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ABSTRACT. In this paper we present a discussion on the continuum approach to the equations
of motion for the gravity induced flow in a free surface of a noncohesive granular material. We
emphasize the usefulness of the continuum approach to describe the fully dynamic or grain-inertia
and the quasi-static regimes. In order to justify the validity of the proposed equations, we introduce
a model for the dissipative stresses occurring in the flow. We also discuss some of the analytical
solutions of these equations.

RESUMEN. En este articulo presentamos una discusién sobre la aproximacién del continuo a las
ecuaciones de movimiento para el flujo inducido por gravedad en la superficie libre de material
granular no cohesivo. Enfatizamos la utilidad de esta aproximacién para describir los regimenes
completamente dindmicos o de inercia de grano y cuasiestacionario. Para justificar la validez de
las ecuaciones propuestas, introducimos un modelo para los esfuerzos disipativos actuando en el
flujo. Discutimos también algunas de las soluciones analiticas de estas ecuaciones.

PACS: 03.40.—t; 83.50.—v

1. INTRODUCTION

Recently, the study of flows in granular media has received special attention from the
research community (see, for example, Ref. [1]). Some of the main factors which make this
an interesting subject, are among others: i) The lack of general equations of motion and
constitutive relations valid over a wide range of flow regimes, and ii) the great variety of
unique phenomena that characterize these media, such as segregation (the spatial sepa-
ration of the material in zones of different grain sizes) due to vertical vibration [2] and
horizontal rotation [3], dilatance (increase in the occupied volume by the granular medium
by compression) [4], arching (which causes independence of the hydrostatic pressure on
the height in vessels filled with granular material) [5], etc.

Another phenomenon not very well understood which also appears in the plastic limit of
solid materials [6] is fluidization [1,7-18]. In a heap of granular material, fluidization can be
developed on its free surface under the action of gravity. This continuous distortion of the
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surface (yield) is approximately governed by the Coulomb’s yield condition (CYC) [8-10]
and occurs when the slope of the heap reaches a maximum value (the angle of internal
friction @) at which the pile’s surface yields, producing a granular flow or avalanche. In
relation with this flow a general behavior appears: When the angle of internal friction is
reached, slowly, the resulting flow is slow and slightly dissipative. However, a more rapid
and strongly dissipative flow can be produced when this angle is reached rapidly; both
facts will be very much exploited later.

Our goal in this work is to study this gravity flow from a macroscopic or continuum
point of view. This approach has been used to understand, both the rapid [11] and the
slow [12] flow regimes on a near free surface of sandpiles in cylindrical geometries. A new
theoretical model to justify the dissipative term in the equation of motion, in the case of
rapid flow regime, will be also presented.

Alternative models for granular flow have been derived from kinetic theories [17], fric-
tional-collisional theories (18] and plastic theories [19]. These approaches, however, fail to
produce adequate results in good agreement with experimental observations. We do not
present a discussion of the granular flow on the basis of these models.

This paper is structured as follows. In Sect. 2 we describe and model the main granular
flow regimes, the force balance equation for the fully dynamic regime is derived through a
micromechanical approach for the dissipative stress term and the force balance equation is
obtained for the quasi-static regime. In Sect. 3 we present some analytical solutions of the
balance equations for the granular flow induced by gravity and other body forces; we treat
the granular flow on the free surface originated during the rotation of a cylinder about
its horizontal axis. We also study the flow of granular material within a vertical bin when
the slope of its free surface approach the critical angle ¢. and, therefore, the stagnant
region. In the case of quasi-static regime we present the problem of the surface’s shape
in a rotating thin rectangular bin and the case of granular material under an uniform
linear acceleration. Finally, in Sect. 4 we discuss the advantages and limitations of the
continuum models and we present the conclusions of this work.

2. GRANULAR FLOW ON THE NEAR FREE SURFACE

From a continuum point of view, there are at least two regimes for the granular flow with
a free surface: a) a rapid flow regime, called by Bagnold [7] the fully dynamic or fluidlike
grain-inertia regime, where high shear rates dominate, the interstitial fluid plays a minor
role, and moderate packing factors or concentrations are of importance, and b) a slow
flow regime, called also by Bagnold (7] the quasi-static or rate-independent plastic regime,
with vanishing shear rates and high packing factors.

Our starting point in discussing the rapid granular flow regime, is the formulation of a
micromechanical steady-state model to justify the quadratic form of the dissipative term
in the stress balance equation. Such model is based on the assumption that the material
is constituted by rigid, monodisperse grains which form adjacent thick frictional layers
(see Fig. 1). Each layer, at an angle 8 respect to the horizontal (# > ¢.), contains grains
whose size and nearest-neighbor distance are roughly comparable, but coordinates and
velocities are assumed to be continuous. The gradient of the velocity v is supposed to be
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Fi1GURE 1. Simplified model of the grains motion during the rapid granular flow, at the angle 6.
The separation between grains along the r axis is s = bd — d, where d is the grain diameter.

in the z—direction perpendicular to these layers, so that on the average the upper layer
moves respect to the lower layer with relative velocity Av. This does not imply that the
motion necessarily occurs in these ordered assemblies, but is intended to focus attention
on the difference in the mean velocities of the neighboring grains.

The more realistic aspects of the grain motion, like packing (different concentrations),
collision conditions and grain rotation will be included through a proportionality factor
whose form can be justified by using dimensional analysis. From the derived equation
of motion, the force balance equation for the slow flow regime can be obtained just by
making the shear rate tend to zero.

2.1. Fully dynamic regime

For the fully dynamic regime, an elementary approach based on Coulomb’s balance of
stress available for statics, to which will be added a dissipation term due to interparticle
collisions, has been recently proposed [11]. So, the mechanism for the dissipative stress
generation incorporates the non-Brownian particle motion during the rapid non-cohesive
flow which has a momentum loss at each collision and a collision rate proportional to
Vv, where v is the average grain velocity. Then the shear stress varies as 7 ~ (Vv)2.
This can be understood in accordance with Bagnold [7] as follows: When grain collisions
occur between two adjacent layers, an average net momentum proportional to Av in the
—r—direction (direction of flow) is transferred. Since the collision rate (the inverse of the
collision time Az/Av ~ 9z/dv) is proportional to dv/dz, the shear stress T exerted by the
upper layer, on the lower layer, in the —r-direction, is 7 ~ Av(dv/0z)/ (Az)%. Considering,
as aforementioned, more realistic aspects of the grain motion (7], the shear stress can be
put in the form

T =a(Vv)?, (1)
with o = asinn ppAd? f(A), where A~! is called the dilatance and its inverse, A = d/s, is

the linear concentration. In accordance with Fig. 1, d is the grain diameter, s is the mean
separation between grains along the flow direction —7, s = bd — d, p, is the grain density,
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f(A) is an unknown function which takes into account the concentration, 5 corresponds
to the angle whose tangent is the ratio of the tangential to the normal component of the
stresses, and a is a constant. If the spheres are not perfectly matched or if the shearing
were to take place along parallel curved surfaces, we might expect general shearing to be
possible at some value of A. For lower values of A the grains should pass one another with
progressively greater freedom.

The principal result of Bagnold’s model, outlined above, can be derived from a more
simple reasoning. We propose a steady-state model in which the dissipative force originates
from the interaction between single grains, due to their relative velocity. When the static
friction force has been overcome, the system begins to flow. Due to high shear rates, each
grain is mainly affected by the adjacent grain layers through a force which is quadratic in
the mean relative velocity.

This approximation can be justified by considering the motion of a single grain with
relative velocity v, on a grain layer at the angle # > ¢.. In steady granular flow, the
relative mean velocity is constant. This can occur when the change in potential energy,
along an elementary path ér = d (defined as the distance between two successive collisions
or between neighboring beads), is just the energy lost in inelastic collisions and by friction,
given as

(Ep) = dmy,gsinf = gmpvf + dpumpg cos 6. (2)

Here m,, is the grain mass, ¢ is the gravity acceleration, ¢ is the collision coefficient and
i = tan ¢, corresponds to the material parameter called the coefficient of friction. In the
last term of this equation we have used the CYC [8-10] which states that the frictional
forces f and the normal forces N are related by the form |f| < Nu. When the equality
is reached, the grain starts the motion and a flow occurs. By dividing Eq. (2) by d, we
obtain the force balance equation in the —r—direction on a single grain as

£ 3

= 33% + g(sinf — pcos ) = 0. (3)

This model predicts very well the observed mean velocity in experiments [20].

In order to obtain the equation of motion for the granular flow on the free surface on the
basis of the above model, we should consider the existence of several adjacent grain layers.
In accordance with Fig. 1, the grains in the upper layer have an average velocity vy, the
grains in the intermediate layer have an average velocity v, and, those in the third layer
have an average velocity v3. Experimental evidence also shows that the average velocity
of grains in the deep layers along the downward normal tend rapidly to zero.

Under the action of gravity, two frictional forces act on each grain; One is static (ac-
cording to the CYC, proportional to the normal force), while the other is of a dynamic
nature. We now pay attention to the dynamic process, where grain motion is such that
the frictional forces between the particle which have an average velocity vy and the others
gives a resultant force which can expressed in terms of Taylor's series around z = z3,
where 2z is the normal coordinate and 2, is the corresponding of the grain with velocity
V3. 2z + d is the coordinate of the grain with velocity v; and z9 — d is the coordinate of
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the grain with velocity v3. Assuming a continuous variation of the average velocity in the
coordinates, expanding to second order and redefining vy = v,, we find that

dv, 9%, d?
— —_— — w W 4
v vr+(62)22d+(322)222 e )

and

v, 0%, d?
= p— — P e, 5
e e (Bz)z2d+(322)222 ” (5)

This series can be truncated only for small values of the ratio of the particle size to the
thickness of the granular flow, d/h < 1. In other words, for Eqgs. (4) and (5) to be valid,
a large number of flowing grain rows are needed. Therefore, the dynamic frictional force,
per volume unit, takes the form

B o, \ d?]’
= — 2:k ( T) _T ——
Py = Ky =vg) [ . 22d+ ) 2 (6)

and

v, o\ a2’
F2=k(v3_v2)2=k[_(al;) d+(3:2) 5] ) (7)
22 %

where k is a factor taking into account the nature of the collisions, as later on will be
shown.
The resultant force acting on the intermediate grain is then

9 (v, \?
F=F-F=2% ’3=-3—( )
1 2 ’Y’Yd kd a2 Dz 3 (8)

where v = (0v,/9z) is the shear rate and ' = (8%v,/82?). The shear stress is then given
by

v,y \ 2
— .3 T
7= kd ((')z)' (9)

The form of k can be found from dimensional arguments. So long as the interstitial
fluid is ignored, the only available dimensional quantities are the particle properties, Pp
and d, which (along with a time scale supplied by the velocity gradient dv/dz) requires
that the stresses be of the form

A, \ 2
T :deze()\,ﬂ) ( 8U ) s (10)
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where e(),7) is a dimensionless function which takes in to account the packing variations
and the local distribution of stresses. A direct comparison with Bagnold’s result will give
us that

e(A,n) = aAf(A)sinn.

Therefore comparing Eq. (9) with Eq. (10), we obtain

Pp
k==<e(\n).
7 &)

Close to the surface at the angle ¢, where fluidization has begun, the one grain analysis
can be extended to an intermediate material element of bulk density p. Therefore, the
stress balance equation that includes both the static stresses through the CYC and the
dissipative dynamic friction, is

v, \? ;
o:( ) — pgz(sin@ — pcosf) = 0, (11)
0z
and
a = pdie(\n). (12)
The corresponding force balance equation is then
d (v, \? "
ag- ( P ) — pg(sinf — pcosf) =0, (13)

which is the generalized form of Eq. (3) and agrees with the model used to describe
the rapid granular flow inside rotating horizontal cylinders [11]. As in other continuum
theories, another way to find the form of « is through experiments. To our knowledge this
has not been made.

2.2. Quasi-static regime

In the quasi-static regime, i.e., when slow flow is occurring, the shear rate vanishes and
high packing factors are dominant [7,9]. This case corresponds to the plastic behavior of a
frictional Coulomb material of the kind that has been studied extensively in the context of
soil mechanics [10]. Particles can stick together, roll, or maintain sliding contact with one
another for extended periods and deformation inertial forces in the bulk are transmitted
from one region to another through a network of contact forces. During the initial flow,
granular materials can experience an increase or decrease in the volume depending on the
initial state of the material [9, 10, 16]; with continuous deformation, the material tends
towards an asymptotic state with constant volume.
In this case, Eq. (13) should give the force balance equation

pg(sin@ — pcosf) = Fg, (14)

where Fg is the steady state body force, per unit volume, acting on the granular surface.
This force has two terms: the driving and its corresponding friction forces.
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3. ANALYTICAL SOLUTIONS

We present some analytical solutions for Egs. (11) and (14), by studying the rapid flow
regime in a horizontal rotating cylinder and in a wedge flow during the discharge of a bin,
and the slow flow regime during the vertical rotation of a cylinder. The solutions to these
problems give closed form expressions, which are in good agreement with experimental
observations.

3.1. Flow in a cylinder with horizontal rotation

The rotation of a cylinder about its horizontal axis, half filled with sand, has been studied
due its related phenomena of discrete and continuous flow regimes [11]. The discrete
regime occurs for low angular velocities while the continuous regime (Fig. 2) occurs when
the angular velocity €2 is larger than two critical values ; or Q, depending on whether
these values of the angular velocity were reached coming up or going down. In particular,
in the continuous flow regime, a rapid granular flow takes place on the surface which can
be characterized experimentally by the current, J, which seems to obey the law

J~(0—c)", (15)
where m = 0.540.1 and 6 > ¢.. Equation (15) implies a direct relation between the surface
current and the slope, not depending on the detailed geometry of the container. However,
a more detailed expression can be obtained through a continuum model using Eq. (11).

In fact, taking the z axis normal to the flow and oriented, unlike Fig. 1, downward, we
found a solution of the Eq. (11) in terms of a limited expansion, near = ¢ of the form

3 2 3
v(z) = g (pgah COS¢C) [1— (%) l(a—¢c) , (16)

where h is the thickness of the granular flow. The current J is given by

W=

2 h® 2 1
=g (,og; COS¢c) (0 — )2, (17)

which agrees with the experimental power law (15) and does not depend on the geometry
either.

3.2. Flow in an asymmetrical wedge

Another important application of our continuum description of the rapid gravity induced
flow can be shown by analyzing the granular flow which takes place only on the near free
surface during the discharge of a granular material from a vertical bin, which has the
bottom exit at the near of the vertical wall (wedge flow) [5,21-23]. As can be noted in
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FIGURE 2. Schematic view of the half-filled horizontal rotating cylinder. Q is the angular velocity,
g is the gravity acceleration and R is the cylinder’s radius.

Fig. 3 the granular material fills an area A, with a free surface forming an angle 6 > ¢..
This area A can be written as

_ L?tané Lh

A :
2 & cos

(18)

Here, L is the radial dimension of the bin from the exit to the vertical wall and & is
the thickness of the granular flow, as in the previous problem in Sect. (3.1). The non
dimensional form of Eq. (18) is

y = [tan ¢c(® - 1) = (1 + tan’ 4,)] (19)
where
_ 2h
Y= T e b’
A
¢ = Amin’

and v = (0 — ¢.), assuming to be very small compared with ¢.. Apin corresponds to the
stagnant zone area, Apmin = L? tan ¢ /2.
Therefore, Eq. (17) takes the non dimensional form

rjen

J=Kyiyi = K [tan ¢e(® — 1) — 4(1 + tan? ¢c)] 3, (20)
where K is a constant given by
5 7
L
pg (5 cos ¢
K = g —Mcosqﬁc (21)
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Flow Zone

Stagnant Zone

FIGURE 3. Schematic view of the flow during wedge flow; 6 is the angle between the horizontal
and free surface, L is the radial dimension of the bin from the exit to the vertical wall, h is the
thickness of the granular flow and d, is the aperture width.

For a given non dimensional area ®, we can find a relationship between v and y by
assuming the extremal condition

(Z—i)q} = %yi [- (1+tan? )] + %ygqﬁ“% =0, (22)

obtaining
y=5 (1 + tan? ¢>c) ~. (23)
On the other hand, the current J can be calculated as

dA _ L’tan¢. dd

P T TP T @

o

J= = Kyiqy1, (24)
Introducing the non dimensional time ¢ = t/t. with ¢, = pL%tan ¢./2K, Eq. (24) takes
the form

i—? = —yiqh. (25)
Using Eqs. (19) and (23) we obtain
5
y=gtangc (& -1), (26)
5 1), (27)

- 6(1 + tan? ¢.)
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Introducing Eqgs. (26) and (27) in Eq. (25), we obtain an universal, parameter-free
equation for ® as

dd 3
—=—(®-1)", 2
I ( ) (28)
where ¢ is the appropriate non dimensional time given by

. 52 tand &,
216(1 + tan? ¢.)?

£ (29)

The solution of Eq. (28) is then

B 1 Py — 12
0—2(<1>0—1)2{(<I>—1) “1}’ .

where & = & corresponds to the initial condition at ¢ = 0. This equation gives ® as a
function of . Experimentally, ® can be measured by filming the temporal changes of the
granular material area. A comparison between experimental results and Eq. (30) would
give us the possibility to obtain the value of the constant a.

3.8. Flow in a cylinder with vertical rotation

The complete history of the surface shape in a thin rectangular bin rotating about its axis
can be studied experimentally by using Eq. (14) [12]. Considering a cylindrical coordinate
system fixed to the axis, as shown in Fig. 4, and taking the axi-symmetrical rotation of
the heap under the action of gravity, with coefficient of friction z and angular velocity (2,
we find that Eq. (14) can be written as

p(2%r cos§ — gsinf) = p(Q2rsind + gcos O)ups. (31)

The value of 8 can be —1 < § < 1, depending on the direction of the friction force, the
Froude number (a function of the angular velocity €2), and the history of how this value
is reached together with the initial conditions.

Rearranging terms, scaling the coordinates (z and r) with the radius R of a cylindri-
cal or rectangular container and introducing the Froude number F+ = Q?R/g, Eq. (31)
transforms to the following dimensionless form

dz Frr—
tanf = — = Mm (32)
dr 14 pBFr
Assuming we slowly increase the Froude number from zero, there is a critical value of
the Froude number, F+* = pu, below which the surface does not show any deformation;
the superscript plus sign in the Froude number indicates that the state of motion results
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FIGURE 4. Schematic view of the axi-symmetrical vertical rotating system. The initial height is
H, 1 is the angular velocity, I is the cylinder’s radius and ¢ is the gravity acceleration.

from increasing Fr, while a superscript minus sign that the state of motion results from
decreasing Fr. The solution of Eq. (32) for increasing Froude number, is

W B J— (33)

14 p4? 1+ pFrr
z(r) — zc = n :

il
1 ulFr 1+ pFrr.
where 1 > r > r. and corresponds to the critical region with a value of 3 = 1. Equation (33)
gives the resulting logarithmic surface profile for the critical region.

In the case of decreasing Froude number, we can obtain from Eq. (32) with g = —1,
the solution

1 1+ pu? l1-upuFr
Alrl—te= 1 e —e) = wik- T pFrre

) (34)

where 0 < r < r. is now the critical region. Equation (34) will contain the dependence on
the maximum Froude number Fr} . reached during rotation, in the form

P Bl rc(l—u?)—2u
2F taxr2p + (1 — p?)’

(35)

where z. can be obtained in both cases using the overall mass conservation. Therefore, for
the same value of the Froude number we obtain in this case two different surface equations
(i.e., same as found experimentally [12]). In general, there will be an infinite number of
possibilities, depending on the history of how we reach a given Froude number, showing
the strong non-linear character of the problem.
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FIGURE 5. Free surface profiles obtained from the analysis (lines) and from experiments (symbols)
as the Froude number increases, for F+* = 4, 26.14 and 42.57.

From Eq. (32) we recover also the newtonian fluid behavior in the case of y = 0, the
solution of which can be given in dimensionless form as

B
z—zg= —2:7"2. (36)

On the basis of the analysis, we can show some shapes of the surface piles resulting from
rotation. Assuming we start the motion from rest with an initial flat horizontal surface,
we obtain a peak at the center with decreasing height as the Froude number increases.
Figure 5 shows two dimensional projections of the surfaces generated by slowly increasing
Frt. The lines show the theoretical results while the symbols represent experimental data.
Experiments were made using thin rectangular bins with the following dimensions: 30 cm
length (R = 15 cm), 0.4 em width and 30 cm height, the bins were filled with Ottawa
sand (u = tan ¢. = tan31° = 0.53) up to H = 14 cm and the Froude number was varied
from 0 up to 52.78. We also assumed a value of ¢ = 0.53 in order to compare the theory
with experiments. The values of the chosen Froude number were: Fr* = 4.0, where a clear
central peak is noted, F+* = 26.14 and Fr* = 42.57.

On the other hand, if we decrease the Froude number from Fr},, = 52.78, we obtain
another type of solutions for Fr~ = 26.14, Fr~ = 4.0 and finally F+~ = 0, where we obtain
the final state for the surface as a line with constant slope u(¢. = 31°) (See Fig. 6). In
all cases presented here, there is a good agreement between theory and experiment, which
confirms that the present model describes correctly the phenomenology of the experiment.
The experimental values of the surface profiles are found to be slightly below the theoretical
ones. This is due to the compressibility of the granular material not considered in the
analysis.
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FIGURE 6. Free surface profiles obtained from the analysis (lines) and from experiments (symbols)
as the Froude number decreases, for I+~ = 0, 4 and 26.14.

We should comment that the friction angle actually does not have a unique value. Tt
fluctuates within a small range [24], which in our experiments was ¢. + &, where § ~ 1°.
For each Froude number, the experimental results deviate a few per cent (less than 2%)
from the predicted surface shape profiles.

3.4. Surface shape deformation under linear acceleration

Here, the important problem of the surface shape deformation under uniform linear accel-
eration is briefly outlined. The slow flow during linear acceleration of dry granular material
within a thin box can be studied by using the balance of forces equation and the CYC.
We show in Fig. 7, the geometry of the system, where H is the initial height and a is the
magnitude of the horizontal acceleration of the box in relation to the inertial system fixed
to the floor. From the viewpoint of an observer in the (z,y) system fixed to the box, there
is an acceleration a in opposite direction which deforms the surface. Thus, the balance of
forces equation for a small element of volume with density p at the free surface is

placosf — gsinf) = p(asinf + g cos 8)uf. (37)

Rearranging terms, scaling the coordinates with the length 2L of the box and introducing
the nondimensional acceleration in ¢'s, @ = a/g, we obtain the dimensionless differential
equation

_dy _a-pp
e el )

By increasing slowly @ from zero, we found a critical value of the nondimensional ac-
celeration a* = u, below which the surface does not show any deformation. The solution
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¢ 2l —)

FIGURE 7. Schematic view of a box under horizontal acceleration. The initial height is H, 2L
is the length of the box, ¢ is the gravity acceleration and —a is the uniform acceleration in the
—z—direction. The inclined surface is due to this acceleration.

of Eq. (38), for increasing values of a (3 = 1), is

~+_
ikl JPUN T (39)

Y=1rm@+* 7oL

where we have used the overall mass conservation of granular material. Therefore, in a
thin box the surface profiles are straight lines with slope (at — pu)/(1 + pa™), crossing the
center (z = 0) always at the initial height.

On the other hand, after reaching the maximum value of a‘t, @} ., we decrease slowly
the value of @. The surface remains unchanged until the value of @~ reaches

o, a;;ax(l - ”2) — 2#’ (40)
‘ Qartaxﬂ' 4 (1 = g%

For values of a~ < a_, the solution is
y=5——=2F =% (41)

For a= = 0, the surface shape is linear with an inclination angle equal to the critical
angle ¢.. Here again, the hysteretic behavior is shown changing from an horizontal surface
at the beginning to an inclined surface for the same nondimensional acceleration, a = 0.
For a fluid [25], (z = 0), the surface profile from Eq. (38) is reduced to

~ H
y =ar+ 5L (42)-
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4. REMARKS AND CONCLUSIONS

In this paper we have shown that the continuum treatment for the granular flow near a
free surface, gives an adequate description of the surface flow in cylindrical geometries in
good accordance with the experimental observations. Our model also gives an adequate
basis for the modeling of the dissipative term in the shear stress balance equation.

In the case of the problem of the rotation of granular material, with a horizontal axis
of rotation, the continuous regime can be easily studied giving a power law for the surface
flow, in accordance with the experiment, independent on the geometry of the container.

For the flow within a vertical bin we have studied the rapid flow, on the free surface, near
the stagnant zone which form an angle > ¢. and we have proposed a novel experimental
procedure to study the temporal changes in the material area during the flow. We hope,
in a future work, to present results in this direction.

The problem of the rotation of granular material with a vertical axis of rotation, in
general is a very complex phenomenon; one must take into account not only the gravita-
tional and the centrifugal forces, but also the history of the motion through the friction
force. However, the history or memory effect disappears for continuously increasing or
decreasing slow rotation, as the grain achieves the critical state everywhere. In this case,
from a continuum point of view, this problem can be understood and a simple analysis can
correctly describe the motion. Hysteresis in avalanche processes is related to the changes
in the slope near the maximum angle and the frictional and packing factors within the
bulk. In the problem of the rotation of granular material with a vertical axis of rotation the
hysteretic behavior is related with these factors but additionally the initial and boundary
conditions. Similar results are obtained for the granular material under an uniform linear
acceleration.
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