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ABSTRACT. A novel concept oC eqnivalellt tractioll is snggested to acconnt Cor the mechanics of
self-affine cracks. This concept is Ilsed to COll5truct path-independellt integrals for sorne problems
with self-affine crack, which in turn are llsecl to establish the asymptotic stress field near the
wedgc-likc ootch with sclf-affine edges ami the ellergy rclcase rate associated with sclf-affine crack
propagation. Thc unloading of self-affinc oouudarics oC an elastic salid is prcdicted Corthe first
time. Somc ncw uscful relations are also derived. The theoretical results are discllssed with respect
to recent experimental observations.

RESUMEN. Se sugiere un nuevo concepto de tracción equivalente para la mecánica de las grie-
tas auto-afines. Se construyen, empleando este concepto, algunas integrales independientes de la
trayectoria para algunos problemas con grietas auto-afines, las cuales a su vez son utilizadas para
establecer el campo de tensión asintótica cerca del corte en cuña con bordes auto-afines y la rapidez
de liberación de energía asociada con la propagación de la grieta auto-afín. Se predice la descarga
de fronteras auto-afines de un sólido elástico. Se derivan también algunas relaciones nuevas que son
de utilidad. Se discuten los resultados tcc>ricos respecto a observaciones experimentales recientes.

PAes: 03.40.Dz; 4G.30N; G2.20M

The propagation of cracks is a problem of both technological aJl(1 scientific interest. This
has motivated a large amount of researdl into how cracks form, and how, once formed,
they propagate.

It is well known that real cracks in solid materials have little resemblence to ideal
cracks with slllooth edges, which are usually cousidered in fracture mechanics [1,21. For
this reason, in recent years, the quantitative aualysis of fractured surfaces has become
an integral part of the study of defonnation and rupture of materials [31. Such surface
analysis often provides information about surface morphology which is complementary to
that obtained by other metallurgical methods. It is now c1early established that fracture
surfaces can be considered as self-afline objects [1,41.1 Hence the nsual treatments based
on the continuum elasticity theory do not provide simple tools for discussing the essential

1 The concept oC self-affine fractals is ueing greatly useful in identifying a hidden symmetry in
a wide variety oC objects amI phenomena in Ilnture [51.
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nonlinearities of the problem. At the same time, it has been emphasized that a merely
fractal deseription of crack faces can hardly benefit our understanding of the meehanism
underlying failure phenomena [1,2,6-12).

Fractal geometry, developed by Mandelbrot [13], allows the deseription of irregular
forms whieh are more eomplex than Euclidean shapes. A feature having fractal property
can be eharaeterized by its fractal dimension D [5,13]. It should be emphasized that mos!
experimental studies indiea!e that fracture sur faces and crack propagation palhs are self-
a!fine ralher than self-similar [1,4]. In the applieation of fractal models to real crack faces
the eoneepts of self-similar and self-affine fraetals must be earefully distinguished [11,12,
14].

The fundamental differenee between self-similar and self-affine fraetals is the way seal-
ing will produce statistieal equivalenee.2 Self-affine crack faces are statis!ieally im'ariant
under an affine lransfofmation [13]: x' -lo >..[.1:, y' -+ AyY, ;;' -+ Az"::. Requiring that such
transformations be eombined, a group strueture is implied. As a conse'luence Ay and A,
have lo be homogeneous funelions of, say, Az; both seale as Ay ex A~', A, ex A~', but the
exponents lIy and 11, are in general different.3 lf so, then A, ex A~/, where lhe roughness
(or Hurst) exponent [13] is given by the relationship'

H = 11,.

lIy

In the speeial case of an isotropie surfaee with mean plane parallel to the coordinate
plane (x, y), we have lIy = 1, so that H = 11,. The last relation is also valid for any self-
affine profile on a two-dimensional planeo As an ('xample of a self-affine curve we can refer
to the graph of the Mandelbrot- Weierstrass funet ion

00

:(.¡;) = L A-1Ik ens (AkX), A> 1,
k=O

which is nowhere differentiahle and is often used as a model for the real crack faces [15,16].
The standard deviation of this funetiou oheys sealing behavior5

(z) ex (.r)/I. (1)

lIowever, in contrasl wilh self-similar fraetals, the frae!al dimension of self-affine pa!tems
is not nniqnely defined. First of all we must distinguish belweeu the local (L « ~c) and

2 Self-similar fractaIs lIIay be scalcd cqually in the x- ami y-directioIlS lo produce statistically
cquivalcnt profiles, whereas self-affinr fractal s lI1ust he scalcd by diffcrent amounts in lhe x- ami
y-directions lo produce statistical cquivalcllcc.

3 The exponents Vy alld 1.12 are analogous lo those oCatlbotropic corrclatioll lengths in critical
phenomena su eh as in liquid crystals 15]-

4 Notice that in the case of allY self-similar fractal Vy = v~= 1/ D. so that Jl == 1. This means
that the Hurst exponellt is usclcss whcn disClIssillg hoth sC'lf-affinc and sC'lf-silllilar fractals in the
same contexto

s lt should ve emplta.."iizedthat tite relation (1) is "alid ollly for tite standard dc"iatiolls of
coordina!es (z) and (x), but is uot valid for the sdf-affino funeliou :(x) ils('lr.
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the global (L » ~c) fractal dimensions.6 The latter is always equal to the topological
dimension of the self-affine fractal, while in the local limit there are various definitions for
different fractal dimensions, which are associated with different scaling properties of a self-
affine fractal. The relationships between Hurst exponent and various fractal dirnensions are
given in fief. [11). Here we uote onlO' that the rnetric (box-counting) fractal dimension DB
is e'lual to d -l/, where d is the topological dimeusion of the surrounding Euclidean space,
while the latent (local divider) fractal dirnension is Do = (d -I)/H, if H ~ (d -I)/d, or
DIJ = d, if l/ $ (d-I)/d [5,11].'
It was shown in fiefs. [11,12) that the acceptance of the self-affine geometry of crack

faces leads to a change in the asO'mptotic stress field near the tip of a self-affine crack, and
affects in this waO' the fracture toughness. Name!O', stresses associated with a self-affine
crack are less singular thau the stress field in the vicinitO' of a linear cut. The explicit
expressious for stress siugularitO' exponent, which is associated with a self-affine crack, were
derived in fief. [11) withiu a framework of dimensional aualO'sis on the basis of the energy
balance arguments. At the same time, the authors of fief. [1i] have adduced arguments to
show the incompatibilitO' of the couventional fracture mechanics with the fractal geometry
of fra<:ture pattems. llecause of this, the iucorporatiou of fractal concepts to fracture
mechauics is a problem of critical importauce. One way of doing this is suggested below.

llefore proceediug further, we uote that any real crack path obeys self-afliue properties
ouly within a bouuded interval of leugth scales

fo < L < ~c, (2)

where (o ~ 10-6 m is the microscopic cutoff (the dislocation free zone size [1-3,18])
and ~c ~ 10-3 m is the self-affine correlation length [1-3, ID]). Hence, a crack face can
be treateu as a nonstandard curve (surface), the standard part of which is a self-affine
fractal.8 Jn this way we can build curvilinear cool'dinates along auy "self-affine" crack
face; so that we can define the change iu the normal vector to the crack face along its
trajectory, and iu tum analyze a problem wil h self-alfine crack within a framework of a
powerful tools of the continuum mechanics.

Now, let us consider an infinite linear elastic solid with traction-free self-affine crack
with a mean plane perpendicular to the direction of the tensile stress a¡¡ prescribed at
infinity (see Fig. 1). This problem is related to the teusile mode U,Jode J) of loading for the
problem with a linear crack (cut). At the same time, we note that, while in the problern
with linear crack (cut) the crack tip is the unique singular point for the elastic fields, in
the case of a self-affine crack singular points of the elastic field occur not only al the crack
tip but also on the rough crack faces, and withiu the interval (2) singularities exist at a1l
scales. ~loreover, in the case of self-affine crack, the cral'k singularity field produced by
auy linear part of self-affine crack9 is a Iiuear supel'position of the three basic IIloues of

6 L is lhe charactcristic scale oC IIICa5uremcnts and {c is lhe self.affinc corrclation Icngth !5,l1J.
7 r\otirc that for self.silllilar fractals DD = Dn (5('(' 'lIso footuote 4).
MThe fOllndations oC non-standard analysis ami its application to saine problcrns oC fractal

geoUlctry is considercu iu [20].
9 Thcsc parts have Icngths oC tite order oC fo.
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i (jii T;j = T(a;;) + T.

+
T;j "- t...... ~ T
.......,1 1

.........

FIGURE 1. Reduction or the prohlem with selr-affine crack and longitudiual tensile stress (J;j to
the problem with selr-amne crack loaded by unknown traction T;j.

cracking [21,22]. However, in any plane problem this field is a linear superposition of only
two modes [22jlo and can be represented as [6]

ayy =

[{I [ O ( . O . 30) . O ( O 30)]-- cos - 1 - Slll - Sltl - - k SIIl - 2 + cos - cos - 1

";2rrr 2 2 2 2 2 2

[{I [ O ( . O . 30) k O. O 30]~ ros - 1 + Slll - sm - +. cos - SIn - COS- ,
V 27[1' 2 2 2 2 2 2

1(11 . (rr )
k = [{I ex Sm 2" - 1/J ,

(3)

where v is the Poisson's ratio, [{I and /(11 are the stress intensity factors associated with
modes 1 and Il, respectively; 1/J is the angle 11I'tween the stress applied al infinity and the
linear nanocrack face, and O is the angle between the (nano )crack face and the direction
of observation (see Fig. 2a).
Furthermore, if the principie of snperposition [22] for contribntions from all parts

(nanocracks) is valid, the problem under consideration can be replaced by an equiva-
lent one: self-affine crack faces are loaded by a traction T;j and stresses vanish at infinity,
as sbown in Fig. 1.
Traction T;j consists of the regular a-induced traction T(a;;) and the unknown addi-

tional traction T;j due to the contribution from all singular points along the crack faces.
The last (singular) term of stress field near the self-affine can be represented as a sum of
the contributions (3) from all linear parts (nanocracks) along the crack edges (within the
interval of self-affinity (2)!). IJy virtue of the fact that (o «~c this sum can be replaced
by the integral

"'(0 )/x n(-x) 8( ) 1 J- ,--oaij ex 'Y ,v ~ - -x (.c ex \f ...\. •
-(e Ixlv Ixl

10 Namely, the tensile (Mode 1) and in-plane shear (Mode Il) modes.

(4)
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FIGUHE 2. The polar coordinate systclIl (a); patlas of.J intC'gratioll foc crack s with smooth edges (L):
.J(r) = .J(r') = G; ami \\'ilh self-affille edges (e): .J(r) < J(r'), bul Jr(r) = .J,(r'); aud polar
stress('s at a wcdgc-like nOlches with smooth (<1) aud self-affinc (e) cdgcs.
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where X = rifo, l' is the distance from the crack tip and x is a variable; n(-x) oc x"
is the number of singular points within the interval (-x, O), and 8( ... ) is the Heaviside
unit function, 8( -x) = 1 for x :s O and 8 = O for x > O; <Pij(O, v) is the dimensionless
function of O and v.ll The coefficient J(f(OV) may be treated as the stress intensity factor
for self-affine crack (instead of common stress intensity factors J(I and J(JI in conventional
fract ure mechanics).
For the problem with a regular (smooth) crack (that is, the special case of the problem

under consideration!) we simply have H == 1 and '1 = O, so that the singular term of an
elastic lield obeys the standard inverse square root asymptotic [21],

J(¡
CJij = .¡r<p,(O, v), (5)

while for the graph of an independent random (\Viener) process (which was used in
Ref. [21] as a model of crack trajectory) H = 1/2 and '7 = 1/2, so that there is no
stress lield (power law)singularity, because a = O (CJij oc In X).
Generally, we can expect that '1 is a monotone increasing function of the roughness

(Hurst) exponent H. The last varies from O to 1 [5], so that always '1 > O and O :s a :s
1/2,12 Hence in the problem with a self-affine crack the asymptotic stress lield near the
crack tip always should be less singular than the classical asymptotic (5) for regular cracks.
At the same time at distances l' « fo (i.e., within the dislocation free zone) and l' »{c
(i.e., when self-affine crack can be treated as a smooth cut) the asymptotic stress lield
always obeys the classical behavior (5)13, but with different stress intensity factors J(I and
J(I for l' « fo and 1'» {c, respectively [11].
One may classify fracture of solids into two broad categories, namely the brittle fracture

and the ductile fracture. The last is assodated with a high roughness of crack faces which is
characterized by the local fractal (box) dimension DB = d - H more than a certain critical
value Di! = d - H'; while a brittle fracture surface is eharaeterized by the local fractal
dimension DB < DiJ [1,2, 11,23]. 1t should be noted that the global metrie dimension of
any crack faee is equal to its topological dimensiou d - 1.14

To gain greater insight iuto the nature of the difference betwecn these two types of
fracture let us consider a correlation fnnction C(r) = (-z( -r)z(r)}/(z2(r)} [241, which for
self-affine patterns is independent of l' and possesses the remarkable equality

C( ) = (-z(-r)z(I')} = 2 (2dJl-Cd-l) -1)
l' (z2(r)} , (6)

11 The explicit expression for <1>(0, v) depeuds ou the specilic crack geometry and may be also
derived by the intcgration oí angular terms in (3) over the nanocrack orientation distribution (sce
also [221 and refereuces therein).
12 AHQ < O must be excluded from the solution as physicaHy unfeasible [211.
13 Notice that hefe we consider ou1y linear clastic solids; the stress field asymptotic in non-linear

elastic salid with linear crack is characterized by power law exponcnt Q' > 0.5, while the power law
asymptotic stress lield in elasto-plastic material with linear crack is characterized by Q < 0.5 [21J.
14 This is the rcasan Corthe classic behavior (5) al distances T » ~c.
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where r == x for a two dimensional (d = 2) problem, and r = (x, y) for a three dimensional
(d = 3) one [6]. It can be clearly seen, that if H > H', then C(r) > O and the crack
trajectory (surface) displays persistence, ¡.e., a trend at r (e.y., a high or low value)
is likely to be followed by a similar trend at r + é.r, whereas one has antipersistence
(C(r) < O) when H < H'. When the roughness exponent assumes the critical value
H = H' then one has a random pattern for which the correlations between increments
vanishes for all r. The critical value of roughness (Hurst) exponent, which is associated
with the brittle-to-ductile transition, may be defined from (6) as H' = (d -1)1 d, 15 where d
is the dimension of the problelll under consideration. If H > H', a variance of increlllents
b(é.Lx) = (Iz( r +é.Lr) - z( r )1) is a slllooth (dilferentiable) function of the crack projection
length increment é.L" while for H < H' the graph of b(é.Lr) is a nondilferentiable self-
affine fractal, which obeys scaling behavior b (é.Lr) ex (é.Lr)2H characterized by fractal
dilllension da = d - 2(1 - H)16 [6] within the interval of self-affinity of crack-faces lo <
é.Lr < ~c.
Now, it is easy to understand that there are two dilferent types of stress behavior

near the tip of a self-affine crack, which are associated with brittle and ductile fracture.
Namely, if the roughness exponent H < H', ¡.e., the local fractal dimension of crack face
Du > DiJ17 (very rough cracks!), ,,= O, so that stresses does not depend on r within the
interval (2) and we have

(7)

while for a less rough brittle cracks, which are characterized by H > l/' (Du < DiJ)
the asymptotic of stress ficld obeys power law behavior (4), which is characterized by the
scaling exponent

0< " = ! - '/< !. (8)

(9)

Experimental studies have revealed that a crack propagates in a solid due to the ini-
tiation of new nanocracks at its tip [18]. This iuitiation results in a release of elastic
energy é.UE which provides energy for further crack development. The well-known path-
independent (invariant) J integral of fracture Illechanics has been related to potential-
energy-release rates associated with moving or extending cracks in linear elastic solids, as
well as in non-linear elastic and elasto-plastic materials (see, for example, Ref. [21)).18
Considering a small circular contour r of radius l, encompassing the crack tip (see

Fig. 2b), we can wrile the J integral as

J = ir (IVIl! - aijlljll;¡) ds,

15 Notice lhat this relalion was firsl ohtained in [11Jby other means.
16 This formula is a generalization of the relation eln = 2H which was derived iu neL 125)for the
Weierstrass-Mandelbrott fuuclion (el = 2).
17 Thc critica1 value oC the local fractal dimcllsioll Dil is ('qual to 1.5 ror a two dimensional

problcm and to 2.33 for a threc dimensional onc.
18 Various path-independcnt integrals considered in conveutionai fracture mechanics are associ-
ated with different conservation laws [21,26J.
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where s is the arc length along r, (Jij is the stress tensor, Ui is the displacement vector,
{nj} is the normal vector,19 and the strain-energy density W is a single-valued function
of the strains Uij.

It is well known that this integral is path-independent for any linear cut in an elastic
solid [21,26). At the same time, it is easy to understand that in the case of a self-affine
crack this integral is not invariant, beca use the number of singular points enclosed by
different contours is different (see Fig. 2c).

Substituting (4) into (9) shows that within the interval (2) the J-integral scales as

(10)

where Q is defined by Eq. (8). On the other hand, suppose that 6£ = J 6SL is the energy
flux at the crack tip as the crack length (area) increases. In the case of a self-affine crack
6SL ex (6L.)DO, where 6L. is the crack projection length and DD = min {(d - 1)/ H, d}
is the latent dimension of the crack face [11]. Hence, if crack faces are self-affine the
conventional J-integral (9) obeys scaling

(11)

It immediately follows from Eqs. (10) and (11) that the stress singularity exponent Q is
equal to

1 - d(1 - H) 'f H H' 'f H '
Q = 2H ' 1 > ; or Q = O, 1 ::; H , (12)

Notice that relation (12) was first derived in ReL [11] by other means.
In a certain sense, a decrease of the stress singularity exponent Q owing to increase

in the crack roughness is similar to a decrease of the exponents of stress field singularity
in the vicinity of a wedge-like notch on account of increase in its angle (see Fig. 2d).
Therefore, the stress intensity factors ami invariant Jr integral for self-affine crack can be
also estimated using the weight function method [27120

For a wedge-like notch with angle f3 (see Fig. 2<1)the invariant J{i integral is defined by
introducing the weight fllnction F{i obeying scaling behavior F{i = s-<P feO) [271 and reads

(13)

where O is the angular coordinate and <p = <p(f3).

19 For the problem with self-afline crack, {",} can be defined within a framework of non-standard
analysis; notice that {oc the purposcs oí the prescllt work \Ve nccd to kIlow only thc changc in {1!)}
along the crack trajectory.
20 \Veight functions wece introduced in fracture mcchanics by llucckncr {28J.Thcy provide weights

foc the loads appliccl to the crack surfaccs, such that their wcightcd integrals over the crack surfaces
provide the stress intensity factars al a chasen poinl. Thus, thcy are related lo Grren '5 functions Coe
the crack: they are, in fact, thc stress intensity factors associated with concentratcd point loading of
the crack surfaces but they can also be constructcd as solutions of the equations of equilibrium with
zero tractions 011 thc crack surfaccs but with an unphysical singularity at thc crack edgc [28,29].
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It is important that in the case of self-affine crack the scaling behavior (10) occurs
only within a bOllnded interval (2), so we can apply to the weight fllnction Fr a scaling
(incomplete self-similarity) representation (see Ref. 130))

Fr = s'" f(()), cP = 21/ = 1 - 2"" (14)

(15 )

where '" is defined by Eq. (12). Now, it is easy to verify that the integral

Jr = Ir (\Vn1 - u¡jnju;¡) Frds,

with U;j and Fr given by Eqs. (4) and (14), respectively, does not depend on the chosen
contour r.
The elastic energy release associated with the self-affine crack growth may be esti-

mated as

(16)

where ue(r) "" (u2(r))/2E is the mean density of the elastic energy in the unloading zone
V~L near the crack tip, and E is the YOllng modulus. After averaging the stresses (4)
along fin the llnloading zone V~dlo < /';.Lx < (c, we find (u2(r)) ex r-20, and after
substituting (u2

) into (16) we obtain /';.UE ex (/';.Lx/lo)d-20; hence, the energy release rate
G = /';.UE/ /';.Lx scales with the increment of self-affine crack length in the direction of
crack growth /';.Lx (within the interval lo < /';.Lx < (c) as

if fracture is brittle (H > H'); or as

(d - 1)(1 - H)
cP = H ' (Ji)

(18)

if fracture is dllctile (ll :<::: H'),21 while at larger scales G = Jc is constant (Jc is the
critical value of the conventional J-integral (9)).22 The reslllts obtained by Eqs. (17)
and (18) are in good agreement with experimental data which were reported and analyzed
in Refs. 123,31,32).
Now, let us consider a wedge-like notch with self-affine edges (see Fig. 2e). Under the

assumption that the weight function can be represented as the product of the F{3 and Fr,
we derive the asymptotic stress field which is prodllced by such wedge-like notch in the
following form:

d-1 d+1
"'" = A+ 21l - -2-' lo < r < (c, (19)

21 In the mechanics oC straight crack, G", le '" const.! [211.
22 It is precisely tltis macroscopic va)ue of energy rclcase rate le the DIle cstimatcci in standard
experimental tests [21].
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a b

(7TT

R r-R -R +~c O R - ~cR ro-R
FIGURE 3. Stress distribution in the elastie cylindcr oí radius R undcr longitudinal tcnsile load
,,~ in the case of smooth (a) and sclf-afline (d = 3, Jl = 1/2. m = 1) (b) boulldary surface.

where >. is defined by the conventiollal equation [21]

sin 2.\(" - /3) = :l:>.sin2(" - /3). (20)

It is easy to see that stresses cease to be singular if /3 :<:: /3', where the critical value for
the notch angle /3' is defined by the equation

.\(/3') = (d + 1)1~;; (d - 1). (21)

Moreover, from Eq. (14) it follows that a self-affine roughness leads to unloading of an
clastic materialnear the free boundary (/3 = ,,/2), ¡.e.,

(T)'"aij ex: f
o

'
1- H

O< In = (d - I)----;¡¡¡, T < ~c, (22)

so that the stress distribution in the specimen with a self-affine boundary surface has the
form shown in Fig. 3b, instead of the stress distribution in the specimen with a smooth
surface, which is shown in Fig. 3a.
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