.

If the basic state is not only steady but also z-symmetric, I' = I'(y) and ¥ = ¥(y), a
conserved pseudomomentum M + Cjps can be similarly constructed choosing Cps so that
6Cpr = —6M. The lowest order (quadratic) term in the perturbation is given by

84 (M +Cap) = f/Q (6% — 652). (24)
Y

Finally, the most general integral of motion in the symmetric case, quadratic to lowest
order in the perturbation, is an arbitrary combination of the pseudoenergy and the pseu-
domomentum, say H — aM + C, with C = Cg — aCys, whose second variation is given by
(see Appendix B.4)

8(H-aM+C) = [/(Héu +m26y% — mH '-"57 _pY =

T, o 2 (64> - 64 ))- (25)
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This is an integral of motion for linearized dynamics.
In the case with homogeneous layers, there are two types of sufficient stability conditions
in QG models, namely

AW d¥ "
— — < = 26
dQ>0 or dQ< H (26)

everywhere for a general steady basic state, and

U-a U.— o 2 o7

a, <0 or o, > A (27)
for all y and some q, in the steady and symmetric case? [13,14,18]. The first or second
condition, known as Arnol’d’s first or second theorem, guarantees positive or negative def-
initeness of the corresponding integral of motion: the pseudoenergy 6%(H +Cg) in the case
of conditions (26), or an arbitrary combination of pseudoenergy and pseudomomentum
62(H — aM + C) for conditions (27).

With inhomogeneous layers, on the other hand, the integrals of motion (23) and (25)
cannot be sign definite, i.e., there is no formal stability theorem for the model of this
paper, except for the case of a uniform flow. In this case, using @ = U (= const.) in (25) it
is clearly seen that if —md¥/dIl’ > 0 then the flow is stable. [From (8) and (15) it follows
that in the f-plane, Vf = 0, —md¥/dI' equals the ratio of U to the long Rossby waves
phase speed.]

Even though there are no stability theorems, except for the case of uniform U, the
integrals of motion (23) and (25) can be used for the instability problem as in Ref. [19].
The idea is the following: if the basic state is unstable, then there must be growing pertur-
bations for which §?(H +Cg) = 0; also, in the symmetric case, §2(H — aM +C) = 0 for all
a. These conditions represent a balance between the positive and negative contributions
of the integrands in Eqgs. (23) or (25).

For instance, if Q , has only one sign, then the pseudomomentum integral (24) shows
that for a growing perturbation é¢ and 6¢ must be equally important, i.e., ||6g|| = ||84]|
in an Ly metric weighted by [H?/Q ,|. On the other hand, consider Eq. (25): If there is
a value of o such that (U — a)/Q, < 0 and md¥/dI’ < 0 for all y, then for a growing
perturbation §¢ is more important than dg, i.e. non-conservation of potential vorticity will
be an important ingredient of that type for instability. However, if (U — a)/Q , < 0 but
md¥ /dl" > 0 then a perturbation could grow because §v is important, whereas §§ and
6q are not. In sum, even though there are no stability theorems, Egs. (23), (24) and (25)
can be used as a means to classify the different types of instabilities. For instance, in a
calculation of the normal modes of an unstable basic state, the classification can be based
on the relative size of the different sign-definite contributions to those integrals of motion.

2 The positive constant A? depends on the geometry of the domain. For instance, for an infinite
channel of width L, it is A% = (n/L,)* + Rd , whereas for a periodic channel of length L. it is
=2 = (m/Ly)? + (27/L.)* + R;* (see, for instance Ref. [14]).



128 P. Ripa

5. NORMAL MODES

Consider a basic state with a parallel flow and an infinitesimal disturbance on top, namely

v = I(y) + eT(y) G(y) cis[k(z — ct)] + O(e?), (28)
¥ = U(y) +ed F(y)cis[k(z — ct)] + O(e?),

where F(y) and G(y) are two structure functions to be determined. The current in the
basic state is given by U(y) = —H(y) ! ¥'(y), where the prime indicates a derivative with
respect to y. Upon substitution in Eq. (11) it is found that F(y) and G(y) must satisfy

(U-c)G+T'F =0, 59
(U—-c)[(H'F') — H '%*F —m?F] +(Q —2mIl') F —mU G = 0. (29)
If these equations are solved in the channel y; < y < ys, then appropriate boundary
conditions are kF = kG = 0 at y = y; 2. This eigenvalue problem determines the values
of ¢(k); complex eigenvalues Im (kc) # 0 correspond to growing or decaying perturbations
to a normal-mode unstable basic flow.

If I = 0, the “equivalent barotropic” instability problem is recovered (see for instance
Ref. [14]), which requires that 3 —U" + R;2U to change sign if the basic flow is unstable.
With I # 0, there is a new type of instability, which result from the nonlinear coupling
of a Rossby wave and “force compensating mode” [4]; this instability mechanism does not
require U’ # 0. Fukamachi et al. [2Q] studied the instability of the U = const. flow in the
f-plane (3 = 0), within the context of the ILPEM (5) and found very good agreement
with a similar calculation in a continuously stratified model, which is more precise. A
uniform flow can be obtained from

De=Tj exp(uy)} il < L
m¥ = v ®lexp(—py) - 1]f © 2’

which corresponds to U = puvc?/f, where ¢ = I'g®. (The case studied by Fukamachi et
al. roughly corresponds to v = —1). Assuming uL < 1 for simplicity, the eigensolutions
coincide with those found in Ref. [4] for the ILPEM: F and G are approximately sinusoids
of the form sin[l(y + %L)], where | = nw/L with integer n. The eigenvalues are given by

1 1+ 2x2 1( U )2
s S e o] = Ly e ) il
=39t a1 R \/; L=l THH

where k? = (k* +1%)c*/f* and ¢; = (®I",/f)/(1+ «?), which is the phase speed of Rossby
waves, as can be seen from (15) with Vf =0, i.e., 8 = —f 2 x VIn(T"). Instability, Im(c) #
0, requires ¢;U < 0, which implies ¥'I" > 0, because U = —I'¥’/f. This is a prediction of
the conservation law for a combination of pseudoenergy and pseudomomentum. Choosing
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a = U in Eq. (25) it follows that if the basic state is unstable there must be growing
perturbations for which §2(H — UM +C) = 0,3 which means

/f ((5ug)2 & m2(5¢)2) _ /f(\ll'/I")(&y)z;

in order for both sides to be able to grow, the coefficient (¥’'/I") cannot be negative. More
information on this type of instability can be found in Refs. [20] and [4].

It may seem strange that a uniform flow can be unstable, since instabilities are usually
associated to a shear of the basic current. However, one can interpret this instability as
a manifestation of baroclinic instability due to the implicit vertical shear given by the
“thermal wind balance” [21,5]

foU,=-©,=-2T'T,, (30)

6. CONCLUSIONS

Four types of models of ocean dynamics are considered in this paper, classified according
to whether they have homogeneous or inhomogeneous layers (HL or IL), and whether they
are of the “primitive equations” (PE) or “quasi-geostrophic” (QG) kind. Three of them
are extensively used in the literature, whereas the fourth one, ILQGM, is the one proposed
here. Even though all the examples in this paper correspond to only one active layer of
fluid (on top of a motionless passive layer) the generalization to a finite number of layers
is straightforward.

HL models have a uniform buoyancy ¥, whereas in the IL models treated here, ¥ may
vary with horizontal position and time.? Since ¥ is conserved following fluid particles,
formally speaking, an HL model is a particular case of an IL one. On the other hand, PE
models have both high and low frequency fluctuations (e.g. Poincaré and Rossby waves),
whereas the QG are low frequency approximations of the former.

The four types of model are compared in Table I in terms of ) their independent and
dependent fields and i) the form of the free energy £ and Casimir C integrals of motion.
The “free energy” is the sum of £ and one of the C, chosen so that its first variation from
a state of rest (¢ = ©, h = H, u = 0) vanishes.® Notice that the free energy is positive
definite in HL models, but only non-negative definite in IL models, owing to the existence
of the “force-compensating mode”.

3 Just one normal mode (28) with Im(kc) # 0 being an example.

4 The replacement of the ¥ evolution equation by separate equations for the temperature and
salinity fields is straightforward.

5 The IL models can be posed using 9 and h, or in terms of 9% (= 7) and 9}k (= ), as done
here. In either case, the potential vorticity g is defined up to linear terms in the perturbation fields,
i.e., in the first case it is used ¥ = © + 69 ~ 2+ 2I' 6y and h = H + 6h =~ ®/T' + 6p/T — 6y /T2
The free energy is exactly quadratic in the corresponding fields, i.e., the available energy density
is given by 1©(6h + 169 H/©)? or ;(6p)?, respectively.
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TABLE L.
Model Fields Integral of Motion Density
Ind. Dep. 2 x Free Energy Casimir
HLPEM h, u q, T hu? +9(h — H)? h F(q)
HLQGM o h, u Hu? +9(h — H)? H F(q)
ILPEM O, hyu gqr hu? + (\/Eh— \/cT)H)2 hq A(9) + h B(9)

2
ILQGM  d,q,7  hou  Hu'+(Vih- VoK) Hq A(9) + H B(9)
N.B. F(--+), A(---) and B(---) arbitrary

The independent variables of the new model (11) are (in addition to the buoyancy) those
of the classical QGM (4), potential vorticity ¢ and circulations 7. This is not surprising
since, in fact, the HLQGM belongs to an invariant submanifold of the ILQGM. The
main difference with the classical HLQGM is that, with buoyancy gradients, ¢ is not a
Lagrangian constant Dg/Dt # 0. However, the evolution equation for ¢ is one of the
fundamental ones for low frequency dynamics. On the other hand, the new model has the
same integrals of motion (energy, momentum, and Casimirs) and low frequency solutions
(force-compensating modes and Rossby waves) than the original one, the ILPEM (5).

Young [16] developed a low frequency inhomogeneous layer model in the f-plane,
through a method quite different from the one employed here. A very interesting aspect
of Young’s model is that he includes mixing of density and momentum and furthermore
he implicitly takes into account the effect of the vertical shear of the currents (through
the thermal wind balance). In the limit in which the inertial period is much larger than
the interval between momentum mixing events, Young’s equations can be shown to be
the 3 = 0 case of the set (11). In the opposite limit (inertial period is much smaller than
the interval between momentum mixing events) Young’s equations can be written, in the
notation of this paper, as

YU =g (31)
Oeg +ug - Vg =mH [, 9] - 3m 2H [, V),

t.e., compared with the set (11) there is an extra term in the g equation, which models
the effect of the velocity vertical shear [5]. An interesting property of these equations is
that instead of satisfying dH/dt = 0 with H from (16), they fulfill

Hy = %f/ (Hug + miy? — %Hm'Q(V'yV) = const. (32)

It is easy to see that Hy is a Hamiltonian for set (31), with the same Lie-Poisson
bracket (17). Consequently, I have shown that Young’s model is Hamiltonian, in the ab-
sence of forcing and dissipation, and that the Casimirs and momentum are those of (19)
and (21), but the pseudoenergy (23) has to be changed in order to accommodate the
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“extra” term. Since the last term in (32) has a sign opposite to the other two, this en-
ergy integral does not prevent the possibility of an “explosion” of the system from initial
conditions arbitrarily close to a resting state [10].

It is not difficult to evaluate the effect of the current vertical shear in the total energy if
one assumes, following [16], that the depth dependence of the buoyancy can be neglected.
In the “reduced gravity” case the dynamic pressure p vanishes at the base of the mixed
layer (z = —h), since its z derivative equals 4%, the vertical average of the buoyancy
within the layer (—=h < z < 0). Therefore, p = (z + h)¥? = 29% + yp. Consequently, it
is Vp = vV + (22 + h)yV7~, the expression whose vertical average is 7V, which is the
forcing term employed in (7b). However, if one keeps the vertical shear when calculating
the geostrophic velocity, the result is u = H~'2 x Vi + (22/H + 1)m ™2 x Vv and thus

0
fH u?dz = H-Y(V9)? + LHm %(V+)? = Hu? + LHm (V)2

Consequently, the total energy is given by
£ = %/] (Hug +miy? + %Hm_z(v'y)z) ;

instead of the value of H in (16). Notice that, surprisingly enough, the “extra” term is
exactly that of the Hamiltonian Hy for Young’s model [16], defined in Eq. (32), but with
the opposite sign. Consequently, Hy is not the free energy; its sign indefiniteness may be
related to the implicit mixing of density and momentum (which correspond to an increase
and decrease of the energy of the system, respectively).

It is desirable to have a model of low frequency dynamics in an inhomogeneous layer
model in which a conserved free energy is positive definite. This could arrest the ex-
ponential growth of finite amplitude disturbances, something that the law (32) for the
system (31) of Young [16] cannot do. The ILPEM is improved in Ref. [5] by means of an
explicit representation of the velocity shear and density stratification. A finite value of the
vertical gradient of density allows for the construction of a positive definite free energy;
this may be the key to develop a similarly well-behaved low frequency approximation, as
an improvement of the one developed here.
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A. UNIQUENESS

Let 9 and 9, be two solutions of V- (H~1V) — m?y = (¢ — my)H — By (x € D), and
fi x V¢ =0 (x € 9D), TH™'VY - fidl = 7; (x € D;). Defining 9 := 9, — 19, it is easy
to see that v satisfies

V-(H'VY)-m?’y =0 (xeD),
AxVy =0 (xedD),
f H'V§-fdl =0 (x€aD;).
aD;

Multiplying the first equation by v and integrating gives
J[ B9 + miE =,

and therefore 7,1-1 =0, i.e., the solution is unique, because Hm? is positive. O

B. GEOMETRICAL STRUCTURE

B.1. Hamiltonian

The functional H in (16) can be rewritten as
M= %/fﬂ-l(w)? +m2y?, (33)
and then its first variation is found to be
B e /f H™IVY - V61 + m2epbip

= Z}gﬂ H™'4Véy - adl - ffw (V (H'Véy) — mzc‘iw)
= S wibri— [[ wHstg - m),

where v; is equal to the value of ¥ at 8D;, which is a constant in virtue of the first
boundary condition in (12). Consequently, the functional derivatives of the Hamiltonian
are

6H a

K gy gy, Ty,

q oy or;

Using these and the Lie-Poisson bracket defined in Eq. (17) yields the time derivative (18)
of a general functional of state.
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B.2. Casimirs

These integrals of motion are the solution of {A,C} = 0 V.A, which either are C = 7;
(because the circulations do not appear in the Lie-Poisson bracket) or must satisfy

6A ,0C oC 6A oC
= H'—= = ]: .
5q ([q’H 6q] [7’ by )+ by [ " bq :

Since A is arbitrary, the expressions multiplying its functional derivatives must both van-
ish. The second term gives [y, H~'(6C/6q)] = 0, which implies that C is the integral of

HqCi(y) + Ca(7, %),
with C; and C; arbitrary. The first term then gives

dC1 | 1 19C 1€
[q,C1] + 'rqdl . 2] [ . 2]=0,

i.e., C3 = HC3(7y). Consequently, C is of the form (19).

B.3. Momentum

In order to find the functional M, the bracket (17) is substituted on the left hand side of
Eq. (20) and the coefficients of the functional derivatives of A in both sides are equated.
Definition (20) then requires

o224 1 [ 8] 2

bq by Oz’
and
_16M oy
H 1_] = g2r,
[’Y bq oz

The second equation implies 9, [H (6M/bg)] =0 and Oy[H 1 (6M/6q)] = H(y). Using
this result in the first equation it is found that [y, H 6M/6’y)] = 0. Consequently, (20)
implies 6M/éy = 0 and §M/6q = Z(y)H(y), i.e., the momentum functional is given
by (21).

B.J. Pseudoenergy

In order to find this integral of motion, a Casimir of the form (19) is chosen so that
8Cg = —6H. Using 6H[q, v, 7] from Appendix B.1, it easy to see that Cg is determined by

a; = =i,
A(T) = ¥(I)/m,
QT)F'(T)+ G'(I') = =¥(I).
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Therefore, Q(T')F"(I')+G"(T') = —¥/(T')-Q'(I")¥'(T') /m. (The primes indicate derivatives
with respect to the argument.) The second variations are then

om = [[ Houd +m¥sy?,
Py = / / HY' (2608y — (@ +m)62);

adding these two equations, expression (23) is found.
In the case of a symmetric basic state, the pseudomomentum is similarly found choosing
Cm so that 6Cp = —6M. Using Eq. (21) in Eq. (19), implies

a; =0,
A(T) = —Z(y),
Q(T)F'(T) + G'(T) = 0.

Consequently Q(T')F"(T') + G"(T') = —Q'(T")F'(T') where F'(I') = —H/T,. The second
variations are 6° M = 0 and

Few = [[(r,) (26067 - Q@ 6v) = - [[(H2/Q,) (50 - 622)

Finally, using ¥'(I') = —HU/Q, in the last expression for 62(H + Cg), expression (25)
follows immediately.

C. NOTATION AND ACRONYMS

[ VA vertical unit vector,
X horizontal position,
t time,
v horizontal nabla operator,
?(x,t) buoyancy,
e ¢ h(x,t) layer thickness,
u{x.1) horizontal velocity,
Q Earth’s angular velocity,
f (=.2§2 - 2) Coriolis parameter,
B northward gradient of f,
L ¥ northward coordinate.

¢ PEM: Primitive equations model. These are Euler equations with the Boussinesq
approximation (density variations are neglected, p ~ 5, except in buoyancy), the
“traditional” approximation (only the Coriolis force due to the vertical component
of © is included) and the hydrostatic approximation (vertical pressure gradient in
balance with buoyancy force).
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e QGM: Quasi-geostrophic model. A low frequency approximation of PEM, in which
the horizontal velocity is diagnosed from the geostrophic balance (between the hori-
zontal pressure gradient and the Coriolis force).

e HL: Homogeneous layer(s) [model]. Density p is constant in each active layer (where
velocity is assumed depth independent).

e IL: Inhomogeneous layer(s) [model]. Density may vary horizontally and with time in
each active layer, but not with depth (just like for the horizontal velocity field).

e Main balances: Hydrostatic: between the vertical pressure gradient and buoyancy.
Geostrophic: between the horizontal pressure gradient and the Coriolis force (propor-
tional to the horizontal velocity). Thermal wind: between horizontal density gradient
and the vertical shear of horizontal velocity (this balance is but a consequence of the
hydrostatic and geostrophic ones).

¢ Poincaré wave: High frequency oscillation (gravity wave affected by the Coriolis
effect). The period may not be larger than the inertial one, 27/|f|.

¢ Rossby wave: Low frequency oscillation. The period is much larger than the inertial

one.
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