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ABSTIlACT. The study oC the magnetostatic field due to a stationary current in a coil wound
around a toroid is usually limitcd to thc detcrmination oC thc toroidal magnctic induction due to
the poloidal component oC the current using Ampere's circuitallaw. This paper emphasizes that
poloidal (toroidal) currents produce toroidal (poloidal) magnetic induction fields, presenting the
explicit integration oC Poisson's equation Corthe toroidal magnetic induction bascd on the use oC
the harmonic expansion oC the inverse oC the source point-field point distan ce; the presence and
importan ce oC the circling field due to the azimuthal currents associated with the pitch in the coil
is also discussed.

RESUMEN. El estudio del campo magnetostático debido a una corriente estacionaria en un embobi-
nado alrededor de un toroide usualmente se limita a la determinación de la inducción magnética
toroidal debida a la componente poloidal de la corriente usando la ley circuital de Ampere. Este
articulo destaca que las corrientes poloidales (toroidales) producen campos de inducción magnética
toroidales (poloidales), presentando la integración explícita de la ecuación de Poisson para la in-
ducción magnética toroidal ba.-"iadaen el desarrollo armónico del inverso de la distancia del punto
Cuente y el punto campo; también se discute la presencia y la importancia del campo circulante
debido a las corrientes azimutales asociadas al paso del embobinado.

PAes: 41.10.Dq

l. INTIlOOUCTION

Toroidal solenoids are interesting Cram the point oC view of practical applications, such as
the confinement of charged partides [1] and the storage of energy [2); as well as in funda-
mental physics studies, such as the Aharonov-I3ohm efrect [3]' Zeldovich's parity-violating
anapole [4]' and the recognition oC the existence oC toroidal moments 151. Fram a didactical
point oC vielV and when the pitch is ignored [6,7], the magnetostatic fields oC infinitely
straight and toroidal solenoids have the Collowing common Ceatures: i) the magnetic in-
duction is restricted to the interior oC the solenoids vanishing outside, ii) the evaluation
of the magnetic indnction follows Crom a straightforward application oC Ampere's cir-
cuital law and the symmetries of the respcctive solenoids, and iii) these propertics are
valid Cor any cross section oC the solcnoids. Features i) and ii) are found in many text-
books [8-16], oC which only Cewshow that both fratures cease to be valid IVhen the pitch
is taken into accouut 113-16). Frature iii) has heen analyzed iu detail fOl' the case of
straight solelloids [17-24], hut the coullterpart for toroidal solelloids is practically absent
in textbooks and the didactic literature.
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The typical half-a-page treatment of Refs. [8-12] has been practically the only one
used in the classroom for teaching generations of scientists and engineers about toroidal
solenoids; few of them have learned about the effect of the pitch [13-16] as witnessed by
the need of reminders [6,71. The new generations facing the currents problems [1-5] need a
better basis to understand the latter qualitatively and quantitatively, before solving them.
This paper presents an alternative for the study of toroidal solenoids at the junior-senior
leveI. Section 2 contains the general discussion of the correspondence between the poloidal
and toroidal components of the current and the toroidal and poloidal components of the
magnetic induction, respectively. Section 3 presents the explicit integration of Poisson's
equation for the magnetic induction due to the poloidal current in a toroidal solenoid
with a rectangular cross section, using the harmonic expansion of the Green function in
circular cylindrical coordinates. Then the case of a general cross section is also analyzed
by using the superposition principIe. Section 4 consists of a discussion of the results and
their connections and analogies with other situations of magnetostatics and e!ectrostatics;
the effect of the pitch is discussed specifically, and here we can point out that the circling
magnetic induction arising from the azimuthal currents is not explicitly evaluated, since
it may be illustrated through the familiar situation of a circular loop. Formulas for the
harmonic functions and the expansions in terms of them in circular cylindrical coordinates
are included in the Appendix.

2. POLOIDAL (TOROIDAL) CURRENTS PRODUCE TOROIDAL (POLOIDAL) MAGNETIC
INDUCTION FIELDS

The description of the currents in solenoids in textbooks is usually limited to a description
with words and some drawing illustration [8~16]. Such descriptions in the case of toroidal
solenoids imply the invariance of the system under any rotation around the axis of the
solenoid, even though the drawings often contradict such an implication. This situation
indica tes the need of a quantitative description of the currents involved.
In any magnetostatic situation, the current density and the magnetic induction have

the common property of being divergenceless or transverse vector fields. Additionally, they
are transverse to each other being related through Ampere's law. Any vector fieJd in three
dimensional space has in general three components; however, the transversality condition
is equivalent to a vanishing longitudinal component, thus reducing the number of indepen-
dent components to two. In the remainder of this section we describe the corresponding
components of the current in toroidal solenoids and identify the respective components of
the magnetic induction produced by them.
The filamentary current elements in a toroidal solenoid with a total of N turns ancl a

current I can be written in circular cylindrical coordinates [251 in the form

- NI (- - - )Ir de = 27r k dz + R dR + 1JR d1J . (1)

The axial and radial components contained in meridian planes follow the periphery of the
corresponding cross sections of the toroid constituting the so-called poloidal current. This
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poloidal component 6f the current distribution is invariant under rotations around the axis
of the toroid, and is responsible for the magnetic induction field to be in the azimuthal
direction, inverscly proportional to the distance from the axis and restricted to the interior
of the solenoid. On the other hand, the azimuthal component of the current distribution,
i.e., the third term in Eq. (1), is associated with the pitch in the winding of the coil; it
break s the rotational invariance and invalidates features i) and ii) of the magnetostatic
field described in the Introduction 16,.7,13-161.

It is instructive to compare the complementary characteristics of the appropriate com-
ponents of currents and magnetostatic induction fields in toroidal solenoids and circular
loops. The poloidal currents in the toroidal solenoids produce a toroidal magnetic induc-
tion. The current in a circular loop is toroidal, being in the azimuthal direction and of
the same intensity at a fixed radial distance, and produces a poloidal magnetic induction
characterized by elosed lines in meridian planes. This complementarity is a consequence
of Ampere's law and the axial rotational symmetry of both systems.

3. INTEGRATION OF POISSON'S EQUATION FOR TIIE MAGNETIC INDUCTION

From Ampere's and Gauss' laws it follows that the magnetic induction field satisfies Pois-
son's cquation

V2 fj = -471' [(V x J, (2)

where the cnrl of the current density plays the role of the source. The magnetic induction
as a solution of this equation can be writtcn as

~ J ,¡J,,1 V' X J(i')
B(i") = [( --I~-~-/I-'r-r

(3)

In order to evaluate the magnetic induction of a toroidal solenoid we consider first the
case of a toroid with a rectangular cross section and a poloidal current (Fig. la). Such a
toroid is defined in circular cylindrical coordinates by its edge parallel cireles: inner lower
(R = a, 1>, z = z¡J, inner upper (R = a, 1>, Z = 22), outer upper (R = b, 1>, z = Z2) and
outer lower (R = b, 1>, Z = 2)) with O < a < b and 21 < 22. The poloidal current density
can then be written as

NI -
- {k Ib(R - a) - b(R - b)]18(z - z¡J - 8(z - Z2)]
271'R

+ R [b(z - Z2) - b(z - 2¡J118(R - a) - 8(R - b)]}, (4)

in tenus of the Dirac delta functions, which define coi! elements along which the current
ftows, and of the Heaviside step functions. which define the extent of those elements.
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FIGURE 1. Any cross section oí a toroid can be decomposed into rectangular cross sections, such
that the current around the perimeter oí the general cross section is equivalent to the sllperposition
oí the currents around thc respective rectangular loops. The total magnetic induction field oí the
general toroidal solenoid is also the superposition of the fields produced by the individual toroidal
solenoids with rectangular cross sections.

The integral of Eq. (3) requires the cur! of the current density

\7' x J(i') = NI Ji {8(R' - a) - 8(R' - b).!!...- [ó(z' _ Z2) _ ó(z' - z¡))
27r R' 8z'

_ ~ [Ó(R' - a) - ó(R' - b)] [8( , _ ) _ 8( , - )l}
8R' R' Z Z¡ Z Z2 , (5)

which is recogni2ed to be of t.oroidal charact.er.
The int.egral in Eq. (3) also requires t.he expression of t.he inverse of the source point. field

point distance in circular cylindrical coordinates, fOl'which we use the harmonic expansion
of Eq. (Al).
With these ingredients the integral for the magnet.ic induction becomes

B(T) = J( N 1 rh~, d<ti roo R' dR' Joo dz'
27r Jo Jo -00

{
8(R' - a) - 8(R' - b) 8 [ó( , ) ó(' )]
--------- -- Z - 22 - Z - ZI

R' 8z'

_ 8~' [Ó(R' - a)~, ó(R' - b)] (8(z' _ z¡) - 8(z' - Z2)]}

~f roo dklm(kR<)J(m(kR»cosk(z'- z)€mcosm(<ti - <1». (6)
7r m=O Jo
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The integration over the azimuthal angle,

(7)

selects the m = 1 term in the sum of Eq. (6) and determines the direction of the magnetic
induction field. The factors involving the differences of the Heaviside step functions restríet
the intervals of integration to the extent of the respective coil elements. The integrations
over the axial coordinate can be done by parts:

fOO dz' aa, [6(z' - Z2) - 6(z' - ZI)] cosk(z' - z) = k [sink(z - z¡) - sink(z - Z2)] , (8)
-00 z

and directly

¡Z' dz'cosk(z' - z) = ~ [sink(z - z¡) -sink(z - Z2)].
lZI

Thus Eq. (6) is reduced to

(9)

- 2[( NI- foooB(f) = --<P dk [sin k(z - z¡) - sin k(z - Z2)]
1T O

{ kl dR' I¡ (kRd[(1 (kR»

- ~ fooo dR' R' I¡ (kRd [(1(kR» a~'[6(R' - a) ;, 6(R' - b)J}. (10)

Bcfore we can go any further it is necessary to distinguish between the different locations
of the field point R < a, a < R < b, or b < R.
The field inside the inner cy linder

2[(NI - foooB(R < a, <P,z) = --<P dk [sin k(z - ZI) - sin k(z - z2)1 I¡ (kR)
1T o

{ kl dR' [(¡(kR') - k~' a~' [R' [(1(kR')] I~:::}
= O (11)

vanishes because the two radial integrals iuside the curly brackets cancell each other,
according to Eqs. (A2-A3).
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Similarly the field outside the outer cylinder also vanishes:

2l(N 1 "lOOB(R> a,1>,z) = --1> dk[sink(z - z¡) -sink(z - z2))I(¡(kR)
11" o

{k (b dR'I¡(kR') __ 1 ~ [R'f¡(kR')]IR'=b}
Ja kR' 8R' R'=a

= o. (12)

As for the field between the inner and outer cylinders

2l(N 1 -looB(a < R < b,1>,z) = --1> dk [sin k(z - z¡) - sin k(z - z2)1
11" O

{k [[(¡(kR) [1dR' I¡(kR') + I¡(kR) l: dR' [(¡(kR')]

-k~' [[(¡(kR)8~¡' [R'I¡(kR')]I;:::~1

+ 1¡(kR) 8~' [R'I(¡(kR')] I:::~J}
2l(N 1 "loo

= --1> dk ¡sin k(z - z¡) - sin k(z - Z2))
11" o
x [[(¡(kR)Io(kR) + I¡(kR)[(o(kR)). (13)

Here we find the same cancellations that occurred in Ec¡s. (11) and (12), ancl the re-
maining two terms are identified with the \Vronskian of the lllodified 13essel functions of
order zero, Ec¡. (A4). The remaining integral

- 2[( NI" (00 dk
B(a < R < b,1>,z) = --¡¡;-1> Jo T [sink(z - z¡) - sink(z - z2)1

2l(NI"
= -R-1> [e(z - z¡) - e(z - Z2)) (14)

can be identified with the difference of the step functions in the axial direction which
ensure that the field vanishes outside the solenoid, Ec¡s. (A5-A6). !vloreover the magnetic
induction field is toroidal and varies inversely with the radial distance from the axis.
The case of a toroidal solenoid with a general cross section can be analyzed via the

superposition principie after the case of the rectangular cross section has been established.
In fact, any cross section can be approximated with a mesh of rectangles, of infinitesimal
size if necessary, as illustrated in Fig. 1. 13y considering poloidal currents circulating in
each small loop of the mesh, the net current distriblltion is along the periphery of ¡he
general cross section of the toroid beca use the currents in the iuner components of the
smaller 1001'S cancel by pairs among neighboring 1001'S in the mesh. Thus, any toroid
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with a general cross section is analyzed as decomposed illto a collection of coaxial toroids
with the chosen rectangular cross sections. According to the superposition principie the
magnetic induction field of the toroidal solenoid is the superposition of the contributions
of each and every one of the component toroidal solenoids. As it was established previously
such contributions are zero outside each toroid and azimuthal and inversely proportional
to the distance from the axis; the same properties are translated for the total field. In
conclusion, the total magnetic induction for a toroid with a meridian cross section defined
by the alternative equations R = Rc(z) or z = zc(R) can be written in the form,

- 2f{ N] . ~ [1 O ]B(R, </J, z) = -R-</J L.. e(R - Rei(z)) - e(R - Rei(z))
i=l

vl: [e(z - z~j(R)) - e(z - zgj(R))]
j=1

(15 )

where i describes each of the II successive horizontal segments at the chosen axial coor.
dinates inside the toroidal cross section and defined by the radial coordinates Rb and
Rg

i
of their inner aJl(1 outer end points, respectively; and similarly, j describes each one

of the V successive vertical segments at the chosen radial coordinate inside the toroidal
cross section and defined by the axial coordinates z~ and zg of their lower anel upper

J ,

end points, respectively.
The differential form of Ampere's law cau be used with Eq. (15) to obtain the current

distribution in the toroidal solenoid:

- 1 -J = -]' \1 x B
471" \

N] JI V {
271"R~ j; [e(1I - Rb(z)) - e(R - Rg,(z))]

[
U ( • • dzg ) L ( • • <lz~ )]8(z-zcj(R)) R+k dR' -8(z-zc,(R)) R+k <Id
+[e(z - Z~j(R)) - e(z - zg,(R))]

x [8(R - R~i(Z)) ( j¡d~~. + Á,) - 8(R - Rgi(z)) ( j¡d~!i + k)]}. (16)

For given values of 11 and z only one term in each sum contributes, and only one of the
four combinations (1, L), (1, U), (O, U) or (O, L) survives.
lIere it should be uoted that the presence of the Dimc delta functions reflect that the

currcnl is restricted to the pcriphcry of tlle cross scctiOIl, and that the dircctioIl uf thc
current j¡ dRe + k dze is tangential to thut periphery. It is straightforward to check that
Ec¡. (16) for .f(t') <Iv' ~ Ir <Ir reproduces the poloidal filamentary current of Ec¡. (1).
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4. DISCUSSION

The study of the magnetostatie field of toroidal selenoids presented in this paper has
emphasized the distinction of the poloidal and azimuthal components of the current and
the eharacteristics of the fields assoeiated with eaeh one. The role ofaxial rotational
symmetry in toroidal solenoids and circular 1001'S was used in Sect. 2 to illustrate the
complementary charaeter of poloidal and toroidal eurrents and the corresponding toroidal
and poloidal magnetie ind uctions for toroids with rectangular eross seetions in circular
cylindrical coordinates aud gives the argumeulation to show that the poloidal eurrenls
around a toroidal solenoid with any cross section produce a toroidal magnetie induction
field that varies inversely proportional lo lhe dislance from the axis in the inlerior of the
solenoid and vanishes oulside. The space variation of the field is common wilh lhat of the
field due to a straight line of eurrent [8-16J. The connection can be traced by considering
the latter as lhe limit situation of the toroids with rectangular eross seetions for (a ~
O, b ~ 00, Z¡ ~ -00, Z2 ~ (0). On the other hand, there is also the connectiou poinled
out in textbooks [8-161 between lhe fields of loroidal and infinitely straight solenoids,
corresponding lO lhe limit siluations of large distances from the axis where lhe field lends
to be uniformo

The importance of the piteh in the winding of the coil around the torus has aIread y
been pointed out [6,7,13-161. Coing baek to Eq. (1), il is neeessary to lake into aceounl
the azimuthal component of the cmrent distribution, where R(</>, z) may break the axial
rotational invariance. The contribution to the field of this azimuthal component may be
evaluated by the same methods of Seetiou 3. lf the winding is such that the 1001'S are kept
in meridian planes and the conuectious amoug them take place at a ehosen parallel eirele,
which could be the outer equatorial cirele, then the cireling field due to sueh a toroidal
component of the current is poloidal and iuvalidates featmes i)-iii) of the Introduction.

The studeut of electrostatics is familiar with Causs' law, the Coulomb field outside a
uniforrnly eharged spherieal shell, aud lhe vanishing of the field iuside the sphere. The
magnetostatic COlllltcrpart uses the llame of Amperc illstcad of Gauss' and Coulomb's,
toroids instead of sphere, aud azimuthal instead of radial, and exehauges inside aud out-
side. The analogies may be exteuded 1.0 non-s!,herieal conduetors and solenoids \Vound
around elosed curves, provided the piteh is iguored. Of eourse the effeet of the latter can
always be added, just as departmes frolll beiug a perfeet conductor.

A. ApPENDIX

The harmonic function cxpansioIl of thc inversc of the distallcc bct\vccn thc SOUfce point
and the field point [26,271

I 2 00 1000 .1_ -'1 = - L dI.:!",(I.:R<) l\'",(I.:R» eos 1.:(0' - Z)E", cos m(ó' - </»,
r - T 1f m=O o

(A 1)

is exprcssed in terms of moriified Ilessd funrtions in the radial coorclinales anri eosille
functions in the axial and azimuthal coordinales; here E", = I for m = O and Em = 2
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for m = 1,2, .... The derivatives of the modified Bessel functions of order zero give the
corresponding functions of order one

Also

dIo(x) _ 1 ( )
- 1 X ,

dx

~ d~ [xI¡(x)] = Io(x),

d[(o(x) = -[(¡(x).
dx

(A2)

(A3)

The radial factor in the integral of Eq. (13) is identified with the Wronskian of the
modified Bessel functions of order zero,

d[(o(x) dIo(x) 1
Io(x)[(¡(x) + !¡(x)[(o(x) = -Io(x) d + -d-[(o(x) = -. (M)

x x x

The Dirac delta function in the axial coordinate has the harmonic function representation

1 100b(z - z;) = - dk cos k(z - z;).
rr o

(A5)

lts integral leads to the corresponding representation for the Heaviside step function

j' 1 100 dke(z - z;) = b(z' - z;) dz' = - -k sin k(z - z;).
-00 7r o
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