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More about the S = Orelativistic oscillator*
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ABSTRACT. 1 start from thc Dargmann-\Viegncr equations and introduce interaction in the form
which is similar to a S = 1/2 case 1M.Moshinsky & A. Szczepaniak, J. Phvs. A22 (1989) L817].
By means of an expansioll of tIle wave function in the complete set of ¡-matrices one can obtain
the equations for a system whirh could be !lamed as the S = O Kelllmer-Dirac oscillator. Equations
Cor the components <1>1and <1>,are diITerent Cromthe ones obtained by Y. Nedjadi & !l. Darrett
Cor the S = ODuffin-Kellllller-Petiau (DKP) oscillator [J. [,hvs. A27 (1994) 4301]. As a result
the energy spectrlllll of the S = O !(elllmcr-Dirac rclativistic oscillator is dissimilar from the first
versions of the DKP oscillator. Origins of tlJis fact are givCll.

RESUMEN. A partir de la ecuación de Dargmanll-\Vigncr1 se introduce una interacción similar al
caso S = 1/2 [~1. ~Ioshinsky )' A. Szczepaniak, J. Phvs. A22 (1989) L817¡. De la expansión en
matrices ¡ de la función de onda, se puede obtener un sistema oe ecuaciones que podría ser llamado
el oscilador KClllmer-Dirac S = O. Las ecuaciones para las componentes 4>1 y q;,.l. son distintas a las
obtenidas por Y. Nedjadi y n. Darrett para el oscilador (DKP) Dnffijn-Kemlller-Petiau S = O [J.
Phvs A27 (1994) 4301]; Y el espectro de energías del oscilador relativista l\emmer-Dirac S = Oes
diferente al de la primera vertiión del oscilador DKP. Se presentan los motivos de esto.

PACS: 12.90

\Vhile the problem oCinteraction of a spinor particle with external fields is wellunderstood,
one cannot say that for the interactions oC bosnns and higher spin Cermions [1]. In the
present arlicle I consider the oscillatorlike interaction oCa S = Orelativistic particle in the
Cormalism first introduced by Kemmer [2-5]. The problem is shown lo be exactly salvable.
A general system of rclativislie wave e'luations for arhitrary spin was first written by

Dirac 13] and Fierz [6]. In my presentation I use a rcformulation oC their Cormalism by
ilargmann and Wigner 17]. FOl' the cases of spin-O and spin-I t 111' I3argmann- \Vigner setI
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1 This llame usually rcfers to the case of a symmetric wave fUllction, S = 1 and higher. However,
it is easy to sho\V that thesc eqllatiotls (1) describe a S = O partidc in the ca...<;;eof an antisymrnetric
,!'!avefUIlCtioll (sec bclo\V).
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reduces to two equations which can be written in the form (e.g., Ref. [8])

{
[h"a" - m] 'l'(x) = O,

'l'(x) [ih"( a" - m] = O,
(1)

where the wave function is a 4 x 4 matrix (symmetric in the S = 1 case and antisymmetric
in the S = O case) and the derivative acts to the left in the second equation.
Let us iutroduce the interaction as a S = 1/2 case, Ref. [91,

[h"a" - k'/"-/r; - m] 'l'(x) = O,

'l'(x) [ih"( a" - kC/10( r; - m] = O.

(2)

(3)

Then, let us expand 'l' in terms of a set of sixteen 1-matrices. The wave function can
be divided in t\Vo parts according to properties of simmetry. The set of matrices C, 15C,
151"C, provides the antisymmetric part, and 1"C, a"vC, the antisymmetric par!. This
form of interaction does not mix the S = O and S = 1 sta tes. C is the matrix of charge
conjugation.
Using the properties: Ch"( C-l = -1" and C(a"v( C-l = _a"V in the case of the

spin-O wave function2

(4)

(5)

Que can come lo

¡m<p = O,

m<jJ = -i(avAv),

mA" = -i8,,<jJ+ k [gOVg,,; + g;Vg"oJ r; Av.
Thus, the initial reducible representation is decomposed into the (1/2,1/2) vector rep-
resentation, the (O,O) scalar representation and the trivial (pseudo)scalar representation,
similar to the Duffin-Kemmer-Petiau algebra. Without interaction (k = O) the above equa-
tions coincide (\Vithin the definition of K, the constant which is proportional to mass) with
Eqs. (26.12) in Ref. [41aud Eqs. (247,247') in Ref. [5a], which characterize the formalism
of Kemmer:J

(6)

2 The case oí the spin S = 1 in the Bargmann- \Vigner formalism will be reported elsewhere.
Here we nole lhal lhe higher spin relalivislic oscillalors have bccn considered earlier in lhe Duflin-
Kemmer formalismo Ref. [la. IIJ, and in lhe Dowker fromalislll [12. 13J. The lalter [14J reveals
slIrprising similarities with the S = 1/2 case, however, the problcm of redundanl components is
not yct sol ved.

3 This formulation is also containcd in the more general formulation oí Dirac [3] as mentioned in
Ref. [4). Therefore, 1 lake a liberly lo name the eqnalions (17.18) as lhe l\emlller-Dirae oseillalor.
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After substitution of the second equation into the !irst one, they yield the Klein-Gordon
equation for a spinless Cj;partide.
For stationary states Cj;(x,t) = Cj;(x)exp( -iEt), A~(x, t) = A~(x) exp( -iEt) the aboye

set (5) is rewritten t04

¡ --mCj; = -EAo - i\l A,

mAo = -ECj; + k(iA),
mA = i\lCj;+ kiAo.

(7)

1 will show that the aboye equations describe an oscillatorlike system. S = O relativistic
oscillators are also considered in Refs. [10~12, 15, 161.
After simple algebraic transformations one can come to the following set of equations:

¡
(E - m)<p¡ = ¡;-A,

(E +m)<p2 = i¡+A,~
¡;+<p¡ - ¡;- r/J2 = mA,

where ¡;= + -e;, ¡;I = 72 (¡;:f:kT) and

(8)

(9)

Now it is useful to compare our set of equations with the set of Ref. [111.5 After appli-
cation of the unitary transformation with the matrix

(

O i

U = ~ ~
(lO)

to our 5-dimensional function 1/J = column( <p¡ r/J2 Ji ) one can recover the equation of the
DKP approach with "tensor" interaction:

D1/J(x) [~ ~ ~ ]i130iit = 13. ¡;- k 130(13. T) + k(l3. T)130+m 1/J(x). (11)

4 1 chose a dependen ce oC the wave CunctioIlon time similar to ReC5.[9,11). If we use <¡;(x, t) =
<¡;(x) exp(iEt), A,,(x, t) = A,,(x) exp(iEt), the componeIlts </JIaIld </J2are oIlJy interchanged each
other and w _ -w in Eqs. (17,18); surprisingly, this docs not lcad to any change in the energy
spectrum.
s Eqs. (9) oC the cited paper are the anaJogs oC our eqIlatioIls (7), hut with a different Corm oC

interaction. 1 would still like to poillt out that tile IUcthod of solvillg the problcffi, used in the
paper [11]' does not take into accouIlt the degeneracy oC the Jevel, in the quantum numher M.
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Multiplying the lirst and the second equations, Eqs. (8), by m one linds

{
m(E - m)<P1 = ¡;-¡;+<Pl - ¡;-¡;-<P2

m(E + m)<p2 = ¡;+¡;+<Pl - ¡;+¡;-<P2,

and acting m(E + m) on the lirst equation and m(E - m) on the second one yields

(12)

{
m2(E2 - m2)<p¡ = m(E + m)¡;-p+<P1 - (¡;-¡;-)(¡;+¡;+)<PI + (¡;-¡;-)(P+¡;-)<P2

m2(E2 - m2)<p2 = -m(E - m)¡;+¡;-<P2 - (¡;+¡;+)(¡;-¡;-)<P2 + (¡;+¡;+)(¡;-¡;+)<PI.
(13)

Finally, by means of the use of the following commutation relations:

[ptPjL =ik6ij, [pfptL =0,

{pip} - ptpj }f(f) = [-ik6ij + kfjikLk] f(f),

{¡;-¡;+ + ¡;+¡;-} f(f) = [¡;2 - k2i2] f(f),

(14)

(15)

(16)

(with Lk being the operator of the angular momentum and k = imw) for the S = O case
we obtain

(E2 - m2)<p¡ = [¡;2 + m2w2i2 + (E + 2m)w + w21,2] <PI,

(E2 - m2)<p2 = [¡;2 + m2w2i2 + (E - 2m)w + w21,2] <P2.

(17)

(18)

In fact, one has the oscillator-behaved term (m2w2i2); however, there are additional
terms comparing with Eq. (10) of the paper [UI, the Dllflin-Kemmer-Petiau oscillator.
The operator of the angular momentllm £2 is not present in the equations of Ref. [I II and
there is no dependence of the "constant" term on the energy there. The presence of this
ter m could lead to sorne speculations since one can show that a consequence of this fact is
the "splitting" of energy levels in the both equations. Namely, one has two roots in each
of equations. Moreover, if we pass to the nonrelativistic limit (E = f + mc2, f « mc2)
one has the quantity (2mc2 - hW)f, which could be equal to zero or even negative. In the
mean time, the sum of the remained terms on the rhs in the lirst equation (17) is positive.
Does this fact signify that the oscillator system surveys not for all frequency values? More
detailed analysis presented below permits us to answer these questions.
Now let us seek to solve Eq. (17). For idelltification purposes, in what follows it is

(Elv./ - m2)/2m rather than EN./ which I seek s{nce the lirst form reduces to the usual
Schriidinger eigenvalue in the non-relativistic limito If the basis functions of Ref. [9] are
used, then £2<Pl.2 = £1.2(f¡,2 + 1)<P1,2and energy eigenvalues of the equation associated
with Eq. (17) cOllld be found from the algcbraic cqllation

1 2 2 W w
2

( 3)-(E -m )-(E+2m)--£¡(f¡+1)-= N1+- w,
2m 2m 2m 2

(19)
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where the principal quantum number is a non-negative integer. This equation is quadratic
in E and has therefore 2 roots. The solutions of Eq. (19) are

where

I 2 2 (r' 5) ( ¡) w
2

2m(E,,-m)= 1\1+2 w+ e¡(el+l)+2 2m :!:~l, (20)

(21 )

This formula has structmal similarities with the eigenvalues found for the DKP oscilla-
tor, Re£. [111, i.e., it involves the usual 3-dimcnsional harmonic oscillator encrgy, a tcrm
proportional to e( e + 1) which appears as somc kind of rotational cnergy and the third
contribution ~ to cncrgy, which is a complicatcd function of thc oscillator frequency, el
and N¡.
In the limit whcre thc oscillator frequencics arc sueh that ftw« mc2, keeping only the

first-order tcrm in w in the equations leads to

(22)

(23)

I now scck to solve thc sccond cquation (18). Using thc samc proccdurc as aboye the
two cigcnvalucs of thc cncrgics are

(24)

where

(25)

In the limit of low frequencics

(26)

(27)

The condition of compatibility of thc set of cquations (17,18) cnsures us that N2 =
NI + 2 and e2 = el' Thcrcforc, in the relativistic region we havc two physical (positive
and ncgativc) values of thc cnergy like to thc othcr formulations of an intcracting S = O
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relativistic partide. However, a remarkable feature of the presented formulation is the
double degeneracy (in N) of the levels in the limit hw « me2 except for the ground
leve!. Let us note that such a phenomenon has been revealed in Ref. [15] (eJ. ," with
Eqs. (!la, !lb) of the cited work). However, reasons for the introduction of the matrix
structure in the Klein-Gordon equation were not explained there. Next, 1would like to note
that the quantity (El - m2)/2m is seen from Eqs. (20,21) 01' (24,25) to be non-negative
even in the high-frequency limil.
Let me draw your kind attention to one more paradox,6 which also can occur in the

case of the Dirac oscillator of Moshinsky [9]. If we put one of the co:uponents (e.g., <1>2)

equal to zero in the 5-component wave function 1/J = column (ePI eP2 A) at first sight one
can obtain the different spectrum E = m + (N + 3)w. It follows from the resulting linear
equation for the energy (as opposed to equations (17, 18), which are quadratic). However,
let us not forget that, in fact, such a constraint eP2 = ° leads to another constraint on
ePI, jJ+. jJ+ePI = 0, which substitutes the dynamical equation (8b). One can come to the
same paradox in the set of equations (7) of Ref. [9] if we put one of the spinors (e.y.,
1/J2) to zero. Namely, the spectrum would be E = m and the constraint (5. jJ+)1/Jl = °
would restrict the wave function there. The deeper consideration reveals the fact that
in both cases we come over from a set of equations of the first order in energy (in fact,
in time in the coordinate representation) to the one equation of the second order. In
general, the mathematical validity of such a procedure is not dear, but we do not have
any alternative way to solve them, cj. with the consideration of the Dirac partide in the
uniform magnetic field in the well-known textbooks, e.y., Ref. [17, p. 67). Nevertheless,
by using lengthy transformations of the operator j} = 'ijkrjPk'ilmr¡Pm and of Eq. (17)
as well as taking into account the mentioned conslraints one can prove that the positive-
energy part of the spectrum (19) reduces to the speclrum of the different physical system
with eP2 = O (i.e., it coincides with E = m + (N + 3)w). The constraint jJ+ . jJ+ePI = O
is equivalent to the connection between the principal quantum number and the orbital
quantum number £1 = N¡ + 2 = N2• The problem of the negative-energy part of the
spectrum of Eqs. (17,18) deserves further elaboration. At the moment 1would stilllike to
menlion the following. In the rest frame it is easy lo see that eP2 = O (01' Ao = -1,3) does
eliminale negative energies under the used choice of the slalionary states.
In condusion, let me mention that a behavior of a scalar partide in external fields has

been considered in many publications, see, e.y., the bibliography in Refs. [18,19). Recent
pu!Jlications, Ref. [20]' deal with a solution of the problem of finding the energy spectra
of a scalar partide with polarizability in the constant magnetic, electric fields and in the
field of the plane electromagnetic wave. I!owever, as we leamt, the model of the S = O
oscillalor with the intrinsic spin structure has very specific peculiarities, which differ it
from the other moJel useJ, e.y., in descriptions of 'Tr- and K-mesons.

6 1 thank Dr. Y. Ncdjadi and Dr. R.e. Darrett for privatc rommunications 011 the above-
Illcntiolled paradox.



178 VALERI V. DVOEGLAZOV

ACKNüWLEDGEMENTS

1 acknowledge valuable discussions with A. del Sol Mesa. The help of Pro£. Yu. F. 5mirnov
and Dr. Y. Nedjadi is greatly appreciated. 1 am grateful to Zacatecas University for a
professorship.

REFERENCES

1. G. Velo and D. Zwanzinger, Phys. Rev. 188 (1969) 2218; K. Babu Joseph and M. Sabir, J.
Phys. A 9 (1976) 1951; J. Daicic and N.E. Ftankel, J. Phys. A 26 (1993) 1397.

2. N. Kemmer, Pro<;.Roy. Soco A 166 (1938) 127.
3. P.A.M. Dirac, Proc. Roy. Soco A 155 (1936) 447.
4. E.M. CorsoD, Introduction to tensors, spinors, and relativistic wave equations, New York,
Hafner (1953), p. 98.

5. A. March, Quantum mechanics 01 partides and wave fíe/ds, New York, \Viley (1951), p. 176;
see also A. Visconti, Quantum fíe/d thcory, Vol. 1. Pergamon Press (1969), p. 183.

6. M. Fierz, He/v. Phys. Acta 12 (1939) 3; M. Fierz and \V. Pauli, Pro<;.Roy. Soco A 173 (1939)
211.

7. V. Bargmann and E.P. \Vigner, Proc. Na!. Acad. Sci. (USA) 34 (1948) 211.
8. D. Lurié, Partides and fíe/ds, New York, Interscience (1968), p. 30.
9. M. Moshinsky and A. Szczepaniak, J. Phys. A 22 (1989) L817.
10. N. Debergh, J. Ndimubandi and D. Strivay, Zeit. Phys. G 56 (1992) 421.
11. Y. Nedjadi and R.C. Barrett, J. Phys. A 27 (1994) 4301; sce also J. Math. Phys. 35 (1994)

4517.
12. V.V. Dvoeglazov and A. del Sol, Notes on the oscillatorlike interactions of varions spin rela-

tivistic partides. In Proc. 01 the JI Workshop Osciladores Armónicos, Cocoyoc, México. Marzo
23-25, 1994. NASA Conference Pub. 3286, pp. 333-340.

13. V.V. Dvoeglazov, Nuovo Gim. A 107 (1994) 1785.
14. J.S. Dowker and Y.P. Dowker, Proc. Roy. Soco A 294 (1966) 175; J.S. Dowker, ibid. 297 (1967)

351.
15. S. Brnce and P. Minning, Nuovo Gim. A 106 (1993) 711; ibid., 107 (1994) 169(E).
16. V.V. Dvoeglazov, Nuovo Gim. A 107 (1994) 1413.
17. C. Itzykson and J.B. Zuber, Quantum fídd theory. McGraw-Hill (1980).
18. A.A. Sokolov and I.M. Ternov, Rclyativistskii e/ectron. Moscow, Nauka (1974) [English trans-

lation: Radiation lrom Re/ativistic Electron, Am. Inst. Phys. (1986)J.
19. V.G. Bagrov et al., Tochnye resheniya rclativistskih volnovyh "mvnenii, Novosibirsk, Nauka

(1982).
20. S.1. Kruglov, Izvestiya VUZov, No. 1 (1991) 91 [English translation: Sov. Phys. J. 34 (1991)

75J; ibid., No. 2 (1991) 40 [English translation: Sov. Phys. J. 34 (1991) 119); ibid., No. 7 (1992)
84 [English translation: Russ. Phys. J. 35 (1992) 6561.


