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ABSTRACT. In tbis paper we present a discussion on tbe continuum approach to the equations
of motion for the gravity induced f10win a free surface of a noncohesive granular material. We
emphasize the usefulness of the continuum approach to describe the fully dynamic or grain-inertia
and the quasi-static regimes. In arder to justify the validity of the proposed equations, we introduce
a model for the dissipative stresses occurring in the f1ow.We also discuss sorne of the analytical
solutions of these equations.

RESUMEN.En este artículo presentamos una discusión sobre la aproximación del continuo a las
ecuaciones de movimiento para el flujo inducido por gravedad en la superficie libre de material
granular no cohesivo. Enfatizamos la utilidad de esta aproximación para describir los regímenes
completamente dinámicos o de inercia de grano y cuasiestacionario. Para justificar la validez de
las ecuaciones propuestas, introducimos un modelo para los esfuerzos disipativos actuando en el
flujo. Discutimos también algunas de las soluciones analíticas de estas ecuaciones.

PACS: 03.40.-t; 83.50.-v

l. INTRODUCTION

Recently, the study of f10ws in granular media has received special attention from the
research community (see, for example, Ref. [1]). Sorne of the main factors which make this
an interesting subject, are among others: i) The laek of general equations of motion and
eonstitutive relations valid over a wide range of f10w regimes, and ii) the great variety of
unique phenomena that eharaeterize these media, sueh as segregation (the spatial sepa-
ration of the material in zones of dilferent grain sizes) due to vertical vibration 121 and
horizontal rotation [3]' d¡latanee (inerease in the oceupied volume by the granular medium
by eompression) [41, arehing (whieh causes independenee of the hydrostatic pressure on
the height in vessels filled with granular material) [5]' etc.
Another phenOlllcnon 110t vcry weH unucrstood which also appears in the plastic limit of

sol id materials 16] is f1uidization [1,7-181. In a heap of granular material, f1uidization can be
developed on its free surface under the aetioa of gravity. This eontinuous distortion of the
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surface (yield) is approximately governed by the Coulomb's yield condition (CYC) [8-101
and occurs when the slope of the heap reaches a maximum value (the angle of internal
friction <Pe) at which the pile's surface yields, producing a granular flow or avalanche. In
relation with this flow a general behavior appears: \Vhen the angle of internal friction is
reached, slowly, the resulting flow is slow and slightly dissipative. However, a more rapid
and strongly dissipative flow can be produced when this angle is reached rapidly; both
facts will be very much exploited later.
Our goal in this work is to study this gravity flow from a macroscopic or contiDuum

point of view. This approach has been used to understand, both the rapid [11] and the
slow [12) flow regimes on a near free surface of sandpiles in cylindrical geometries. A new
theoretical model to justify the dissipative ter m in the equation of motion, in the case of
rapid flow regime, will be also presented.
Alternative models for granular flow have been derived from kinetic theories [17]' fric-

tional-collisional theories [18] and plastic theories [19]. These approaches, however, fail to
produce adequate results in good agreement with experimental observations. \Ve do not
present a discussion of the granular flow on the basis of these models.
This paper is structured as follows. In Sect. 2 we describe and model the main granular

flow regimes, the force balance equation for the fully dynamic regime is derived through a
micromechanical approach for the dissipative stress term and the force balance equation is
obtained for the quasi-static regime. In Sect. 3 we present some analytical solutions of the
balance equations for the granular flow induced by gravity and other body forces; we treat
the granular flow on the free surface originated during the rotation of a cylinder about
its horizontal axis. \Ve also study the flow of granular material within a vertical bin when
the slope of its free surface approach the critical angle <Pe and, thercfore, the stagnant
region. In the case of quasi-static regime we present the problem of the surface's shape
in a rotating thin rectangular bin alJ(I the case of granular material under an uniform
linear acceleration. Finally, in Sect. 4 we discuss the advantages and limitations of the
continuum models and we present the conc!usions of this work.

2. GRANULAR FLOW ON 1'IIE NEAIl FIlEE SUIlFACE

From a continuum point of view, there are at least two regimes for the granular flow with
a free surface: a) a rapid flow regime, called by I3agnold [7] the ¡nI/y dynamic or jlnid/ike
grain-inertia regime, where high shear rates dominate, the interstitial fluid plays a minor
role, and moderate packing factors or concentrations are of importance, and b) a slow
flow regime, called also by I3agnold [7] the qnasi-sta/ic or rate-independent plastic regime,
with vanishing shear rates alJ(1 high packing factors.
Our starting point in discussing the rapid granular flow regime, is the formulation of a

micromechanical steady-state model to justify the (juadratic form of the dissipative term
in the stress balance equation. Such model is based on the assumption that the material
is constituted by rigid, monodisperse grains which form adjacent thick frictional layers
(see Fig. 1). Each layer, at an angle O respect to the horizontal (O> <Pe), contains grains
whose size and nearest-neighbor distance are roughly comparable, but coordinates and
velocities are assumed to be continuous. The gradient of the velocity v is supposed to be
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FIGURE 1. Simplified model of the grains motion during the rapid granular flow, at the angle B.
The separation between graills along the r axis is s = bd - d, where d is the graio diameter.

in the z-direction perpendicular to these layers, so that on the average the upper layer
moves respect to the lower layer with relative velocity é>v. This does not imply that the
motion necessarily occurs in these ordered assemblies, but is intended to focus attention
on the difference in the mean velocities of the neighboring grains.
The more realistic aspects of the grain motion, like packing (different concentrations),

collision conditions and grain rotation will be included through a proportionality factor
whose fonn can be justified by using dimensional analysis. From the derived eqnation
of motion, the force balance equation for the slow flow regime can be obtained just by
making the shear rate tend to zero.

2.1. Fully dynamic regime

For the fully dynamic regime, an elementary approach based on Coulomb's balance of
stress available for statics, to which will be added a dissipation term due to interparticle
collisions, has been recently proposed [11]. So, the mechanism for the dissipative stress
generation incorporates the non-Brownian particle motion during the rapid non-cohesive
flow which has a momentum loss at each collision and a collision rate proportional to
Vv, where v is the average grain vclocity. Then the shear stress varies as T ~ (Vv)2.
This can be understood in accordance with Bagnold [71 as follows: When grain collisions
occur between two adjacent layers, an average net momentum proportional to é>v in the
-r-direction (direction of flow) is transferred. Since the collision rate (the inverse of the
collision time é>zl é>v ~ {)zl{)v) is proportional to {)vl{)z, the shear stress T exerted by the
upper layer, on the lower layer, in the -r-direction, is T ~ é>v( {)vI{)z)1 (é>z)2. Considering,
as aforementioned, more realistic aspects of the grain motion [7], the shear stress can be
put in the form

(1)

with Q = a SiU17 pp>'d2 f(>"), whcrc A -1 is caBed thc dilatallce and its invcrsc, ..\ = d18, is
the linear concentration. In accordance with Fig. 1, d is the grain diameter, s is the mean
separation betwcen grains along the flow direction -1', s = bd - d, Pp is the grain density,
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1(>') is an unknown function which takes into account the concentration, '7 corresponds
to the angle whose tangent is the ratio of the tangential to the normal component of the
stresses, and a is a constant. If the spheres are not perfectly matched 01' if the shearing
were to take place along parallel curved surfaces, we might expect general shearing to be
possible at sorne value of >.. For lower values of >. the grains should pass one another with
progressively greater freedom.
The principal result of ilagnold's model, outlined aboye, can be derived from a more

simple reasoning. \Ve propose a steady-state model in which the dissipative force originates
from the interaction between single grains, due to their relative velocity. \Vhen the static
friction force has been overcome, the system begins to fiow. Due to high shear rates, each
grain is mainly affected by the adjacent grain layers through a force which is quadratic in
the mean relative velocity.
This approximation can be justified by consielering the motion of a single grain with

relative velocity Vr on a grain layer at the angle O > <Pe. In steaely granular fiow, the
relative mean velocity is constant. This can occur when the change in potential energy,
along an elementary path tir = d (defined as the distance between two successive collisions
01' between neighboring beads), is just the energy lost in inelastic collisions and by friction,
given as

(2)

Here mp is the grain mass, 9 is the gravity acceleration, € is the collision coefficient and
/l = tan <Pe, corresponds to the material parameter called the coefficient of friction. In the
last term of this equation we have used the CYC 18-101 which states that the frictional
forces 1 and the normal forces N are related by the form 1I1 ~ NIl. \Vhen the equality
is reached, the grain starts the motion and a fiow occurs. ily dividing Eq. (2) by d, we
obtain the force balance equation in the -r-direction on a single grain as

- 2€d v; + g(sinO - l'cos O) = o. (3)

This model predicts very well the observed mean velocity in experiments [201.
In order to obtain the equation of motion for the granular fiow on the free surface on the

basis of the aboye model, we should consider the existence of several adjacent grain layers.
In accordance with Fig. 1, the grains in the upper layer have an average velocity VI, the
grains in the intermediate layer have an average vclocity V2 and, those in the third layer
have an average velocity V3. Experimental evielence also shows that the average vclocity
of grains in the deep layers along the downward normal tend rapidly to zero.
Under the action of gravity, two frictional forces act on each grain; Dne is static (ac-

cording to the CYC, proportional to the normal force), while the other is of a dynamic
nature. \Ve now pay attention to the dynamic process, where grain motion is such that
the frictional forces between the partide which have an average velocity V2 and the others
gives a resultant force which can expressed in terms of Taylor's series around z = Z2,

where z is the normal coordinate and Z2 is the corresponding of the grain with velocity
V2. Z2 + d is the coordinate of the grain with velocity VI and Z2 - d is the coordinate of
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the grain with veJocity uJ. Assuming a continuous variation of the average veJocity in the
coordinates, expanding to second order and redefining U2 = u" we find that

and

(OU ) (82U) d2VI = Vr + _r d + -i -+ ... ,
Oz " 8. 2

"

UJ=Ur- (OUr) d+ (8
2
.U;) ~2 + ....

Oz " 8. 2
"

(4)

(5)

This series can be truncated only for small values of the ratio of the particle size to the
thickness of the granular flow, d/h « 1. In other words, for Eqs. (4) and (5) to be valid,
a large number of flowing grain rows are needed. Therefore, the dynamic frictionaJ force,
per voJume unit, takes the form

(6)

and

(7)

where k is a factor taking into account the nature of the collisions, as later on will be
shown.
The resultant force acting on the intermediate grain is then

F = F¡ - F2 = 2kn'dJ = k<¡3:z (~:) 2, (8)

where , = (8vr/8z) is the shear rate and " = (02Ur/OZ2). The shear stress is then given
by

(9)

The form of k can be found from dimensional argulllents. So long as the interstitial
fluid is ignored, the only available dimensional quantities are the particle properties, Pp
and d, which (along with a time scale supplied by the velocity gradient Ov/8z) requircs
that the stresses be of the form

2 ( (OUr)2
T = p"d e A, '1) Oz (10)
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where e(>', '1) is a dimensionless function which takes in to account the packing variations
and the local distribution of stresses. A direct comparison with Bagnold's result will give
us that

e(>', '/) = a>.f(>') sin 'l.

Therefore comparing Eq. (9) with Eq. (10), we obtain

k = ~ e(>',II).

Close to the surface at the angle IJ, where fluidization has begun, the one grain analysis
can be extended to an intermediate material element of bulk density p. Therefore, the
stress balance equation that indudes both the static stresses through the CYC and the
dissipative dynamic friction, is

Q (~~) 2 _ pgz(sinIJ -¡iCOSIJ) = O,

and

The corresponding force balance e<¡uation is then

(11 )

(12)

(13)Q %z (~~) 2 - pg(sinO -¡iCOSIJ) = O,

which is the generalized form of Ec¡. (3) and agrees with the model used to describe
the rapid granular flow inside rotating horizontal cylinders [11]. As iu other continuum
theories, another way to litul the form of Q is through experiments. To our knowledge this
has not been made.

2.2. Quasi-static regime

In the quasi-static regime, i.e., wheu slow flow is occurring, the shear rate vanishes and
high packing factors are dominant [7,9]. This case corresponds to the plastic behavior of a
frictional Coulomb material of the kind that has been studied extensivcly in the context of
soil mechanics [lO]. Partides cau stick logether, roll, or maiutain sliding contact with one
another for extended periods and deformation iuertial forces in the bulk are transmitted
from one region to another through a network of contact forces. During the initial flow,
granular materials can experience an increase or decrease in the volume depending on the
initial state of the material [9,10,16]; with continuous deformation, the material tends
towards an a.symptotic statc with const.ant \.o1tuuc.
In this case, Eq. (13) should give the force halance e<¡uation

pg(sinO -¡iCOSO) = Fu, ( 14)

where FB is the steady state body force, per uuit volume, acting on the granular surface.
This force has two terms: the driving aud its corn'spouding frictiou forces.
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3. ANALYTICAL SOI.UTlONS

\Ve present some analytical solutions for Eqs. (11) and (14), by studying the rapid f10w
regime in a horizontal rotating cylinder and in a wedge f10wduring the discharge of a bin,
and the slow f10w regirne during the vertical rotation of a cylinder. The solutions to these
problems give closed form expressions, which are in good agreement with experimental
observations.

3.1. F/aw in a cy/inder wit!t !tal'izantal rota/ian

The rotation of a cylinder about its horizontal axis, half filled with sand, has been studied
due its related phenomena of discrete and continuous f10w regimes [11]. The discrete
regime occurs for low angular velocities while the continuous regime (Fig. 2) occurs when
the angular velocity r! is larger than two critical values r!¡ or r!2, depending on whether
these values of the angular velocity were reached coming up or going down. In particular,
in the continuous f10w regime, a rapid granular f10w takes place on the surface which can
be characterized experimentally by the current, J, which seems to obey the law

(15 )

where In = 0.5:1:0.1 and IJ> 1>c.Equation (15) implies a direct relation between the surface
current and the slope, not depending on the detailed geometry of the container. However,
a more detailed expression can be obtained through a continuum model using Eq. (11).
In fact, taking the z axis normal to the f10w and oriented, unlike Fig. 1, downward, we
found a solution of the Eq. (11) in terms of a limited expansion, near IJ= 1>cof the form

2 (pg!t
3

) t [ (z) ~] 1v(z)=3 -;-cos<Pc 1- h (IJ-1>c)'i,

where !t is the thickness of the granular f1ow. The current J is given by

(16)

(17)

which agrees with the experimental power law (15) and does not depend on the geometry
either.

3.2. F/aw in an asymmetrica/ wedge

Another important application of our continuum description of the rapid gravity induced
flow can be shown by analyzillg the granular f10w which takes place only on the near free
surface during the discharge of a granular material from a vertical bin, which has the
botlom exit al lhe near of the vertical wall (wedge f1ow) [s, 21-231. As can he noted in
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FIGURE2. Schematic view of the half-filled horizontal rotating cylinder. n is the angular ve!ocity,
9 is the gravity acceleration and R is the cylinder's radius.

Fig. 3 the granular material fills an are a A, with a free snrface forming an angle O > <Pe.
This area A can be written as

A = _L_2_ta_n_f1_+ _L_h_.
2 cosO (18)

Here, L is the radial dimension of the bin from the exit to the vertical wall and h is
the thickness of the granular flow, as in the previons problem in Sect. (3.1). The non
dimensional form of Eq. (18) is

( 19)

where

2h
y=

L cos <Pe'
A

<P=-
Amin'

and , = (O - <Pe), assuming to be very small compared with <Pe. Amin corresponds to the
stagnant zone area, Amin = L2 tan <Pe/2.
Therefore, Eq. (17) takes the non dimensiona! form

~ I ~ 1
J = J(y',' = J( [tan <Pe(<p - 1) -,(1 + tall2 <Pe)] ',',

where J( is a constant given by

(20)

(21 )



CONTINUUM EQUATIONS FOR TIIE GRANULARFLOW ON A FREE SURFACE 201

1 ~:l .
h d::::::::::::
1 ~::.:¡.¡::i¡¡.;;:;

... :::::; .::::::::::::::::::::
::'::":•....•d

•

FlowZone

Stagnant Zone

FIGURE 3. Schematic view of the flow during wedge flow; O is the angle oetween tbe horizontal
and free surface, £ is the radial dimension of the hin fram the exit to the vertical wall, h is the
thickness of the granular flow and da is the aperture width.

For a given non dimensional area <I>,we can find a relationship between , and y by
assuming the extremal condition

(22)

obtaining

On the other hand, the current J can be calculated as

J dA £2 tan <Ped<I> l' 1 !
= -p- = -p------ = 'y','.

dt 2 dt

(23)

(24)

Introducing the non dimensional time ( = tite with te = pL2 tan <Pe/2/{, Eq. (24) takes
the form

Using Eqs. (19) and (23) we obtain

y=

,=

d<I> 1!
-=-Y','.d(

5G tan <id <I>- 1) ,

tan <¡!le <I>
6(1+tan2t/Je)( -1).

(25)

(26)

(27)
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Introducing Eqs. (26) and (27) in Eq. (25), we obtain an universal, parameter-free
equation for el> as

del> 3
da = - (el> - 1) ,

where a is the appropriate non dimensional time given by

The solution of Eq. (28) is then

1 { (el>o - 1) 2 }
a = 2 (el>o _ 1)2 el> _ 1 - 1 ,

(28)

(29)

(30)

where el> = el>o corresponds to the initial condition at a = O. This equalion gives el> as a
function of a. Experimentally, el> can be measured by filming the temporal changes of the
granular material arca. A comparison between experimental results and Eq. (30) would
give us the possibility to obtain the value of the constaut o.

3.3. F/ow in a cy/inder with vertica/l'Otlltion

The complete history of the surface shape in a thin rectangular bin rotating about its axis
can be studied experimentally by using Eq. (14) [121. Considering a cylindrical coordinate
system fixed to the axis, as shown in Fig. 4, and laking the axi-sYllllnetrical rotation of
the heap under the action of gravity, with coefficient of friction /' and angular vclocity n,
we find that Eq. (14) can be written as

p(n2r cos 0- 9 sin O) = p(n2r sin O+ 9 cos O)/l{3. (31 )

The value of {3can be -1 ~ f3 ~ 1,depending on the direction of the friction force, the
Froude number (a function of the angular velority n), and Ihe history of how this value
is reached together with the initial conditions.

Rearranging terms, scaling the coordinates (o and 1') with the radius R of a cylindri-
calor rectangular container and introducing the Froude number F, = n2R/g, Eq. (31)
transforms lo the following dimensionless fonn

do F,r - 1,{3
tallO = - = ----d,. 1+ 1'{3F,,.

(32)

Assuming we slowly increase the Froude number from zero, there is a critical value of
the Froude number, F,+ = /', below which the surfare does not sho\\' any deformation;
the superscript plus sign in the Froude number indicates t hat t he st ate of motion results
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FIGURE 4. Schematic view oC the axi-symmetrical vertical rotating system. The initial height is
H, n is the angular vc!ocity, R is lhe cylindf'f'S ra(lius and g is lhe gravity acceleration.

from increasing F" while a superscript minns sign thal the state of motion results from
decreasing F,. The solution oC El[. (32) for increasing Froude number, is

(33)

where 1 2: T 2: Te and corresponds to the critical regio n wilh a value of f3 = 1. El[uation (33)
gives the resulting logarithmic surfacc profile for the critical region.
In lhe case of decreasing Fronde nnmber, we can obtain from El[. (32) with f3 = -1,

the solution

(34)

where O :::; T :::; Te is now the critical region. El[uation (34) will contain lhe dependence on
the nlaximum Fraude numbcr Fr;tax rcachcd during rotatiol1, in the form

(35)

where Ze can be ohtained in both cases using the overall lIlass conservation. Therefore, for
the Same value of the Froude number we obtain in this Case two different surfaee equations
(i.e., :samc as fOUlld cxperimcutally [12». In general, then.' ,viii be an infinitc 1l11l1lhcr of
possibilities, depending on the history of how we reach a gi\'en Fronde number, showing
the strong non-linear character of the probl(,lIl.
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FIGURE5. Free surface profiles obtained from the analysis (liues) and from experiments (symbols)
as the Froude number ¡Ilcreases, for Fr+ = 4, 26.14 and 42.57.

From Eq. (32) we recover also the newtonian !lnid behavior in the case of /' = O, the
solution of which can be given in dimensionless form as

Fr 2
Z - Zo = -7"

2
(36)

On the basis of the analysis, we can show some shapes of the surface piles resulting from
rotation. Assuming we start the motion from rest with an initial !lat horizontal surface,
we obtain a peak at the center with decreasing height as the Froude number increases.
Figure 5 shows two dimensional projections of the surfaces generated by slowly increasing
Fr+. The lines show the theoretical results while the symbols represent experimental data.
Experiments were made using thin rectangular bins with the following dimensions: 30 cm
length (R = 15 cm), 0.4 cm width and 30 cm height, the bins were filled with Ottawa
sand (/, = tan</>e= tan 31° = 0.53) up to II = 14 cm and the Froude number W'lB varied
from O up to 52.78. \Ve also assumed a value of l' = 0.53 in order to compare the theory
with experiments. The values of the chosen Fronde number were: Fr+ = 4.0, where a clear
central peak is noted, Fr+ = 2G.14 and Fr+ = 42.57.

On the other hand, if we decrease the Froude number from Fr t,., = 52.78, we obtain
another type ofsolutions for Fr- = 26.14, Fr- = 4.0 and finally Fr- = O, where we obtain
the final state for the surface as a line with constant slope I'(</>e= 31°) (See Fig. G). In
all cases presented here, there is a good agreement betw('en theory and experiment, which
confirms that the present model describes correctly the phenomenology of the experiment.
The experimental values of the surface profiles are found to be slightly below the theoretical
ones. This is due to the compressibility of the granular material not considen'd in the
analysis.
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FIGUIlE 6. Free surfaee profiles obIained from the analysis (Iines) and from experiments (symbols)
as the Fraude number deereases, for F.- = 0, 4 and 26.14.

\Ve shouJd comment that the friction angle actually does not have a unique value. It
lIuctuates within a small range [24), which in our experiments was <Pe:i: 8, where 8 ~ 10.
For each Fraude number, the experimental results deviate a few per cent (less than 2%)
from the predicted surface shape profiles.

3.4. Surfaee .hape deformation ¡",der linear acceleration

Here, the important probJem of the surface shape deformation under uniform linear accel-
eration is brielly outlined. The slow 1I0wduring linear acceleration of dry granular material
within a tbin box can be studied by using the balance of forees equation and the CYC.
\Ve show in Fig. 7, the geornetry of the systern, where H is the initial height and a is the
rnagnitude of the horizontal acceleration of the box in relation to the inertial system fixed
to the 1I00r. Frorn the viewpoint of an observer in the (x, y) system fixed to the box, there
is an acceleration a in opposite direction which def'lfIns the surface. Thus, the balance of
forces equation for a small elernent of voJurne with density p at the free surface is

p(acoslJ - gsiulJ) = p(asinlJ +gcoslJ),,[3. (37)

Rearranging tenns, scaling the coordinates with the Iength 2L of the box and introdncing
the nondirnensional acceleration in g's, ñ = a/g, we obtain the dirnensionless differential
equation

(38)
IJ _ dy _ ñ - ,,[3

tan - d - r
T 1 +" a

ny increasing sJowly ¡¡ from zero, we fonnd a critical vallle of the nondimensional ac-
ccleration ¡¡+ = ", below which the surfaee dOl'S not show any deformation. The solution
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FIGURE 7. Schematic view oC a oox under horizontal acceleration. The initial height is H, 2L
is the length oí the 1Jox, 9 is tile gravity acccleration and -u is the uniform acceleration in the
-x-direction. The inclincd surCare is tlue to this acccleration.

of Eq. (38), for increasiug values of lí ((3 = 1), is

lí+ - ¡, ¡¡
11. = X +-1-+-¡-,lí-+- 2£ ' for lí 2: 1', (3D)

where we have used the overall Itlass couservatiou of granular material. Therefore, in a
thin box the surface protiles are straight liues with slope (lí+ -1,)/(1 + Illí+), crossiug the
ceuter (x = O) always at the initial height.

On the other hanel, after reaching t}¡c maxitnulll value of (í+, a~axl we decrcase slowly
the value of lí. The surface remains unchanged until the value of lí- reaches

lí;;'ax(l - 1,2) - 21'
=----------+ ( 2 .2amaxl' + 1 - ¡, )

For values of lí- < lí;, the solution is

¡¡- + /l H
11 = ---_-:r + -.

1-¡",- 2£

(40)

(41 )

For ¡¡- = O, the surface shape is !iuear with an iuc1ination angle equa! lo lhe crilica!
angle tPc' Herc agaill, the itysteretie jH'itaviol" is shO\vll challgillg from aH horizontal surfan'

al the beginning lo aH inciiucd surfare for tlle sallH' 1l00HlilllPllsional accelcration, ñ = O.
For a fluid [251, (1' = O), the surface protile fmm Eq. (38) is r('duced to

11 = ¡¡x + II
2L"

(42)
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4. REMARKS AND CONCLUSIONS

In this paper we have shown that the continuum treatment for the granular flow near a
free surface, gives an adequate description of the surface flow in cylindrical geometries in
good accordance with the experimental observations. Qur model also gives an adequate
basis for the modeling of the dissipative term in the shear stress balance equation.

In the case of the problem of the rotation of granular material, with a horizontal axis
of rotation, the continuous regime can be easily studied giving a power law for the surface
flow, in accordance with the experiment, independent on the geometry of the container.

For the flow within a vertical bin we have studied the rapid flow, on the free surface, near
the stagnant zone which form an angle ()> <Pe and we have proposed a novel experimental
procedure to stu<ly the temporal changes in the material area during the flow. \Ve hope,
in a future work, to present results in this direction.

The problem of the rotation of granular material with a vertical axis of rotation, in
general is a very complex phenomenon; one must take into account not only the gravita-
tional and the centrifugal forces, but also the history of the motion through the friction
force. However, the history or memory elfect disappears for continuously increasing or
decreasing slow rotation, as the grain achieves the critical state everywhere. In this case,
from a continuum point of view, this problem can be understood and a simple analysis can
correctly describe the motion. Hysteresis in avalanche processes is related to the changes
in the slope near the maximum angle and the frictional and packing factors within the
bulk. In the problem of the rotation of granular material with a vertical axis of rotation the
hysteretic behavior is rclated with these factors but additionally the initial an<l boundary
conditions. Similar results are obtained for the granular material under an uniform linear
acceleration.
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