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Mechanics of self-affine cracks:
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ABSTRACT. A novel concept of equivalent traction is suggested to account for the mechanics of
self-affine cracks. This concept is used to construct path-independent integrals for some problems
with self-affine crack, which in turn are used to establish the asymptotic stress field near the
wedge-like notch with self-affine edges and the energy release rate associated with self-affine crack
propagation. The unloading of self-affine boundaries of an elastic solid is predicted for the first
time. Some new useful relations are also derived. The theoretical results are discussed with respect
to recent experimental observations.

RESUMEN. Se sugiere un nuevo concepto de traccién equivalente para la mecdnica de las grie-
tas auto-afines. Se construyen, empleando este concepto, algunas integrales independientes de la
trayectoria para algunos problemas con grietas auto-afines, las cuales a su vez son utilizadas para
establecer el campo de tensién asintética cerca del corte en cufia con bordes auto-afines y la rapidez
de liberacién de energia asociada con la propagacién de la grieta auto-afin. Se predice la descarga
de fronteras auto-afines de un sélido eldstico. Se derivan también algunas relaciones nuevas que son
de utilidad. Se discuten los resultados tedricos respecto a observaciones experimentales recientes.

PACS: 03.40.Dz; 46.30N; 62.20M

The propagation of cracks is a problem of both technological and scientific interest. This
has motivated a large amount of research into how cracks form, and how, once formed,
they propagate.

It is well known that real cracks in solid materials have little resemblence to ideal
cracks with smooth edges, which are usually considered in fracture mechanics [1,2]. For
this reason, in recent years, the quantitative analysis of fractured surfaces has become
an integral part of the study of deformation and rupture of materials [3]. Such surface
analysis often provides information about surface morphology which is complementary to
that obtained by other metallurgical methods. It is now clearly established that fracture
surfaces can be considered as self-affine objects [1,4].! Hence the usual treatments based
on the continuum elasticity theory do not provide simple tools for discussing the essential

! The concept of self-affine fractals is being greatly useful in identifying a hidden symmetry in
a wide variety of objects and phenomena in nature [5].
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nonlinearities of the problem. At the same time, it has been emphasized that a merely
fractal description of crack faces can hardly benefit our understanding of the mechanism
underlying failure phenomena [1,2,6-12].

Fractal geometry, developed by Mandelbrot [13], allows the description of irregular
forms which are more complex than Euclidean shapes. A feature having fractal property
can be characterized by its fractal dimension D [5,13]. It should be emphasized that most
experimental studies indicate that fracture surfaces and crack propagation paths are self-
affine rather than self-similar [1,4]. In the application of fractal models to real crack faces
the concepts of self-similar and self-affine fractals must be carefully distinguished [11,12,
14].

The fundamental difference between self-similar and self-affine fractals is the way scal-
ing will produce statistical equivalence.? Self-affine crack faces are statistically invariant
under an affine transformation [13]: 2’ — Az, ¥’ — Ayy, 2’ — A.z. Requiring that such
transformations be combined, a group structure is implied. As a consequence A, and A,
have to be homogeneous functions of, say, A;; both scale as A, x A, A, o A% but the
exponents v, and v, are in general different.® If so, then A, o ,\;" , where the roughness

(or Hurst) exponent [13] is given by the relationship?

In the special case of an isotropic surface with mean plane parallel to the coordinate
plane (z,y), we have v, = 1, so that H = v,. The last relation is also valid for any self-
affine profile on a two-dimensional plane. As an example of a self-affine curve we can refer
to the graph of the Mandelbrot-Weierstrass function

2(e)= i A~HE ¢os (Ak;r) g AL,
k=0

which is nowhere differentiable and is often used as a model for the real crack faces [15,16].
The standard deviation of this function obeys scaling behavior®

(z) o (z)H. (1)

However, in contrast with self-similar fractals, the fractal dimension of self-affine patterns
is not uniquely defined. First of all we must distinguish between the local (L < &¢) and

2 Self-similar fractals may be scaled equally in the z— and y-directions to produce statistically
equivalent profiles, whereas self-affine fractals must be scaled by different amounts in the r— and
y—directions to produce statistical equivalence.

3 The exponents v, and v, are analogous to those of anisotropic correlation lengths in critical
phenomena such as in liquid crystals [5].

4 Notice that in the case of any self-similar fractal vy = v, = 1/D, so that H = 1. This means
that the Hurst exponent is useless when discussing both self-affine and self-similar fractals in the
same context.

5 It should be emphasized that the relation (1) is valid only for the standard deviations of
coordinates (z) and {z), but is not valid for the self-affine function z(z) itself.
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the global (L > &c) fractal dimensions.® The latter is always equal to the topological
dimension of the self-affine fractal, while in the local limit there are various definitions for
different fractal dimensions, which are associated with different scaling properties of a self-
affine fractal. The relationships between Hurst exponent and various fractal dimensions are
given in Ref. [11]. Here we note only that the metric (box-counting) fractal dimension Dg
is equal to d— H, where d is the topological dimension of the surrounding Euclidean space,
while the latent (local divider) fractal dimension is Dp = (d — 1)/H, if H > (d — 1)/d, or
Dp=d,if H<(d-1)/d [5,11].7

It was shown in Refs. [11,12] that the acceptance of the self-affine geometry of crack
faces leads to a change in the asymptotic stress field near the tip of a self-affine crack, and
affects in this way the fracture toughness. Namely, stresses associated with a self-affine
crack are less singular than the stress field in the vicinity of a linear cut. The explicit
expressions for stress singularity exponent, which is associated with a self-affine crack, were
derived in Ref. [11] within a framework of dimensional analysis on the basis of the energy
balance arguments. At the same time, the authors of Ref. [17] have adduced arguments to
show the incompatibility of the conventional fracture mechanics with the fractal geometry
of fracture patterns. Because of this, the incorporation of fractal concepts to fracture
mechanics is a problem of critical importance. One way of doing this is suggested below.

Before proceeding further, we note that any real crack path obeys self-affine properties
only within a bounded interval of length scales

b < L <&c, (2)

where fo ~ 107% m is the microscopic cutoff (the dislocation free zone size (1-3, 18])
and éc ~ 1072 m is the self-affine correlation length [1-3, 19]). Hence, a crack face can
be treated as a nonstandard curve (surface), the standard part of which is a self-affine
fractal.® In this way we can build curvilinear coordinates along any “self-affine” crack
face; so that we can define the change in the normal vector to the crack face along its
trajectory, and in turn analyze a problem with self-affine crack within a framework of a
powerful tools of the continuum mechanics.

Now, let us consider an infinite linear elastic solid with traction-free self-affine crack
with a mean plane perpendicular to the direction of the tensile stress oy; prescribed at
infinity (see Fig. 1). This problem is related to the tensile mode (Mode I) of loading for the
problem with a linear crack (cut). At the same time, we note that, while in the problem
with linear crack (cut) the crack tip is the unique singular point for the elastic fields, in
the case of a self-affine crack singular points of the elastic field occur not only at the crack
tip but also on the rough crack faces, and within the interval (2) singularities exist at all
scales. Moreover, in the case of self-affine crack, the crack singularity field produced by
any linear part of self-affine crack? is a linear superposition of the three basic modes of

® L is the characteristic scale of measurements and ¢ is the self-affine correlation length [5,11].

" Notice that for self-similar fractals Dp = Dg (see also footnote 4).

® The foundations of non-standard analysis and its application to some problems of fractal
geometry is considered in [20].

? These parts have lengths of the order of ;.
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FIGURE 1. Reduction of the problem with self-affine crack and longitudinal tensile stress o;; to
the problem with self-affine crack loaded by unknown traction Tj;.

cracking [21,22]. However, in any plane problem this field is a linear superposition of only
two modes [22]!° and can be represented as [6]

I 0 .6 . 30 .0 ) 30
o cos — l—sm—sm? —ksin=[2+cos-cos— )|,

Varr 2 2 2 2 2
o Lo [COS 9 (1 + sin “ sin 39) + k cos y si g cos 39] (3)
vy e~ 2 2 2 2 2 2]
Kir. . fw
Oz = V(0zz + Oyy), k= EO(S]I] (E—Tp),

where v is the Poisson’s ratio, K| and Ij; are the stress intensity factors associated with
modes I and II, respectively; v is the angle between the stress applied at infinity and the
linear nanocrack face, and 6 is the angle between the (nano)crack face and the direction
of observation (see Fig. 2a).

Furthermore, if the principle of superposition [22] for contributions from all parts
(nanocracks) is valid, the problem under consideration can be replaced by an equiva-
lent one: self-affine crack faces are loaded by a traction T;; and stresses vanish at infinity,
as shown in Fig. 1.

Traction Tj; consists of the regular o-induced traction T'(o;;) and the unknown addi-
tional traction T7; due to the contribution from all singular points along the crack faces.
The last (singular) term of stress field near the self-affine can be represented as a sum of
the contributions (3) from all linear parts (nanocracks) along the crack edges (within the
interval of self-affinity (2)!). By virtue of the fact that £y < £c this sum can be replaced
by the integral

X n(-z

) ) o .
ai; o (0, ¥) f_gc e O de o KeX 7 (4)

10 Namely, the tensile (Mode I) and in-plane shear (Mode II) modes.
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FIGURE 2. The polar coordinate system (a); paths of J integration for cracks with smooth edges (b):
J(I') = J(I'") = G; and with self-affine edges (c): J(T') < J(I'), but Ji(T') = J¢(I'"); and polar
stresses at a wedge-like notches with smooth (d) and self-affine (e) edges.
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where X = r/{y, r is the distance from the crack tip and z is a variable; n(—xz) oc x"
is the number of singular points within the interval (—z,0), and ©(...) is the Heaviside
unit function, ©(—z) =1 for z < 0 and © = 0 for z > 0; ¢;;(0,v) is the dimensionless
function of # and v.1! The coefficient K;(fv) may be treated as the stress intensity factor
for self-affine crack (instead of common stress intensity factors K7 and Kjj in conventional
fracture mechanics).

For the problem with a regular (smooth) crack (that is, the special case of the problem
under consideration!) we simply have H = 1 and 5 = 0, so that the singular term of an
elastic field obeys the standard inverse square root asymptotic [21],

Oij = I—\;:T(ﬁs(G,V), (5)

while for the graph of an independent random (Wiener) process (which was used in
Ref. [21] as a model of crack trajectory) H = 1/2 and n = 1/2, so that there is no
stress field (power law)singularity, because a = 0 (o;; o< In X).

Generally, we can expect that 7 is a monotone increasing function of the roughness
(Hurst) exponent H. The last varies from 0 to 1 [5], so that always # > 0 and 0 < a <
1/2.12 Hence in the problem with a self-affine crack the asymptotic stress field near the
crack tip always should be less singular than the classical asymptotic (5) for regular cracks.
At the same time at distances r < £y (i.e., within the dislocation free zone) and r > {¢
(i.e., when self-affine crack can be treated as a smooth cut) the asymptotic stress field
always obeys the classical behavior (5)!3, but with different stress intensity factors K and
K for r < £y and r > £c, respectively [11].

One may classify fracture of solids into two broad categories, namely the brittle fracture
and the ductile fracture. The last is associated with a high roughness of crack faces which is
characterized by the local fractal (box) dimension Dg = d — H more than a certain critical
value Dfj = d — H*; while a brittle fracture surface is characterized by the local fractal
dimension Dg < D} [1,2,11,23]. It should be noted that the global metric dimension of
any crack face is equal to its topological dimension d — L

To gain greater insight into the nature of the difference between these two types of
fracture let us consider a correlation function C(r) = (=z(=7)2(r))/(z%(r)) [24], which for
self-affine patterns is independent of r and possesses the remarkable equality

C(r) = (=2(=n)z(r) _, (ZdHu(d—l) _ 1) , (6)

11 The explicit expression for ¢(f,v) depends on the specific crack geometry and may be also
derived by the integration of angular terms in (3) over the nanocrack orientation distribution (see
also [22] and references therein).

12 All @ < 0 must be excluded from the solution as physically unfeasible [21].

13 Notice that here we consider only linear elastic solids; the stress field asymptotic in non-linear
elastic solid with linear crack is characterized by power law exponent o > 0.5, while the power law
asymptotic stress field in elasto-plastic material with linear crack is characterized by a < 0.5 [21].

14 This is the reason for the classic behavior (5) at distances r > {c.
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where r = x for a two dimensional (d = 2) problem, and r = (z,y) for a three dimensional
(d = 3) one [6]. It can be clearly seen, that if H > H*, then C(r) > 0 and the crack
trajectory (surface) displays persistence, i.e., a trend at r (e.g., a high or low value)
is likely to be followed by a similar trend at r + Ar, whereas one has antipersistence
(C(r) < 0) when H < H*. When the roughness exponent assumes the critical value
H = H* then one has a random pattern for which the correlations between increments
vanishes for all 7. The critical value of roughness (Hurst) exponent, which is associated
with the brittle-to-ductile transition, may be defined from (6) as H* = (d—1)/d,'® where d
is the dimension of the problem under consideration. If H > H*, a variance of increments
6(ALz) = (|z(r+AL,)—z(r)|) is a smooth (differentiable) function of the crack projection
length increment AL,, while for H < H* the graph of §(AL,) is a nondifferentiable self-
affine fractal, which obeys scaling behavior § (AL,) (AL,.)M characterized by fractal
dimension dg = d — 2(1 — H)'® [6] within the interval of self-affinity of crack-faces £y <
AL, < &c.

Now, it is easy to understand that there are two different types of stress behavior
near the tip of a self-affine crack, which are associated with brittle and ductile fracture.
Namely, if the roughness exponent H < H*, i.e., the local fractal dimension of crack face
Dg > DE” (very rough cracks!), @ = 0, so that stresses does not depend on r within the
interval (2) and we have

aij(o) = oij(r) = ai;(éc), (7)

while for a less rough brittle cracks, which are characterized by H > H* (Dg < Dj)
the asymptotic of stress field obeys power law behavior (4), which is characterized by the
scaling exponent

0<a=%—-1;<%. (8)

Experimental studies have revealed that a crack propagates in a solid due to the ini-
tiation of new nanocracks at its tip [18]. This initiation results in a release of elastic
energy AUg which provides energy for further crack development. The well-known path-
independent (invariant) J integral of fracture mechanics has been related to potential-
energy-release rates associated with moving or extending cracks in linear elastic solids, as
well as in non-linear elastic and elasto-plastic materials (see, for example, Ref. [21]).18

Considering a small circular contour I' of radius ¢, encompassing the crack tip (see
Fig. 2b), we can write the J integral as

J= f (Wnl - aijnju,-l)ds, (9)
r

!5 Notice that this relation was first obtained in [11] by other means.

'8 This formula is a generalization of the relation dg = 2H which was derived in Ref. [25] for the
Weierstrass-Mandelbrott function (d = 2).

7 The critical value of the local fractal dimension Dy is equal to 1.5 for a two dimensional
problem and to 2.33 for a three dimensional one.

18 Various path-independent integrals considered in conventional fracture mechanics are associ-
ated with different conservation laws [21, 26].



168 ALEXANDER S. BALANKIN

where s is the arc length along I', o;; is the stress tensor, u; is the displacement vector,
{n;} is the normal vector,'® and the strain-energy density W is a single-valued function
of the strains wu;;.

It is well known that this integral is path-independent for any linear cut in an elastic
solid [21, 26]. At the same time, it is easy to understand that in the case of a self-affine
crack this integral is not invariant, because the number of singular points enclosed by
different contours is different (see Fig. 2c).

Substituting (4) into (9) shows that within the interval (2) the J-integral scales as

J(AT) = A2 (), (10)

where « is defined by Eq. (8). On the other hand, suppose that Ag = J ASy, is the energy
flux at the crack tip as the crack length (area) increases. In the case of a self-affine crack
ASp o« (ALz)PP, where AL, is the crack projection length and Dp = min {(d — 1)/H, d}
is the latent dimension of the crack face [11]. Hence, if crack faces are self-affine the
conventional J-integral (9) obeys scaling

J(AT) = APp=(d-1) j(1), (11)

It immediately follows from Egqs. (10) and (11) that the stress singularity exponent « is
equal to
_1-4(1-H)

— i *, — Lt < *
o Vi , iITH >B* ova=_0iTH<H, (12)

Notice that relation (12) was first derived in Ref. [11] by other means.

In a certain sense, a decrease of the stress singularity exponent a owing to increase
in the crack roughness is similar to a decrease of the exponents of stress field singularity
in the vicinity of a wedge-like notch on account of increase in its angle (see Fig. 2d).
Therefore, the stress intensity factors and invariant J; integral for self-affine crack can be
also estimated using the weight function method [27].2°

For a wedge-like notch with angle 3 (see Fig. 2d) the invariant Js integral is defined by
introducing the weight function Fj obeying scaling behavior Fg = s~ f(f) [27] and reads

Ig= f (Wni — oijnjui) Fg(s™%,8) ds, (13)
r

where @ is the angular coordinate and ¢ = ¢(f3).

19 For the problem with self-affine crack, {n;} can be defined within a framework of non-standard
analysis; notice that for the purposes of the present work we need to know only the change in {n;}
along the crack trajectory.

20 Weight functions were introduced in fracture mechanics by Bueckner [28]. They provide weights
for the loads applied to the crack surfaces, such that their weighted integrals over the crack surfaces
provide the stress intensity factors at a chosen point. Thus, they are related to Green's functions for
the crack: they are, in fact, the stress intensity factors associated with concentrated point loading of
the crack surfaces but they can also be constructed as solutions of the equations of equilibrium with
zero tractions on the crack surfaces but with an unphysical singularity at the crack edge [28,29].
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It is important that in the case of self-affine crack the scaling behavior (10) occurs
only within a bounded interval (2), so we can apply to the weight function F; a scaling
(incomplete self-similarity) representation (see Ref. [30])

Fy = s%£(0), ¢=2n=1-2q, (14)

where a is defined by Eq. (12). Now, it is easy to verify that the integral
Jr = [ (Wny — O'ijﬂju;'l) Fy ds, (15)
T

with o;; and Fy given by Egs. (4) and (14), respectively, does not depend on the chosen
contour I'.

The elastic energy release associated with the self-affine crack growth may be esti-
mated as

AUg x j ue(r) dor, (16)
VaL

where u.(r) ~ (6?(r))/2E is the mean density of the elastic energy in the unloading zone
Var near the crack tip, and E is the Young modulus. After averaging the stresses (4)
along 7 in the unloading zone Var(¢y < AL, < £c, we find (0%(r)) « r=2@ and after
substituting (o) into (16) we obtain AU (AL./l)**; hence, the energy release rate
G = AUg/AL; scales with the increment of self-affine crack length in the direction of
crack growth AL, (within the interval £y < AL, < é¢) as

s FAL P (d—1)(1 - H)
= = ¢ i 74
¢=6"(32), ¢ pA), a7)
if fracture is brittle (H > H*); or as
G=G* (ALI) , (18)
by

if fracture is ductile (H < H*),2! while at larger scales G = Jc is constant (Jc is the
critical value of the conventional J-integral (9)).22 The results obtained by Egs. (17)
and (18) are in good agreement with experimental data which were reported and analyzed
in Refs. (23,31, 32].

Now, let us consider a wedge-like notch with self-affine edges (see Fig. 2e). Under the
assumption that the weight function can be represented as the product of the Fp and F,
we derive the asymptotic stress field which is produced by such wedge-like notch in the
following form:

d—1 d+1
gij =~ K X900 ‘I’,‘j(@, v), on=A+ W == ‘;‘—, bh<r< £c, (19)

! In the mechanics of straight crack, G = Jc = const.! [21].
22 1t is precisely this macroscopic value of energy release rate Ji the one estimated in standard
experimental tests [21].
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FIGURE 3. Stress distribution in the elastic cylinder of radius R under longitudinal tensile load
0o in the case of smooth (a) and self-affine (d = 3, H = 1/2, m = 1) (b) boundary surface.

where ) is defined by the conventional equation [21]
sin 2A(w — B) = £Asin2(7 - B). (20)

It is easy to see that stresses cease to be singular if 3 < 3*, where the critical value for
the notch angle §* is defined by the equation

(d+1)1;; (d-1) 1)

AB7) =

Moreover, from Eq. (14) it follows that a self-affine roughness leads to unloading of an
elastic material near the free boundary (3 = 7/2), t.e.,

AT 1-H
= —) =(d—-1)——, A 2
U?O((fo) 0<m=(d-1) 57 r < éc (22)

so that the stress distribution in the specimen with a self-affine boundary surface has the
form shown in Fig. 3b, instead of the stress distribution in the specimen with a smooth
surface, which is shown in Fig. 3a.
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