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More about the S = 0 relativistic oscillator™
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ABSTRACT. I start from the Bargmann-Wiegner equations and introduce interaction in the form
which is similar to a § = 1/2 case [M. Moshinsky & A. Szczepaniak, J. Phys. A22 (1989) L817].
By means of an expansion of the wave function in the complete set of y—matrices one can obtain
the equations for a system which could be named as the S = 0 Kemmer-Dirac oscillator. Equations
for the components ¢, and ¢, are different from the ones obtained by Y. Nedjadi & R. Barrett
for the § = 0 Duffin-Kemmer-Petiau (DKP) oscillator [J. Phys. A27 (1994) 4301]. As a result
the energy spectrum of the § = 0 I{emmer-Dirac relativistic oscillator is dissimilar from the first
versions of the DKP oscillator. Origins of this fact are given.

RESUMEN. A partir de la ecuacién de Bargmann-Wigner, se introduce una interaccién similar al
caso § = 1/2 [M. Moshinsky y A. Szczepaniak, J. Phys. A22 (1989) L817|. De la expansién en
matrices 7 de la funcién de onda, se puede obtener un sistema de ecuaciones que podria ser llamado
el oscilador Kemmer-Dirac S = 0. Las ecuaciones para las componentes ¢, y ¢- son distintas a las
obtenidas por Y. Nedjadi y R. Barrett para el oscilador (DKP) Duffijn-Kemmer-Petiau S = 0 [J.
Phys A27 (1994) 4301]; y el espectro de energias del oscilador relativista I{emmer-Dirac S = 0 es
diferente al de la primera version del oscilador DKP. Se presentan los motivos de esto.

PACS: 12.90

While the problem of interaction of a spinor particle with external fields is well understood,
one cannot say that for the interactions of bosons and higher spin fermions [1]. In the
present article I consider the oscillatorlike interaction of a S = 0 relativistic particle in the
formalism first introduced by IXemmer [2-5]. The problem is shown to be exactly solvable.

A general system of relativistic wave equations for arbitrary spin was first written by
Dirac [3] and Fierz [6]. In my presentation I use a reformulation of their formalism by
Bargmann and Wigner [7]. For the cases of spin-0 and spin-1 the Bargmann-Wigner set!

* Talk presented at VIII Reunién Anual de Divisién de Particulas y Campos, Sociedad Mexicana
de Fisica, México, 15-17 de junio de 1994.

" On leave of absence from Dept. Theor. & Nucl. Plys., Saratov State University, As-
trakhanskaya str., 83, Saratov, Russia. E-mail: valeri@cantera.reduaz.mx, dvoeglazov@main1.jinr.
dubna.su.

! This name usually refers to the case of a symmetric wave function, S = 1 and higher. However,
it is easy to show that these equations (1) describe a S = 0 particle in the case of an antisymmetric
wave function (sec below).
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reduces to two equations which can be written in the form (e.g., Ref. [8])
{ [iv# 3y — m| ¥(z) = 0,

s i (1)
U(z) [i(v*)" 8, —m| =0,
where the wave function is a 4 x 4 matrix (symmetric in the S = 1 case and antisymmetric
in the S = 0 case) and the derivative acts to the left in the second equation.

Let us introduce the interaction as a S = 1/2 case, Ref. [9],

[i'y"‘au — kvt — m] ¥(zx) =0, (2)
V(@) [i(r*)" 8 ~ k(") "+ = m] = 0. 3)

Then, let us expand ¥ in terms of a set of sixteen y-matrices. The wave function can
be divided in two parts according to properties of simmetry. The set of matrices C, v°C,
v*4*C, provides the antisymmetric part, and v*C, o#“C, the antisymmetric part. This
form of interaction does not mix the S = 0 and S = 1 states. C is the matrix of charge
conjugation.

Using the properties: C‘(*,f"‘)i'"C“1 = —~* and C'(ar""’)TC‘1 = —o" in the case of the
spin-0 wave function?

V(ap) = Cap + VarCrs® + YasVhy Cro Ay, (4)
one can come to

my =0,

m = —i(8,A"), (5)

mA, = —i0,p + k [9%gui + g™ gu0] T A,

Thus, the initial reducible representation is decomposed into the (1/2,1/2) vector rep-
resentation, the (0,0) scalar representation and the trivial (pseudo)scalar representation,
similar to the Duffin-Kemmer-Petiau algebra. Without interaction (k = 0) the above equa-
tions coincide (within the definition of , the constant which is proportional to mass) with
Eqgs. (26.12) in Ref. [4] and Eqgs. (247,247') in Ref. [5a], which characterize the formalism
of Kemmer:?

{mq=—@jﬂ ©)

mA, = —id,¢.

? The case of the spin S = 1 in the Bargmann-Wigner formalism will be reported elsewhere.
Here we note that the higher spin relativistic oscillators have been considered earlier in the Duffin-
Kemmer formalism, Ref. (10, 11], and in the Dowker fromalism [12, 13]. The latter [14] reveals
surprising similarities with the S = 1/2 case, however, the problem of redundant components is
not yet solved.

¥ This formulation is also contained in the more general formulation of Dirac [3] as mentioned in
Ref. [4]. Therefore, I take a liberty to name the equations (17, 18) as the Kemmer-Dirac oscillator.
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After substitution of the second equation into the first one, they yield the Klein-Gordon
equation for a spinless @ particle. .

For stationary states @(z,t) = @(z) exp(—iEt), Au(r,t) = /Ll(:r) exp(—iFEt) the above
set (5) is rewritten to*

m@ = —EBAy — iVA,
mdy = —E@ + k(7A), (7)
md =iVEE by,

I will show that the above equations describe an oscillatorlike system. S = 0 relativistic
oscillators are also considered in Refs. [10-12,15,16].
After simple algebraic transformations one can come to the following set of equations:

(E +m)¢y = A, (8)

where j= 1V, j* = T3 (£ k) and

=M ¢2=A°+¢
Ve ' V2

Now it is useful to compare our set of equations with the set of Ref. [11].> After appli-
cation of the unitary transformation with the matrix

0 i 0:
U=[: 0 0 (10)
0 0 -1

to our 5—dimensional function ¥ = column(¢; @2 /i) one can recover the equation of the
DKP approach with “tensor” interaction:

a%(tx) - [ﬁ'ﬁ—kﬁo(ﬁ-ﬂ+k(ﬁ-;ﬁ)ﬁ0+m] U(x). (11)

o1 (9)

if3o

4 T chose a dependence of the wave function on time similar to Refs. [9,11]. If we use ¢(z,t) =
@(z) exp(iEt), Au(z,t) = fi,‘(a:) exp(iEt), the components ¢; and ¢, are only interchanged each
other and w — —w in Eqs. (17,18); surprisingly, this does not lead to any change in the energy
spectrum.

5 Egs. (9) of the cited paper are the analogs of our equations (7), but with a different form of
interaction. I would still like to point out that the method of solving the problem, used in the
paper [11], does not take into account the degeneracy of the levels in the quantum number M.
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Multiplying the first and the second equations, Egs. (8), by m one finds

{ m(E —m)¢1 =p P é1 — PP ¢2 12)
m(E +m)gy =prpté — P ¢,
and acting m(E + m) on the first equation and m(E — m) on the second one yields
m?(E? —m?)¢r = m(E+m)p~pto1 — (F797)FHEH )+ (575 7)1 )2
{ﬂr?f"(l-’?2 —m?) gy = —m(E = m)ptp "¢ — (BT (5P )b + (“+ PHE ) 53
Finally, by means of the use of the following commutation relations:
pipy| =ikéy,  [pEpE] =0, (14)
{prpf - pi o} }H(F) = [iksi; + kejui] £(7), (15)
{Fopt + 545} () = [72 - K47 £(7), (16)

(with Ly being the operator of the angular momentum and k = imw) for the S = 0 case
we obtain

(E? —m®)¢y [p + m2w*? + (E + 2m)w + w2ﬁ2] o1, (17)

(B? - m?)¢y = [5? + m2w?? + (E - 2m)w + w?L?] 6. (18)

In fact, one has the oscillator-behaved term (m2w?7?); however, there are additional
terms comparing with Eq. (10) of the paper [11], the Duffin-Kemmer-Petiau oscillator.
The operator of the angular momentum L? is not present in the equations of Ref. (11] and
there is no dependence of the “constant” term on the energy there. The presence of this
term could lead to some speculations since one can show that a consequence of this fact is
the “splitting” of energy levels in the both equations. Namely, one has two roots in each
of equations. Moreover, if we pass to the nonrelativistic limit (E = € + mc?, € < mc?)
one has the quantity (2mc? — hw)e, which could be equal to zero or even negative. In the
mean time, the sum of the remained terms on the rhs in the first equation (17) is positive.
Does this fact signify that the oscillator system surveys not for all frequency values? More
detailed analysis presented below permits us to answer these questions.

Now let us seek to solve Eq. (17). For identification purposes, in what follows it is
(E% ; — m*)/2m rather than En ¢ which I seek since the first form reduces to the usual
Schrodinger eigenvalue in the non-relativistic limit. If the basis functions of Ref. [9] are
used, then fﬂqﬁm = {12(f12 + 1)¢12 and energy eigenvalues of the equation associated
with Eq. (17) could be found from the algebraic equation

1 2 2 w w? - 3
5 (B® = m%) = (B +2m)o— — (6 + 1)5— = (M1 +3)w, (19)
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where the principal quantum number is a non-negative integer. This equation is quadratic
in E and has therefore 2 roots. The solutions of Eq. (19) are

1 ‘ w?
%(Ei—m2)= (N1+%)w+(31(51+1)+%)§;if51, (20)
where
o w 1 2 w 2 %
ai=y (1eemen(2) + (a+3) (2)) @

This formula has structural similarities with the eigenvalues found for the DKP oscilla-
tor, Ref. [11], i.e., it involves the usual 3-dimensional harmonic oscillator energy, a term
proportional to #(¢ + 1) which appears as some kind of rotational energy and the third
contribution A to energy, which is a complicated function of the oscillator frequency, £,
and Nj.

In the limit where the oscillator frequencies are such that hw < mc?, keeping only the
first-order term in w in the equations leads to

%(Ei —m?) ~ ¢t = (VN + 3w, (22)
-2%(193 —m?) > € = (N1 + 2)w. (23)

I now seek to solve the second equation (18). Using the same procedure as above the
two eigenvalues of the energies are

1 w?
(B} —m’) = (N + )+ (Gl +1) +]) 5= % Do, (24)
where
2 2\ 3
w w 1 w

=2 (1 + 2Ny +1) (E) & (:32 ¢ 5) (E) ) (25)

In the limit of low frequencies
LB _m?) et = (Ny + 1w, (26)

2m
B ) e = N, 27)

2m

The condition of compatibility of the set of equations (17,18) ensures us that Np =
N; + 2 and ¢, = {;. Therefore, in the relativistic region we have two physical (positive
and negative) values of the energy like to the other formulations of an interacting S =0
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relativistic particle. However, a remarkable feature of the presented formulation is the
double degeneracy (in N) of the levels in the limit Aw <« mc? except for the ground
level. Let us note that such a phenomenon has been revealed in Ref. [15] (cf. ¢* with
Egs. (11a,11b) of the cited work). However, reasons for the introduction of the matrix
structure in the Klein-Gordon equation were not explained there. Next, I would like to note
that the quantity (E% —m?)/2m is seen from Egs. (20, 21) or (24,25) to be non-negative
even in the high-frequency limit.

Let me draw your kind attention to one more paradox,® which also can occur in the
case of the Dirac oscillator of Moshinsky [9]. If we put one of the components (e.g., ¢2)

equal to zero in the 5-component wave function ¥ = column (¢, @3 A) at first sight one
can obtain the different spectrum E = m + (N + 3)w. It follows from the resulting linear
equation for the energy (as opposed to equations (17,18), which are quadratic). However,
let us not forget that, in fact, such a constraint ¢, = 0 leads to another constraint on
¢1, 7+ - Ft 1 = 0, which substitutes the dynamical equation (8b). One can come to the
same paradox in the set of equations (7) of Ref. [9] if we put one of the spinors (e.g.,
Y2) to zero. Namely, the spectrum would be E = m and the constraint (- 5%)y; = 0
would restrict the wave function there. The deeper consideration reveals the fact that
in both cases we come over from a set of equations of the first order in energy (in fact,
in time in the coordinate representation) to the one equation of the second order. In
general, the mathematical validity of such a procedure is not clear, but we do not have
any alternative way to solve them, cf. with the consideration of the Dirac particle in the
uniform magnetic field in the well-known textbooks, e.g., Ref. [17, p. 67]. Nevertheless,
by using lengthy transformations of the operator L? = €ijkTjPk€ilmTiPm and of Eq. (17)
as well as taking into account the mentioned constraints one can prove that the positive-
energy part of the spectrum (19) reduces to the spectrum of the different physical system
with ¢2 = 0 (i.e., it coincides with E = m + (N + 3)w). The constraint 7+ - ¢, = 0
is equivalent to the connection between the principal quantum number and the orbital
quantum number ¢; = N; + 2 = Nj. The problem of the negative-energy part of the
spectrum of Eqs. (17, 18) deserves further elaboration. At the moment I would still like to
mention the following. In the rest frame it is easy to see that ¢, = 0 (or Ay = —p) does
eliminate negative energies under the used choice of the stationary states.

In conclusion, let me mention that a behavior of a scalar particle in external fields has
been considered in many publications, see, e.g., the bibliography in Refs. [18, 19]. Recent
publications, Ref. [20], deal with a solution of the problem of finding the energy spectra
of a scalar particle with polarizability in the constant magnetic, electric fields and in the
field of the plane electromagnetic wave. However, as we learnt, the model of the S = 0
oscillator with the intrinsic spin structure has very specific peculiarities, which differ it
from the other model used, e.g., in descriptions of 7- and K-mesons.

1 thank Dr. Y. Nedjadi and Dr. R.C. Barrett for private communications on the above-
mentioned paradox.
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