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ABSTRACT. The study of the magnetostatic field due to a stationary current in a coil wound
around a toroid is usually limited to the determination of the toroidal magnetic induction due to
the poloidal component of the current using Ampére's circuital law. This paper emphasizes that
poloidal (toroidal) currents produce toroidal (poloidal) magnetic induction fields, presenting the
explicit integration of Poisson’s equation for the toroidal magnetic induction based on the use of
the harmonic expansion of the inverse of the source point-field point distance; the presence and
importance of the circling field due to the azimuthal currents associated with the pitch in the coil
is also discussed.

RESUMEN. El estudio del campo magnetostético debido a una corriente estacionaria en un embobi-
nado alrededor de un toroide usualmente se limita a la determinacién de la induccién magnética
toroidal debida a la componente poloidal de la corriente usando la ley circuital de Ampére. Este
articulo destaca que las corrientes poloidales (toroidales) producen campos de induccién magnética
toroidales (poloidales), presentando la integracién explicita de la ecuacién de Poisson para la in-
duccién magnética toroidal basada en el desarrollo arménico del inverso de la distancia del punto
fuente y el punto campo; también se discute la presencia y la importancia del campo circulante
debido a las corrientes azimutales asociadas al paso del embobinado.

PACS: 41.10.Dq

1. INTRODUCTION

Toroidal solenoids are interesting from the point of view of practical applications, such as
the confinement of charged particles [1] and the storage of energy [2]; as well as in funda-
mental physics studies, such as the Aharonov-Bohm effect [3], Zeldovich’s parity-violating
anapole [4], and the recognition of the existence of toroidal moments [5]. From a didactical
point of view and when the pitch is ignored [6, 7], the magnetostatic fields of infinitely
straight and toroidal solenoids have the following common features: i) the magnetic in-
duction is restricted to the interior of the solenoids vanishing outside, ii) the evaluation
of the magnetic induction follows from a straightforward application of Ampére’s cir-
cuital law and the symmetries of the respective solenoids, and iii) these properties are
valid for any cross section of the solenoids. Features i) and i) are found in many text-
books [8-16], of which only few show that both features cease to be valid when the pitch
is taken into account [13-16]. Feature i) has been analyzed in detail for the case of
straight solenoids [17-24], but the counterpart for toroidal solenoids is practically absent
in textbooks and the didactic literature.
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The typical half-a-page treatment of Refs. [8-12] has been practically the only one
used in the classroom for teaching generations of scientists and engineers about toroidal
solenoids; few of them have learned about the effect of the pitch [13-16] as witnessed by
the need of reminders [6,7]. The new generations facing the currents problems [1-5] need a
better basis to understand the latter qualitatively and quantitatively, before solving them.
This paper presents an alternative for the study of toroidal solenoids at the junior-senior
level. Section 2 contains the general discussion of the correspondence between the poloidal
and toroidal components of the current and the toroidal and poloidal components of the
magnetic induction, respectively. Section 3 presents the explicit integration of Poisson’s
equation for the magnetic induction due to the poloidal current in a toroidal solenoid
with a rectangular cross section, using the harmonic expansion of the Green function in
circular cylindrical coordinates. Then the case of a general cross section is also analyzed
by using the superposition principle. Section 4 consists of a discussion of the results and
their connections and analogies with other situations of magnetostatics and electrostatics;
the effect of the pitch is discussed specifically, and here we can point out that the circling
magnetic induction arising from the azimuthal currents is not explicitly evaluated, since
it may be illustrated through the familiar situation of a circular loop. Formulas for the
harmonic functions and the expansions in terms of them in circular cylindrical coordinates
are included in the Appendix.

2. POLOIDAL (TOROIDAL) CURRENTS PRODUCE TOROIDAL (POLOIDAL) MAGNETIC
INDUCTION FIELDS

The description of the currents in solenoids in textbooks is usually limited to a description
with words and some drawing illustration [8-16]. Such descriptions in the case of toroidal
solenoids imply the invariance of the system under any rotation around the axis of the
solenoid, even though the drawings often contradict such an implication. This situation
indicates the need of a quantitative description of the currents involved.

In any magnetostatic situation, the current density and the magnetic induction have
the common property of being divergenceless or transverse vector fields. Additionally, they
are transverse to each other being related through Ampére’s law. Any vector field in three
dimensional space has in general three components; however, the transversality condition
is equivalent to a vanishing longitudinal component, thus reducing the number of indepen-
dent components to two. In the remainder of this section we describe the corresponding
components of the current in toroidal solenoids and identify the respective components of
the magnetic induction produced by them.

The filamentary current elements in a toroidal solenoid with a total of N turns and a
current I can be written in circular cylindrical coordinates [25] in the form

Ifdf?:ﬂ(f;dwmﬂJréqub)_ (1)
2T

The axial and radial components contained in meridian planes follow the periphery of the
corresponding cross sections of the toroid constituting the so-called poloidal current. This
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poloidal component of the current distribution is invariant under rotations around the axis
of the toroid, and is responsible for the magnetic induction field to be in the azimuthal
direction, inversely proportional to the distance from the axis and restricted to the interior
of the solenoid. On the other hand, the azimuthal component of the current distribution,
i.e., the third term in Eq. (1), is associated with the pitch in the winding of the coil; it
breaks the rotational invariance and invalidates features i) and ) of the magnetostatic
field described in the Introduction [6,7,13-16].

It is instructive to compare the complementary characteristics of the appropriate com-
ponents of currents and magnetostatic induction fields in toroidal solenoids and circular
loops. The poloidal currents in the toroidal solenoids produce a toroidal magnetic induc-
tion. The current in a circular loop is toroidal, being in the azimuthal direction and of
the same intensity at a fixed radial distance, and produces a poloidal magnetic induction
characterized by closed lines in meridian planes. This complementarity is a consequence
of Ampere’s law and the axial rotational symmetry of both systems.

3. INTEGRATION OF POISSON’S EQUATION FOR THE MAGNETIC INDUCTION

From Ampere’s and Gauss’ laws it follows that the magnetic induction field satisfies Pois-
son’s equation

V2B = —4nKV x J, (2)

where the curl of the current density plays the role of the source. The magnetic induction
as a solution of this equation can be written as

f)—K/lS?’VIXJ 4 (3)

|7 — 7

In order to evaluate the magnetic induction of a toroidal solenoid we consider first the
case of a toroid with a rectangular cross section and a poloidal current (Fig. 1a). Such a
toroid is defined in circular cylindrical coordinates by its edge parallel circles: inner lower
(R = a,¢,2 = z1), inner upper (R = a,¢,z = z3), outer upper (R = b,¢,z = 27) and
outer lower (R = b, ¢,z = 2z;) with 0 < a < b and z; < 2. The poloidal current density
can then be written as

J(F) = 2‘:}; {k [6(R —a) — §(R—b)][0(2 — 21) — Oz — 23)]
+ R[8(z — 22) — 8(z — 21)] [O(R — a) — O(R — b)]}, (4)

in terms of the Dirac delta functions, which define coil elements along which the current
flows, and of the Heaviside step functions, which define the extent of those elements.
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FIGURE 1. Any cross section of a toroid can be decomposed into rectangular cross sections, such
that the current around the perimeter of the general cross section is equivalent to the superposition
of the currents around the respective rectangular loops. The total magnetic induction field of the
general toroidal solenoid is also the superposition of the fields produced by the individual toroidal
solenoids with rectangular cross sections.

The integral of Eq. (3) requires the curl of the current density

V' x J(7') =

NI, { OB =a)=O(R' =8) & 150 v s )

2 R dz

B % [MR - a)l;é(Rf ol [O(z' — z1) —©(2' - 22)]}1 (5)

which is recognized to be of toroidal character.

The integral in Eq. (3) also requires the expression of the inverse of the source point field
point distance in circular cylindrical coordinates, for which we use the harmonic expansion
of Eq. (A1).

With these ingredients the integral for the magnetic induction becomes

B(F) = KNI dR/ dz'
{G(R —G)R’ b)g[é(z —zg)—é(z _31)]
# _S§(R' — , ,
- [ME 0 BR W] (o) — o - )l
—72; 3 ./ODO dk Iy (kR<) Km(kRs ) cos k(2" — z)em cosm(d' — ¢). (6)
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The integration over the azimuthal angle,

fo & ¢ d¢' emcosm(d' — @) = 216m1 9, (7

selects the m = 1 term in the sum of Eq. (6) and determines the direction of the magnetic
induction field. The factors involving the differences of the Heaviside step functions restrict
the intervals of integration to the extent of the respective coil elements. The integrations
over the axial coordinate can be done by parts:

f dz — [6(2' — 22) — 6(2" = 21)] cos k(z' — z) = k[sink(z — z1) — sink(z — 22)], (8)
and directly
/z2 dz' cosk(z' — z) = —}1; [sink(z — z1) —sink(z — 22)] . 9)

Thus Eq. (6) is reduced to

g(f") _ 2KNI

(B/:O dk [sink(z — 21) — sink(z — z2)]

b
{k f dR'T, (kR<)K1(kR>)

) %fom . qu(kR<)I<1(kR>)% 5(R —a)};é(R' -b)]}_ (10)

Before we can go any further it is necessary to distinguish between the different locations
of the field point R <a,a< R<b, orb<R.
The field inside the inner cylinder

2KNI

B(R < a,¢,z) qbf dk [sink(z — z1) — sink(z — 22)] [1(kR)

' ' ___L 9 / N il
{kfa AR K (kR) — 7 = [REGR)] |,

=0 (11)

vanishes because the two radial integrals inside the curly brackets cancell each other,
according to Eqgs. (A2-A3).
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Similarly the field outside the outer cylinder also vanishes:

BR>a,¢,2) = ZK?TNIC&-/‘C’O dk [sink(z — 21) —sink(z — 23)] K1(kR)
' / ) / n]| =t
{ / dR'T,(kR') - E}?éﬁ [R'1(kR )]]R,:a}
=0. (12)

As for the field between the inner and outer cylinders

NI
Bla<R<bdz) = 22

q&/ dk [sin k(z — 21) — sink(z — 23)]

b
{k [I{](kR) / dR' I(kR') + I (kR) fR dR’Kl(kR’)]

d

AR [R’I A (km] |£j

R [le{kR)

+ L(kR)

aR, [R'E\(kR)) |§1] }
2KNIT

S q@/ooodk[sink(z-zl)—sink(z—zg)]
x [Ky(kR)Io(kR) + L(kR)Ko(kR)). (13)

Here we find the same cancellations that occurred in Eqs. (11) and (12), and the re-
maining two terms are identified with the Wronskian of the modified Bessel functions of
order zero, Eq. (A4). The remaining integral

Bla<R<boz) = 21;;]:1 / ﬁ [sink(z — 2;) — sink(z — z3)]
2KNT -
= —5 9100z - 21) - 0(z - 2)] (14)

can be identified with the difference of the step functions in the axial direction which
ensure that the field vanishes outside the solenoid, Eqs. (A5-A6). Moreover the magnetic
induction field is toroidal and varies inversely with the radial distance from the axis.
The case of a toroidal solenoid with a general cross section can be analyzed via the
superposition principle after the case of the rectangular cross section has been established.
In fact, any cross section can be approximated with a mesh of rectangles, of infinitesimal
size if necessary, as illustrated in Fig. 1. By considering poloidal currents circulating in
each small loop of the mesh, the net current distribution is along the periphery of the
general cross section of the toroid because the currents in the inner components of the
smaller loops cancel by pairs among neighboring loops in the mesh. Thus, any toroid
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with a general cross section is analyzed as decomposed into a collection of coaxial toroids
with the chosen rectangular cross sections. According to the superposition principle the
magnetic induction field of the toroidal solenoid is the superposition of the contributions
of each and every one of the component toroidal solenoids. As it was established previously
such contributions are zero outside each toroid and azimuthal and inversely proportional
to the distance from the axis; the same properties are translated for the total field. In
conclusion, the total magnetic induction for a toroid with a meridian cross section defined
by the alternative equations R = Rc(2) or z = z¢(R) can be written in the form,

H
B(R,¢,2) = 2043 [O(R - RE(2) - ©(R - R, (2))]
i=1
v
[0z~ 28,(R)) ~ ©(= - 28, (R))] (15)
g=1

where 1 describes each of the H successive horizontal segments at the chosen axial coor-
dinates inside the toroidal cross section and defined by the radial coordinates Ré‘_ and
Rg‘, of their inner and outer end points, respectively; and similarly, 7 describes each one
of the V successive vertical segments at the chosen radial coordinate inside the toroidal
cross section and defined by the axial coordinates zé-j and zgj of their lower and upper
end points, respectively.

The differential form of Ampere’s law can be used with Eq. (15) to obtain the current
distribution in the toroidal solenoid:

NI H V
o ZZ{ [0(1 - RE,(2)) - (R - RE,(2))]

=1 j=1

o L
6(z — 2¢,(R)) (f% * fcd;;") ~ §(z — 2§, (R)) (R+ pbecy )]

+[6(z - 25, (R)) - O(= - 28, (R))]

1

]
x [6(R — RL.(2)) (R% + ic) — §(R — R2.(2)) (Rd?:‘ + k)} } (16)

For given values of R and z only one term in each sum contributes, and only one of the
four combinations (I,L), (I, U), (O, U) or (O, L) survives.

Here it should be noted that the presence of the Dirac delta functions reflect that the
current is restricted to the periphery of the cross section, and that the direction of the
current RdR¢ + kdzc is tangential to that periphery. It is straightforward to check that
Eq. (16) for J(7')dv' — I dl' reproduces the poloidal filamentary current of Eq. (1).
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4. DISCUSSION

The study of the magnetostatic field of toroidal selenoids presented in this paper has
emphasized the distinction of the poloidal and azimuthal components of the current and
the characteristics of the fields associated with each one. The role of axial rotational
symmetry in toroidal solenoids and circular loops was used in Sect. 2 to illustrate the
complementary character of poloidal and toroidal currents and the corresponding toroidal
and poloidal magnetic inductions for toroids with rectangular cross sections in circular
cylindrical coordinates and gives the argumentation to show that the poloidal currents
around a toroidal solenoid with any cross section produce a toroidal magnetic induction
field that varies inversely proportional to the distance from the axis in the interior of the
solenoid and vanishes outside. The space variation of the field is common with that of the
field due to a straight line of current [8-16]. The connection can be traced by considering
the latter as the limit situation of the toroids with rectangular cross sections for (a —
0,b — 00,27 — —00, 23 — 00). On the other hand, there is also the connection pointed
out in textbooks [8-16] between the fields of toroidal and infinitely straight solenoids,
corresponding to the limit situations of large distances from the axis where the field tends
to be uniform.

The importance of the pitch in the winding of the coil around the torus has already
been pointed out [6,7,13-16]. Going back to Eq. (1), it is necessary to take into account
the azimuthal component of the current distribution, where R(#,z) may break the axial
rotational invariance. The contribution to the field of this azimuthal component may be
evaluated by the same methods of Section 3. If the winding is such that the loops are kept
in meridian planes and the connections among them take place at a chosen parallel circle,
which could be the outer equatorial circle, then the circling field due to such a toroidal
component of the current is poloidal and invalidates features 1)-i1i) of the Introduction.

The student of electrostatics is familiar with Gauss’ law, the Coulomb field outside a
uniformly charged spherical shell, and the vanishing of the field inside the sphere. The
magnetostatic counterpart uses the name of Ampere instead of Gauss’ and Coulomb’s,
toroids instead of sphere, and azimuthal instead of radial, and exchanges inside and out-
side. The analogies may be extended to non-spherical conductors and solenoids wound
around closed curves, provided the pitch is ignored. Of course the effect of the latter can
always be added, just as departures from being a perfect conductor.

A. APPENDIX

The harmonic function expansion of the inverse of the distance between the source point
and the field point [26,27]

1

F=71

= E Z / dk Im(kRe) Kim(kRs ) cos k(2! — 2)em cos m(¢' — ¢), (A1)
W m=0"0

1s expressed in terms of modified Bessel functions in the radial coordinates and cosine
functions in the axial and azimuthal coordinates; here €, = 1 for m = 0 and ¢, = 2
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for m = 1,2,.... The derivatives of the modified Bessel functions of order zero give the
corresponding functions of order one

d_IdOi_m_) = I)(z), i‘;’? = —K(z). (A2)
Also
LLh@] = k), 1 a[eK)] = Ko@) (43)

The radial factor in the integral of Eq. (13) is identified with the Wronskian of the
modified Bessel functions of order zero,
LI (A4)
dr dzx &

Ip(z) K1 (z) + Ii(x)Ko(x) = —Io(x)
The Dirac delta function in the axial coordinate has the harmonic function representation
1 o0
8z —2;) = ;‘/ dk cosk(z — z;). (A5)
0

Its integral leads to the corresponding representation for the Heaviside step function

£ . ;1 [*dk .
Btz —.5) :/ Blat — el dd = -f Y k(s —a). (A6)
— o5 wJo k
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