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ABSTRACT. We study in general the survival probability for unstable systems in relativistic quan-
tum field theory (RQFT) and, then, in particular, the short-time behavior. Two specific models are
investigated here: one superrenormalizable and the other simply renormalizable. In both models,
we find that the said survival probability behaves like P(t) = 1 — ct at very small ¢ (¢ being a
model-dependent constant). This —linear in t— behavior is essentially different from the quadratic
one obtained in non-relativistic quantum mechanics also at very short times. The physical reason
of this discrepancy is analyzed. Some related results in non-relativistic quantum field theory are
also shown. Finally, some possibly relevant consequences of such a kind of short-time behavior of
the survival probability for unstable relativistic particles are discussed.

RESUMEN. Estudiamos, en general, la amplitud de supervivencia de particulas inestables en Teoria
Cuéntica de Campos Relativistas, y, en particular, su comportamiento a tiempos cortos. Se analizan
dos modelos especificos: uno superrenormalizable y otro simplemente renormalizable. En ambos
modelos, concluimos que dicha amplitud de supervivencia se comporta como P(t) =1 — ct para
tiempos t muy cortos (siendo ¢ una constante dependiente del modelo). Este comportamiento lineal
en t resulta ser esencialmente diferente del de tipo cuadrético obtenido en mecdnica cudntica no
relativista (también para tiempos cortos). Se analiza la razén fisica de dicha discrepancia. También
se presentan y discuten otros resultados, relacionados con los anteriores, referentes a particulas
inestables en el marco de la teoria cuantica de campos no relativistas. Finalmente, discutimos
algunas posibles consecuencias del tipo de comportamiento a tiempo corto de la amplitud de
supervivencia estudiado aqui.

PACS: 03.70, 11.10.S, 11.10.Gh

1. INTRODUCTION

The analysis of the finite-time evolution in relativistic quantum field theory (RQFT), and
in particular the short-time behavior of the survival amplitude of unstable systems in
RQFT, has not attracted a great deal of interest (a recent paper in which this question is
dealt with will be commented at the end of the present work). Such a situation is probably
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due to the fact that most of the relevant (experimentally) properties of elementary par-
ticles can be appropriately described in terms of the S-matrix, which involves transition
amplitudes just from ¢ = —oo to t = 400, finite times thereby playing hardly a relevant
role in such questions. Now one of the aims of this work is to study that finite-time evo-
lution. This kind of analysis has some interest in connection with the short-time behavior
of the non-decay probability of unstable systems in non-relativistic quantum mechanics
(NRQM): we shall show that the existence of generic features related to the presence of
infinite degrees of freedom in RQFT —in particular vacuum polarization and ultra- violet
renormalization— gives rise to remarkable differences in the short-time behavior of the
survival probability in both theories.

Now, as far as NRQM is concerned, the short-time behavior of the survival probability
(SP) of unstable systems has been thoroughly studied (see, for instance, Ref. (1] and ref-
erences therein) in particular in connection with the quantum violations of the “classical”
exponential decay law. For the sake of completeness we shall present here the main result
of those studies relevant to the purposes of this work.

Let P(t) (t > 0) be the SP for an unstable system which is represented in NRQM by
some normalized state, | ), and let H be the Hamiltonian governing the evolution of the
quantum system. One has P(t) = |(¥|exp(—itH)|W¥)|? (with & = 1). If one assumes the
finiteness of the energy dispersion in the initial (unstable) state

(AE)? = (W|H?|¥) — ((T|H|¥))? < oo, (1)

as in fact happens in non-relativistic quantum systems, then it can be shown that at very
short times

P(t) ~1- (AE)%*, t— 0%, (2)

Notice that Eq. (2) shows the violation of the exponential decay law at very short times
whose consequences, such as the quantum Zeno effect, and possible experimental detection
have been profusely discussed (see Ref. (13] for relevant experimental work concerning the
quantum Zeno effect).

Another aim of the present work is to show that (2) does not hold in RQFT (at least
in the two models here investigated) and that, instead, at very short times the PS evolves
linearly in time at very short times (t — 0*).

In Sect. 2, we carry out the analysis of the finite time evolution of the SP in a situation
which, in some way, lies in between the NRQM and RQFT cases and that is helpful in
order to get a proper understanding of the problems arising in the RQFT case: we are
referring to the time evolution of the SP in some well-known non-relativistic quantum
field models. General studies of finite time evolution and of the short-time one are carried

out in Sect. 3, and the corresponding conclusions and open questions are discussed in
Sect. 4.
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2. SURVIVAL AMPLITUDE OF UNSTABLE PARTICLES IN SOME MODELS
OF NON-RELATIVISTIC QUANTUM FIELD THEORY

2.1. Characterization of the models

Our purpose is to analyze the evolution for times ¢ > 0, in particular for short times, of
unstable particles, which have been formed or “prepared” previously, say, at t < 0. In this
section, our study will be carried out in the framework of non-relativistic quantum field
theory in three spatial dimensions.

Let |7, pi) be the initial state representing the unstable particle at ¢ = 0, with three-
momentum p;. Let Hy be the field-theoretic hamiltonian describing that particle, regarded
as a stable one, so that |i, p;) is an eigenstate of Hy with eigenvalue Ej;:

Hyli, pi) = Eoili, pi)- (3)

We stress that Hy also describes other particles besides the unstable one (say, its future
decay products) and that the interaction giving rise to the decay is not included in Hj.
We will suppose that for ¢ > 0 there is an interaction represented by the interaction
hamiltonian Hj that produces the decay. Then for ¢t > 0, the total hamiltonian describing
the time evolution of the unstable particle, its decay, and the dynamics of the resulting
particles in the final state is

H = Hy + Hj. (4)

None of the interactions considered in this section polarizes vacuum, by assumption,
thereby restricting ourselves to non-relativistic field-theoretic situations.

To fix the ideas we consider: i) a non-relativistic quantum particle with (bare) mass
mg and position and three-momentum operators x,p (= —iV, Planck’s constant being
set equal to one throughout this work), and for simplicity with zero spin; ii) a quantized
spinless boson field described by the destruction and creation operators with momentum
k, a(k), a*(k) ([a(k), at(k')] = 6©)(k — K')). The energy of a boson with momentum k
is w(k)(k = |k|), with w(k) > wp > 0 for any k. Let |0) be the vacuum, i.e., a(k)|0) =0
for any k. For ¢ < 0, the non-relativistic particle and the bosons evolve freely —there is
no interaction among them. Then they are described by the hamiltonian

2
By 4 /d3kw(k)a+(k)a(k). (5)
2mo
For t > 0, we shall assume that an interaction described by
By = Afdf’k [6(k)a(k) exp(ikx) + ¢ (K)a™ (k) exp(—ikx)] (6)

also acts. A and ¢(k) are a real coupling constant and a form factor, respectively. Notice
that Hy does not polarize vacuum. The total hamiltonian H is given in Eq. (4), for t > 0.
The non-relativistic particle, when it acquires a sufficient large three-momentum, will
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become unstable for ¢ > 0, and the above bosons will appear in the final state after the
decay, as we shall discuss later in more detail.
The total three-momentum operator is

, /dsk ka™* (K)a(k). (1)

One has
(Ho, P] = [H,P] = 0. (8)

Let H(po) be the subspace formed by all the eigenstates of P with eigenvalue Py.
Accordingly, the initial state |7, p;) representing the non-relativistic particle “prepared”
at t = 0, which is a plane wave with three-momentum p;, belongs to H(p;). Notice that
it satisfies (3), with Eg; = p?/2m; and that

(i, pli,p’) = 6% (p — p'). (9)

Let o(Hy, po) (resp., a(H,pg)) be the set of all eigenvalues of Hy (resp., H) when it
acts only on states belonging to H(pg). In general, both o(Hy, pg) and o(H, pg) will have
discrete and continuous eigenvalues. In the present case, Ep; = p?/?mo is an isolated
discrete eigenvalue of o(Hy, pi) for Ey; < wp.

We shall consider two models:

The polaron model. The non-relativistic particle and the boson field represent, respec-
tively, an electron and the optical phonon field in an ionic crystal through which the
electron moves. Furthermore, in this model one chooses w(k) = wyp > 0 for any k and
¢(k) = i/k; see Feynman [2] for further details.

The Gross-Nelson model. The non-relativistic particle and the boson field represent,
respectively, a nucleon and the neutral pion field. One now chooses w(k) = (n? + k?)!/2
and ®(k) = [w(k)]~'/2, u being the pion mass.

The behavior of this ®(k) in the ultraviolet (k — oc) has posed several difficulties
for a proper characterization of the hamiltonian H in the case of a stable nucleon. The
difficulties have been solved through a suitable renormalization implemented by a dressing
transformation; see Gross [3] and Nelson [4] for details.

2.2. Survival amplitude

In the polaron model, we shall suppose that the initially “prepared” state |i, p;) (fulfilling
(3), (9)) has three-momentum p; such that p; > (2mowp)'/2. Then, the actual Hj [Eq. (6)]
implies that this electron is unstable against a sort of “Cerenkov effect” in the ionic crystal,
namely, the process electron (p;) — electron (p; — k) + phonon (k) occurs physically, the
phonon momentum k fulfilling p?/2mo = (p; — k)?/2m + wp. Then, the energy By: =
p?/2mq of |i, p;) belongs to the continuum spectrum of o(H, p;).



220 RAMON F. ALVAREZ-ESTRADA AND JOSE L. SANCHEZ-GOMEZ

Our main interest will be focussed on the non-decay (i.e., survival) amplitude A(t) and
the associated probability |A(t)|? for ¢ > 0. One has

A(t) — (ia pile?_(P(_.th)h,Pi). (10)
(i, pili, pi)
The infinite volume divergence of (i, p;|i, p;) [see Eq. (9)] cancels with a similar factor in
the numerator in (10).
For short time ¢ > 0, upon expanding exp(—itH) in (10), a formal manipulation easily
yields

At = 1 - t*(AE?), (11)
2 _ (Pl Hipi)  (GypilHipi)
aEf = S e (B 12)

where AF is the energy uncertainty in the initial state |z, p;).

Some time ago, the decay of an unstable particle (proton decay, specifically, as conjec-
tured by Grand Unified Theories) was studied in the framework of Lee-type models [5],
which turn out to correspond to a simpler —and actually solvable— modified version of
the class of models described by Egs. (5), (6), also with a form factor ¢(k). There [5],
it was pointed out that the corresponding AE (also given by (12)) could be either finite
or ultraviolet divergent, depending on the behavior of ¢(k) at infinite momentum k& —for
previous work on unstable particles in Lee-type models, see Ref. [6].

Let us analyze in the polaron model the probability for the electron in the state |i, p),
with p; > (2mowp)'/2, to survive at short time ¢, by using Eq. (11). For that purpose we
need to evaluate (AE)? (Eq. (12)). Some standard algebra yields

b o
(AE)? = ——w——“’(f'li)ﬁ; l;;:)) L =y [ &xlswr, (13)

which is linearly ultraviolet divergent for the polaron model. Consequently, (11) is no
longer useful in the present frame-work to evaluate the survival probability at short times
in the polaron model.

In spite of the failure of Eq. (11), the survival amplitude in the polaron model for any
t > 0 can be studied through the following exact formula

ic=o JF  exp(—iEt)
_ 14

where R(FE) can be regarded as the self-energy of the unstable particle, and it is given by

ALy = (i, pili, pi)
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where in turn |¥) satisfies the integral equation

%) = |i, pi) + (1 - i, pid i, pil ) | 0), (16)

1
E - Hy
I being the unit operator. In Eq. (14), ¢ is a positive number, so that all singularities in
the denominator lie below the path of integration. We refer to [7] for a thorough derivation
and analysis of Egs. (14)-(16); see also Ref. [8] for previous work.

Upon replacing |¥) in (15) by the series obtained by iterating (16) sucessivelly, one can
express the self-energy R(E) as a power series in Hj. The interesting point is that each
term in that perturbation series is finite. This follows by using (5), (6), (3), (9) and the
form factor of the polaron model and by performing some direct countings of powers of
threemomenta in each term of that series. Since each |¢(k)|? provides a k=2 and so does
each (E — Hy)™1, they are sufficient to overcome threemomentum space volume element
k? dk as k — oo and, hence, to render all integrals finite in the ultraviolet. Likewise, one
can see that, in general, there are no infrared divergences. Then (14) shows that A(t) does
exist and is well defined for ¢ > 0, in the polaron model. However, one should refrain from
expanding naively the r.h.s. of (14) into a power series in ¢, as such a procedure could
introduce ultraviolet divergences in the integration over E. Such divergences could be
related to the one for AE commented above, which in fact came from a formal expansion
of exp(—itH) into powers of t. We now turn to the Gross-Nelson model.

Let |z, pi) represent now a one nucleon state. It can also suffer a “Cerenkov effect” when
p; fulfills

2 S k)?
Eoj= 2 = (u2 4 k)12 4 (pi — k)* ; (17)
2my 2my

This equation has a non-trivial solution (when p; and k are collinear, with p; - k > 0), if
pi=k/24+mo(1+ u2/k})Y2 k> k>0, (18)

provided that kg fulfills

pt_ dmipt

KKk

(19)

Then, the nucleon state [¢,p;) “prepared” at t = 0, and with p; fulfilling (17, 18) will
become unstable when H; be turned on for ¢ > 0. In what follows, we shall be specifically
interested in the survival amplitude for this unstable nucleon. To start with, a direct
application of Egs. (11,12) for the short-time survival probability fails because the energy
uncertainty AE, (13), for the unstable particle in the Gross-Nelson model turns out to
be quadratically ultraviolet divergent. Moreover, a direct attemnpt to study the survival
amplitude on the basis of (14) is also doomed at failure for the H characterizing the Gross-
Nelson model. Consider the nucleon self-energy R(E), as given formally through (15) and
the series of iterations for (16). Now it turns out that each term in the series for R(F)
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is ultraviolet divergent (since |¢(k)|*> now behaves as k™! for k — oo). Consequently,
(14) cannot be used. Fortunately, by applying for ¢ > 0 the same unitary (dressing)
transformation for the actual unstable nucleon case as Gross [3] and Nelson [4] did for
the stable one, the above difficulties can be overcome and the survival amplitude becomes
finite. Specifically, that unitary transformation is implemented by the unitary operator
exp T, where

T= f d*k [B(k) exp(ikx)a(k) — B* (k) exp(—ikx)a* (k)| = ~T* (20)
_ _AlL=6(A — h)lé(k)
Bl = ==S + (@ J2ma) v

A is a non-negative arbitrary fixed constant and @ the usual step function. Then one finds
that [exp T)P[exp(—T)] = P and that, for t > 0, H transforms into the new hamiltonian
H' as

[exp T]H[exp —T)] =H' + E'; (22)
2 [ Pk (k)2 [1 = 8(A = k)]
- f Tk= ) + B f2mg %)
H =H0+HI‘1 +H]'2] (24)
Hj = f d*k B(A — k)(k) [a(k) exp(ikx) + a* (K) exp(~ikx)] (25)
Hy, = ﬁ [A%+ (A%)* + 247 A +2(pA + A*p)|, (26)
e [ &k B(K)k a(k) exp(ikx). (27)

At this stage, we shall omit the logarihmic ultraviolet divergent constant self-energy E
in Eq. (23) and regard H', in (24), as the hamiltonian describing the unstable nucleon
dynamics and decay for ¢ > 0. Then, the corresponding survival amplitude is naturally
given by Eq. (10) with the sole replacement of H by H'. The new energy uncertainty, as
given by (12) with H replaced by H' as well, still turns out to be ultraviolet divergent
as further computations show. Fortunately Eqs. (14)-(16), with Hj replaced by Hp, +
H} , are finite and well-defined and characterize the nucleon survival amplitude in the
(renormahzed) Gross-Nelson model. In fact each term in the perturbative series for the
actual R(E) in powers of Hj, + H}, turns out to be finite in the ultraviolet (and in the
infrared). This property follows from further countings of powers of three-momenta when
use of the new interaction hamiltonian H, , + H, , (see Egs. 25)—(27) is made. Actually
the finiteness of R(E) in the present case is not surprising, but a direct consequence of
the unitary transformation in Eq. (22), which removed E’ (at the expense of introducing
the more complicated interaction Hj,; + Hj ,), as in the stable nucleon case (3,4]. Then,
(14) can be employed to characterize the survival amplitude for any t > 0.
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We will end this section by pointing out some curious —and perhaps somewhat paradox-
ical— property of the polaron model. As we will see, provided that certain dressing effects
be properly accounted for in the initial state, a new survival amplitude can be introduced
in such a way that the divergence in AE is cured and hence the corresponding survival
probability at short times can be computed via (11). Specifically we will assume that the
initially “prepared” unstable electron state is no longer the above |7, pi) but the following
one, in which also p; > (2mguwy)!/2

|i1pi)d = exp(——T)|i, Pi)s (28)

The operator T is given in (20), (21) with the form factor ¢(k) characterizing the polaron
model. |z, p;)4 can be regarded as an electron state, partially dressed by a coherent phonon
state, which becomes unstable for )0, when Hj is turned on. Our choice for |#, pi)q is not
accidental but inspired on the properties embodied in (22), (23), as the following analysis
will show. Notice that the new initial state i, Pi)4 is not an eigenstate of Hy any longer
—although it is still an eigenstate of P.

The survival amplitude associated to the new initial state is

At)g = d(i,pileffp(-‘.ﬁﬂ)liapi)d _ (iipilexp([‘—it(f'f' + Ei, pi) (29)
d(?’?pi’z‘pi)d (z’piliapi)
where (22) has been used. Notice that E’ is finite for the actual polaron case.
The survival probability |A(t)q|? at short ¢ > 0 is also given by (11,12) with H replaced
by H'+E'. By using (22)-(25) and (i, pil(H} 1 +Hj ,)|i, pi) = 0, some easy power counting
of three-momenta shows that (AE)? < oo in the polaron model for the new initial dressed
state. Then (11) can be used for the latter. Notice, however, that by dealing with |3, Pi)g
we are disregarding the following conceptual paradox: that state includes at t = 0 dressing
effects associated to an interaction which will act for ¢ > 0!

3. UNSTABLE PARTICLES IN RQFT: SURVIVAL AMPLITUDE

3.1. A general analysis

We now turn to analyze the short time decay of unstable particles in local RQFT in 3
space dimensions. Now, one should be careful about both vacuum polarizing interactions
and ultraviolet divergent renormalization.

For previous general analysis of unstable particles in RQFT we refer to [9]. More recently
the short-time behavior has been treated in Ref. [10)].

To begin with, let us state clearly the problem.

We consider —with respect to certain reference frame— some “free” hamiltonian H,
which describes particles for ¢ < 0 in local RQFT in the Schrédinger picture. Also, let P
be the total three-momentum operator, with-[P, Ho] = 0, and let i, p;) be the initially
prepared state representing the unstable particle at ¢ = 0. By assumption, li, psi) is a
common eigenstate of both Hy and P with eigenvalues Ep; and pj, respectively, and
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the unstable particle is massive: Eg; > 0 for any p;. In the cases to be analyzed below,
the unstable particle will be either a neutral spinless boson or a neutral spin 1/2 fermion.
Notice that upon “preparing” the unstable particle we are disregarding (or at least cavalier
regarding) formal covariance since we are selecting one inertial frame, namely, that in
which the initial state has been prepared at ¢ = 0. As it seems a priori natural (and
simplest) we shall select the inertial frame (S) in which the unstable particle is at rest at
t= 0, i.e., Pi = 0.
Let |0) be the vacuum for Hy. Then, the initially prepared state can be written as

li,pi = 0) = |i) = a™(p: = 0)|0), (30)

at|p;) being the associated creation operator for the unstable particle (in Schrodinger’s
picture). Possible spin dependence for it will be written later, when needed.

The interaction hamiltonian Hj, which acts only for ¢ > 0 and its responsible for the
decay, has the following properties (by assumption):

1. It commutes with P.

2. It polarizes vacuum.

3. Tt gives rise to either a superrenormalizable local RQFT or to a renormalizable
one and ,so, it includes the corresponding ultraviolet divergent renormalization
counterterms. We shall start, for simplicity, with superrenormalizable interactions
in the next subsection.

4. It involves a small coupling constant, in the sense that one can reliably apply
perturbation theory. In this regard, a good example would be the interaction
hamiltonian responsible for the conjectured proton decay in Grand Unified The-
ories (GUT’s): in particular the order of magnitude of this Hj is much smaller
than that of the strong (QCD) hamiltonian (which in turn would be the analogue
of Hy). The total hamiltonian, H, for t > 0, is also given by the r.h.s. of (4) and
it also commutes with P.

It is worth noticing the following difference between the treatment in this section and
that in the preceding one. On one side, in the non-relativistic field theoretic models of
Sect. 2 the same hamiltonians Hg, H; described both: i) particle structure and dressing
(renormalization effects), ii) decay. On the other side, in the RQFT case of Sect. 3, one is
distinguishing between the total hamiltonian for ¢t <0, Hy, describing the structure (and
formation) of the initial state and the one for t > 0, Hy + H,, in which H; gives rise to
the subsequent decay.

Notice that for a given initial state describing the unstable particle before decay, the
resolution of the total hamiltonian for ¢ > 0 into the sum of an unperturbed hamiltonian
and a perturbation is not unique, in general. They are split up in this way as a practical
consequence of our actual limitation to calculate using perturbation theory (should we
have been able to solve the equations of motion exactly, then there would be no need to
make such a split). In this setting, ambiguities of that sort appear to be unavoidable (and
well known and understood).

An unstable particle could also be prepared in a state which is not an eigenstate of the
chosen Hy. We recall, in this connection, that the lifetime of an unstable particle could
depend on the way it has been prepared (see Schwinger’s paper in Ref. [9]).
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The survival amplitude A(t), for the unstable particle at rest in S for ¢ > 0 is still given
by the r.h.s. of Eq. (10), with the actual H and |, p;) being replaced by |i) = |i, p; = 0).

Again, the volume divergence embodied in (i|i) = 6©)(p; — p;) will cancel with a similar
factor in the numerator of the counterpart of (10).

In order to study A(t) in renormalized perturbation theory, we shall go over to the
interaction picture (ip), for ¢ > 0, in the standard way. In so doing, we shall give only
the essential formulas, thereby omitting standard and easy calculations which are well
documented [11,12]. By assumption, both Schrédinger’s picture and ip coincide at ¢ = 0.
Let

U(t)ip = exp(itHo)exp(—itH), t >0, (31)

be the ip evolution operator. A generic operator B representing a dynamical variable in
Schrodinger’s picture becomes in the ip

B(t)ip = exp(itHp) B exp(—itHp). (32)

Then, by using (31), (32), the survival amplitude for ¢ > 0 can be easily cast as:

Alt)= {Olalp =0 t)ipU(t)&:ﬁ;(Ps = 0; t = 0);,|0)

a(p = 0; t)ip being the ip destruction operator at ¢ > 0. For later convenience, we have
written a*(p; = 0; t = 0);;, instead of a™t(p; = 0).

Equation (33) reminds the known representation for the one-particle Green’s function
for the decaying particle (as if it were stable) in a formally similar RQFT also in the ip
(compare for instance with Eq. (35d), page 657, in Ref. [11]), although they turn out to
be different physical and mathematical quantities.

One crucial difference between them is that the survival amplitude involves operators
and states at finite non-negative times necessarily, whereas the one-particle Green’s func-
tion requires them at all times, —00 < t < 00 (in the ip). Fortunately, in the present case
we can also use the standard perturbative expansion for U(t)

(33)

ips

U(t)ip - é (—1!)n -/: dty .. ./{;t di, T[H](tl)gp o .Hl(tn);p]. (34)

n

The symbol T in the r.h.s. of (34) denotes the standard time-ordered product. Then, upon
replacing Eq. (34) into (33), we get the basic formula which will enable us to calculate the
survival amplitude in renormalized perturbation theory:

= (=" gt £, (0|T(a(t) Hi(t) ... Hy(t,) a* (t = 0)]|0)
A(t)—nZ:% - /Odtl...fo dt, T . (35)

(where, for simplicity, we have omitted ip in the operators, as well as p; = 0 in @ and
at). Ast > t1,...,t, > 0, it was allowed to write both a(t) and a*(t = 0) inside each
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T-product in (35). One can now evaluate A(t) by using (35)and Wick’s theorem in the
standard way [11,12].

Let Eg i(pi = 0) = m; (> 0) be the renormalized rest mass of the unstable particle (¢ = 1
throughout this work). After applying Wick’s theorem, the first stage in the computation
consists in the cancellation of the infinite-volume divergence in (i|i)~! with a similar
factor which comes from the vacuum expectation value of the contractions in (35). Such
straightforward calculations show, at the same time, that each perturbative contribution
to A(t) contains exp(—im;t) as an overall factor. Consequently, after those cancellations,
A(t) bears the factorized form

A(t) = exp(—im;t)A(t), (36)

where the “reduced” survival amplitude fi(t) tends to 1 for any ¢ > 0 if H; — 0. The
structure of (36) can be inmediately checked from (33) when Hy = 0. After having cancelled
out the infinite-volume divergences contained in (i[i)~! in each perturbative order, as
implemented in Eq. (35), new infinite-volume divergences crop up in A(t). In fact, since
H) polarizes the vacuum, upon applying Wick's theorem to each T-product one finds
unavoidably the contraction of a(t) with a* (¢t = 0). Such a special class of contractions give
rise to new infinite-volume divergences generically known (and represented graphically)
as disconnected vacuum contributions (dvc).

Let A’ be the sum of all contributions associated to dvc, as generated by the appli-

dvc
cation of Wick’s theorem to the r.h.s. of (35), and let us write

Ad\v‘c(t) =1+ A::lvc(t)' (37)

Aqgve embodies all the remaining infinite-volume divergences which are generated by (35)
(those which do not cancel with (i|7)~1). It can be shown in general that, to all orders in
perturbation theory, the “reduced” survival amplitude factorizes as

A(t) = Aave(t) Apn(2). (38)

Aph(t), to be called hereafter the physical survival amplitude, is the sum of all perturbative
contributions to A(t) in each of which a(t) is not contracted with a*(t = 0). Therefore,
all the contributions to Apy are free of infinite-volume divergences. Notice that App — 1
as H — 0.

In local RQFT, ultraviolet divergences will generically appear in the perturbative ex-
pansion of A(t). However, since Hj also includes, by assumption, all the necessary renor-
malization counterterms, it turns out that Apy(t) is ultraviolet finite. In other words, all
ultraviolet divergences which could appear in the contributions to Ay, () cancel out to all
perturbative orders. The different key properties of A(t), A(t), Agve(t), and Apn(t) will be
checked below through several explicit computations in certain superrenormalizable and
renormalizable models, to second-order perturbation theory. It is interesting to compare
the structures in Eqgs. (36), (38) with the analysis made in [10]: specifically, the squared
modulus of Eqgs. (36), (38) coincides with Eq. (15) in Ref. [10].
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3.2. A superrenormalizable model

We shall consider an unstable relativistic neutral scalar massive boson (i) with mass
mj > 0, which can decay into two different stable neutral scalar bossons (a, b) with masses
Mq, Mp, S0 that m; > mg +my. All masses are the renormalized ones. Then, Hy is the sum
of three terms, each of which is similar to the second contribution in the r.h.s. of Eq. (5),
with the corresponding energy and creation and annihilation operators (for the ¢, a, and
b bosons).

The interaction hamiltonian for ¢ > 0 in the Schrodinger picture is by assumption

By / Px B;(x) Ba(x) Bp(x) — 6m? / Bx N[&;(x)]? + o.c.t. (39)

®;(x) is the standard free quantized Klein-Gordon field for the i boson: its well-known
plane wave expansion in terms of the creation and annihilation operators (those appear-
ing in (30)) will be omitted. Likewise for the field operators ®, and ®;. A is a coupling
constant with dimensions (mass)?. ém? is the ultraviolet divergent mass renormalization
counterterm for the unstable i boson: its explicit expression will be given below, as it will
be needed later. The symbol N in Eq. (39) denotes normal ordering of field operators,
while o.c.t. means other divergent renormalization counterterms, specifically, mass renor-
malization counterterms for the a and b bosons —they will not be written explicitly, as
they are not needed in this work.

The RQFT model described by (39) is superrenormalizable. The mass renormalization
for the i-boson is (e — 0%)

A2 1
dm?2 = L—/dd‘k )
M= o) VKT m2 + ie) (k2 — m? + ie)

(40)

For this model, we shall give the contribution of order A? to A}, (¢) to be denoted as
ave(t)?. We apply Wick’s theorem, we cancel out (i|i)~! and express the non-vanishing
contractions of boson field operators in terms of the corresponding free boson propagators;
then we replace the latter by their Fourier integral representations and we carry out
trivially all three-dimensional integrations over space coordinates as well as one integration
over the three-momentum of the internal ¢ boson. The integrations over times are not

carried out explicitly at this stage. Thus, one arrives at (k= (k?, ki), 7=1,2; e = 07%)

iAot t o0
Adve(t) = "6(3)(0)W fo dty fﬂ dt / d*ky d'ks f k)

x exp [ = i(kD + K3 + A9) (b — ts)]

1|
X , o (41)
(k2 — m2 + ie)(k —m} + ie){(k&)z — (ki + k9)2 —m? + ie]

which displays the infinite volume divergence §(*)(0) neatly.
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We now turn to our main subject, i.e. the physical survival amplitude. Having dealt
with the dvc, we shall work out the consequences of Wick’s theorem for the remaining
contributions, that are free of infinite-volume divergences. Some computations, patterned
after those which have led to (41), yield a set of rules for writing the renormalized per-
turbative contributions to Apy(t). The analogy, commented above, between Eq. (33) and
the one particle Green’s function, G, indicates that there is a one-to-one correspondence
between the renormalized perturbative contributions (free of infinite volume divergences)
for G and for App(t) and, hence, between the rules yielding each of them separately.

In short one can say that the diagrams contributing to both G and A (t) are formally
identical, but that the computational rules yielding the contributions for G and Apy(t)
are not the same (exactly) but slightly different. Then, it is natural and simpler to for-
mulate the rules for obtaining the renormalized perturbative contributions to A,h(t) by
starting from the ones for G' in momentum space, which are well known (and need not be
reproduced here) [11,12].

We start by drawing a fully connected diagram D in four-momentum space, contributing
to G to some perturbative order, n. Particular attention will be paid, in the sequel, to the
two external vertices in which the two external lines for the i-boson (say, the incoming
and outgoing ones) join the diagram. By convention, the incoming (outgoing) particle
joins the diagram at vertex 2 (1). The two external vertices may coincide in some special
case, as we shall see. In order to obtain the perturbative contribution of order n to Apy(t)
generated by D, we proceed as follows:

1) We attribute a time t; to each vertex in D, including the two external ones, so that
t1 (t2) corresponds to the external vertex 1 (2); in the special case in which both coincide
we will write {3, only.

2) For each internal line in D for the z-boson (z = i, a, b) carrying four-momentum
k = (k% k) and going from the vertex j towards the vertex j (which may be external or
internal), we write the contribution (¢ — 0%)

1 exp[—ik®(t; — t4)]
2m)t k2 -ml+ie

Note that the external i—boson lines carry fourmomentum (m;, 0).

3) For any three-boson vertex, we write /\(217)36(3)(K)mt), Kot being the sum of all
three-momenta entering and leaving that vertex (with the same rules as those used when
dealing with the diagram for G).

4) For any two-boson vertex at which only two lines with four-momenta ki, k2 join
(which is necessarily generated by one of the mass renormalization counterterm appearing
in (39), we simply write

i(2m)36@) (kg — ko) 6m2  (z =1i,a,b).

5) We attribute no contribution to one of the two external vertices (irrespective of
whether three bosons or two bosons meet in that vertex). In other words, for that vertex
we do not make use of rules 3 and 4, for, otherwise, we would give rise to a volume
divergence (6(3(0)): actually, it is the one which has already cancelled out with (i]:)~!.
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6) We multiply by (2m;)~! exp[im;(t; — t2)).

7) We integrate over all internal fourmomenta.

8) We integrate over all times ¢;, for all vertices (internal and external) in 0 < ¢; < t.

9) Other factors, namely (—i)" /n!, statistical factors (arising from different possibilities
in performing volume-divergence-free contractions),..., are the same as in the standard
rules yielding the renormalized perturbative contributions for G.

Using rules 1-9, the renormalized perturbative contribution to App(t) of order A?,
Aph(t)(z), can be inmediately written. After a few trivial simplifications, it reads

Aph(t) = 1 =~ Ap ()@

g ol fd“k 'k 8 i + o)
2m; | (27)3 b k¥ — m2 + i) (k3 — m} + ie)

t t t
X >/0 dti./(; dtg exp [i(mi == ‘!"{1] = kg)(tl = tg)] + zém?f di]} (42)
0

Notice that the contribution ém? in (42) is just associated to one diagram in which both
external vertices coincide.
Upon performing the time integrations and trivial algebra, Eqs. (40) and (42) yield.

2y _ N

Apn(1)® = 5=t (43)
X can be written as

X=X1(Xf)+Xg, (44)
where

d*k; 1
Xi (X)) = - X:
with
5 /»oo Eﬂt_g 4 sin? [%(m,— — k9 - kg)] 1 (46)
1" Jo 2nm (mi — k9 —k9)2 (k)2 — (¢2 4+ m2) + ie’

where ¢ = |k;|, and (recalling (40))

| - / &k 47
* (2m)4 J (k2 — m2 + de)(k} — m? + ie)’ (47
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The integration in (46) requires some care. A convenient procedure to do it is differen-
tiating the r.h.s., with respect to ¢, twice and then performing a residue integration over
k9. By using that procedure, and taking into account that

dXi T
( dt )t=0+—X1(t_&0 )_Ov

we get
X =Y +Y,, (48)
where
yi = i [exp[—it(k? . B = @i)] =1 explit(k) — Ej — mi)] — 1 (49)
2(g? + m$)1/? (k9 + By — m; — i€)? (kY — E, — m; + 1€)?
Y = . (50)

(K — mq)? — E2 + ie

(for convenience we have defined E, = (¢* + m?)!/?)
The last expression for Y is now introduced in (45) and the corresponding result added
to X (Eq. (47)), so obtaining

¥ = Xy (¥)) +.X;

it 0o 2 2
=L2~/ dq | s o, (51)
474 Jo EaEb'-f'EaEb (EG-I-E(I,) —m; — 1€
where, obviously, E, = (¢? + m2)'/2. Notice that (51) is no longer ultraviolet divergent.
Now by separating out real and imaginary parts in (51) we get

Y=—8Q t+itl, (52)

m;

where Q (CM momentum of the final particles) is given by

1

1/2
[m? —2m?(m? + m) + (m2 - mg)zl / (53)

Q=3 1
and I, being essentially the principal part of the integral in (51), needs not be specified
since it is pure imaginary and its contribution to the survival probability is then of order
L)

We now turn to the remaining part of X|, t.e. Y{, given in Eq. (49). The latter once
introduced in Eq. (45) and after integrating over k3, yields the following result

Z = X)(Yy)

1 foo y q? [exp[—it(Ea +Ey,—mi)] -1 exp[—it(Ea + Ep + m;)] —
872 Jy anEb (E, + Ey — m; — ie€)? (Eq + Ep + m; + i€)?

| e
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In (54), we shall use (A — ie)™2 = PA~% — iné'(A) for any A (P is the principal part
and &' the derivative of the é-function). The contributions to Z arising from §'(A) and
PA~? are denoted by Z(¢') and Z(RP), respectively. Some algebra yields, for any t > 0

Q
Z(6) = ——t 55

which exactly cancels out with the first term in the r.h.s. of (52). We now compute the
remaining part of (54), Z(RP). By expanding in power series in t and taking only into
account linear and quadratic terms (as we are dealing with the short-time limit) we obtain
after some calculation

—t  (mg + my)t?

Z(RP)—Z—-Z(J)._m-l- T6n?

Now, recalling the first equality in (42) and (43) we get for the short-time survival prob-
ability up to order t2 (¢t > 0)

(56)

X* : A fm

P(t) = IAph(t)lz ~1- 167m; 167m;

(ma + mp)t?, (57)
which is valid (as one realizes by analyzing the expansion in powers of ¢ in (57)) for
0 <t < (mg+my)~! —a very short time indeed for “normal” decay processes.

In spite of not being directly concerned here with large time properties of decay, it
seems worth studying briefly the survival amplitude as t — oo (still at order A?), simply
as some kind of consistency check of the present treatment. Thus, from (54) and recalling
that

lim o = 1é(w),
t—oo w
we easily obtain
Re Z(RP) —» — -2t (58)

t—oo  8mm;

Now, as the imaginary part of Z(RP) gives a contribution to P(¢) which is of order A\
and (see (55))

Re Z(RP)i— + Z(6) = 0,
we shall have, from (52) and (43)

P(t) —1- )‘2Qt

t—oo Smnf ' &%)

Notice that, as expected, the above expression coincides with the one obtained by using
Fermi’s Golden Rule. We again point out that the main result of this subsection is Eq. (57),
in which one sees that as ¢ — 0% the survival probability decreases linearly with ¢, instead
of the quadratic behavior appearing in Non-relativistic Quantum Mechanics. A similar
linear behavior will be present in the model we are going to study in the next subsection.
The physical discussion of this result is left for the last Section of the paper.
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3.8. A renormalizable model

We shall now consider an (unstable) relativistic neutral spin-1/2 fermion (i), with renor-
malized mass m; > 0, which can decay into two relativistic stable neutral particles (a, b)
with renormalized masses mq,my > 0, so that: i) m; > mg + mp, and ii) b is a spin-1/2
fermion while a is a scalar spinless boson.

Now, Hy is the sum of three terms; the free hamiltonian corresponding to a is similar
to the second term in the r.h.s. Eq. (5), while those corresponding to both i and b are the
well-known ones for relativistic free Dirac fermions. For ¢ > 0 the interaction hamiltonian
in the Schrodinger picture is

B / d*x [ Wp(x) Ti(x) Ba(x) + hoc.] - 6m ] &xN [T;(x) Ui(x)] +oct.  (60)

A is a renormalized dimensionless coupling constant; ¥; and ¥, are the standard relativistic
free Dirac operators. Thus, the plane wave expansion for ¥; contains the annihilation
operator of the decaying i—particle, a(p;, o;), which now depends on its helicity o; (= ﬂ:%)
as well.

The mass renormalization counterterm for the unstable i~fermion is to order A? (¥, =
k7’ =k - 9)

i) (=¥, +ms)
ém; = d' !
m (2m)4 / b (k3 — m2 + ie)(k — m? + i)’ (61)

which is ultraviolet divergent. Notice that this model is not superrenormalizable but sim-
ply renormalizable, a fact which will give rise to certain interesting differences in compar-
ison with the model discussed in the previous subsection. As before, the symbols o.c.t. in
Eq. (60) denote the remaining necessary ultraviolet divergent renormalization countert-
erms (for masses, wave functions and coupling constants). A crucial difference between
the actual renormalizable case and the previous superrenormalizable one is that o.c.t. now
contains, among other contributions (irrelevant for our purposes) that corresponding to
the renormalization of the wave function for the unstable fermion. The latter contribution
comes from a term

(Ziz —1)¥; [% 8, — m,-] 0,

in the corresponding lagrangian density, Z; » being the (ultraviolet divergent) associated
wave function renormalization constant for the unstable fermion —it will play an inter-
esting role in the subsequent computation of the survival amplitude.

The dvc and the rules for obtaining the physical survival amplitude Apy,(#) in renormal-
ized perturbation theory for the present renormalized model are similar to those for the
superrenormalizable one, except for some simple modifications. For the case of A (t), the
latter can be simply worked out just by appealing to the corresponding analogy with the
Feynman rules for the one-particle’s Green function of the i—fermion in momentum space.
For the actual Ay(t), the modifications of the previous rules 1-9 of the superrenormal-
izable case (besides the trivial one amounting to replace the three-boson vertices by new
vertices with one boson and two fermions) are:
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2') For each internal fermion line with four-momentum k, we replace (k% — m2 + i¢) ™1
in rule 2 by the fermion propagator (f — my + i)™ (z = i,b) —other factors remaining
unchanged.

4') For any two fermion vertex, at which only two lines with fourmomenta k;, ky join
(necessarily generated by the mass and wave function renormalization counterterms of the
unstable fermion), we write

i(2m)°8 (ty — ko) {ma + [1°3 (k) + kD) = 7+ ko —ma] (Zi2 — 1)}

6") We multiply by @(p; = 0, 0;) exp(im;t;) at left and by u(p; = 0, 0;) exp(—im;ts) at
right (as we consider normalized Dirac spinors). u(p; = 0,0;) is a Dirac spinor for the
i-fermion at rest with spin projection o; along some given axis (au = 1).

We shall concentrate in discussing briefly Aph(t)(z), the renormalized contribution to
Apn(t) of second order in A. Using the rules one gets for ¢t > 0

Apn(t) — 1 =~ Apn () = a(p; = 0,0:)Ku(p; = 00;). (62)

On the other hand, the matrix K is given by the r.h.s. of (42) with the simple sub-
stitutions: i) (2m;)~! by unity, i) (k3 — m? + i)™ by (kg — mp + i€)~! iii) ém? by
émi + (7°mi —m;)(Zi o — 1). In turn, we shall use Eq. (61) and approximate Zi2—1byits
standard (ultraviolet divergent) approximation to order A2 which for brevity wil] not be
written here. The inclusion of both ém and Z;; — 1, as indicated above, will imply that
K is ultraviolet finite.

After some calculations, similar to those in the previous subsection (integrations over kY
and kY, cancellation of ultra-violet divergences, a cancellation similar to that between (55)
and the first term in the r.h.s. of (52), etc.) one finds

AE
- - :\2
App () ~ ~ gt + A% ] (63)
where the quantity in [...] is real, so that the corresponding contribution to the survival

probability is of order A* and, hence, will not be considered here. From (63) we have

2 )| A2
P(t) = |Apn(t)| z|1+Aph(t) j 21— ——myt: (64)

In this case the quadratic term in ¢ is much more complicated than in the previous,
superrenormalizable one, and we do not think its expression to be especially relevant. The
main point to notice in the above equation is that, again, the survival probability for t — 0
decreases —from its value 1 at ¢ = 0— in a linear way in ¢, although the corresponding
cocfficient is different from the one in the previous case, as now it depends on the mass of
the final fermion, b, whereas (compare (57)) the linear term in the previous case depends
Just on the mass of the initial unstable particle.
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4. CONCLUSIONS AND OUTLOOK

In this paper we have dealt with the problem of the finite time evolution of field-theoretic
quantum systems, and, in particular, with the behavior of the survival probability of un-
stable particles in RQFT. We have analyzed two cases: one of a (superrenormalizable)
three-boson interaction and the other of a two fermion-one boson (renormalizable) inter-
action. In both cases, we have found that the SP decreases at very short times linearly
with the time, instead of quadratically as predicted by NRQM. The origin of the different
behavior in NRQM and RQFT seems to be due to the fact that in the latter there are
vacuum polarization and ultraviolet divergences which made the energy dispersion in the
initial (unstable) state to be infinite, then invalidating the main assumption of NRQM, as
already commented in the Introduction.

In fact certain difference between NRQM and QFT is already present even in the non-
relativistic version of the latter, as we have tried to show through the study of two “classic”
models: the polaron model and the Gross-Nelson model. Such a study has been carried
out with the aim (mainly) of showing some special features —regarding the question of
the short-time behavior of the survival probability for unstable particles— which properly
belong to systems with infinite degrees of freedom. In the case of RQFT —the chief subject
of this work— and as already pointed out, the most dramatic difference with NRQM is
the linear —in t— behavior of the survival amplitude at small ¢.

However, such a behavior is valid only for very small times (t < (mq + ms)~!). For
t-values sufficiently higher one recovers the “normal” exponential decay law. In fact, it is
enormously difficult to carry out an experiment to clearly establish that non-exponential
behavior (due to the smallness of the relevant times). For instance, assuming that the
results of this paper could be naively extrapolated to the case of neutron [j-decay we
obtain that the times in which the linear (non-exponential) law would apply are those
smaller than t < (m, + me)~! =~ 10723 5, which are by now impossible to measure.

Now besides the difficult experimental question of finding some kind of evidence for such
a behavior, two other points are worth discussing. The first has to do with the extension
of the results obtained here for two rather simple RQFT models to more realistic cases, in
particular to Gauge-invariant theories as QED, Weinberg-Salam, QCD, etc. Of course, no
conclusions can be rigorously drawn before making an appropriate treatment, but as the
origin of the odd linear behavior at very small t seems very “profound” (in the sense of
being actually related to the fluctuations of the quantum vacuum) one could reasonably
guess that such a behavior will still appear in those, more realistic, cases. The second
point concerns the covariance of the method presented here: as commented in Sect. 3,
formal covariance is destroyed because a particular inertial frame (the one in which the
unstable particle is at rest) has in fact been selected. It is true that one could try to do a
formally covariant treatment by using the Tomonaga-Schwinger equation and appropriate
spacelike surfaces; however, besides technical difficulties, it is hard to envisage the possible
advantages of that treatment, as the very definition of the survival probability (or of
the decay probability) entails fixing a frame in which the unstable system is “prepared”
(“observed”,...) at t = 0.

In this paper we have considered RQFT models just at zero temperature. The case
of finite temperature can be, however, of some interest, not only by its own, but also
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because it could be important in the quantum evolution of the early universe, as the times
involved in the relevant process at such early stages (we are thinking for instance in times
of ~ 10712 s after the Big Bang) are comparable to the times discussed here. However,
one should note that finite temperatures actually involve a new time-scale (associated
precisely with the temperature) and, therefore, this case would require a careful study.

Finally we will comment upon another alternative treatment of the survival amplitude
for an unstable particle in RQFT at very short times. In a recent paper [10], the unrenor-
malized survival amplitude is singular as ¢ — 0% and, in order to regularize it, the authors
have introduced a characteristic time, related to the time resolution of the measuring
apparatus. As we hopefully have shown here, such a “time resolution” regularization pro-
cedure can be replaced alternatively by a more conventional renormalization procedure,
which makes the survival amplitude to exist and be finite for all times.
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