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ABSTRACT. \Ve study in general the survival probability for unstable systcms in relativistic quau-
tum field theory (RQFT) aud, then, iu particular, the short-time behavior. Two speeific models are
investigated here: aue superrenormalizable and tite othcr simply renormalizable. In both lllodels1
we find that the said surviva! probability behaves like P(t) = 1 - ct at very smal! t (e beiug a
lOodel-depeudent constaut). This -linear in t- behavior is esseutial!y different frolO the '1uadratic
ane obtained in non-relativistic quantum mechanics also al very 8hort times. The physical reasan
oC this discrepancy is analyzed. SaIne related rcsults in llo11-reiativistic quantlllIl field thcory are
also shown. Finall)', somc possibly relevant cOllscqucnccs oC such a kind oC short-time behavior of
the survival proLability for unstable relativistic partic1es are discusscd.

RESUME:-J. Estudiamos, en general, la amplitud de supervivencia de partículas inestables en Teoría
Cuántica de Campos Relativistas, y, en particular, su comportamiento a tiempos cortos. Se allalizan
dos modelos específicos: uno superrenormalizable y otro simplemente renormalizable. En ambos
modelos, concluimos que dicha amplitud de supervivencia se comporta como P(t) = 1 - el para
tiempos t muy cortos (siendo e una constante dependiente del modelo). Este comportamiento lineal
en t resulta ser esencialmente diferente del de tipo cuadrático obtenido en mecánica cuántica no
relativista (también para tiempos cortos). Se analiza la razón física de dicha discrepancia. También
se presentan y discuten otros resultados, relacionados C01l los anteriores, referentes a partículas
inestables en el marco de la teoría cuántica de campos no relativistas. Finalmente, discutimos
algunas posibles consecuencias drl tipo de comportamiento a tiempo corto de la amplitud de
supervivencia estudiado aquí.

PAC5, 03.70, 11.10.5, 11.10.Gh

l. lt"TI\ODUCTIO:-;

The ana!ysis of the fillite-tillle evolutioll ill relativistie qualltlllll field tlll'ory (nQFT), alld
in particular tile silort-timc bchavior of t}¡c survival amplitudc of uBstable systcms iB
HQFT, has llOt attracted a great deal of illlerest (a n'cellt paper in whieh Ihis qrll'stion is
dl'alt with wil! he eOllllllellted at lhe e\llt ofthe pl'l'S<'lll work). Slldr a silllalion is prohah!y
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due to the fact that most of the rclevant (experimentally) properties of elementary par-
tieles can be appropriately described in terms of the S-matrix, which involves transition
amplitudes just from t = -00 to t = +00, finite times thereby playing hardly a relevant
role in such questions. Now one of the aims of this work is to study that finite-time evo-
lution. This kind of analysis has sorne interest in connection with the short-time behavior
of the non-decay probability of unstable systems in non-relativistic quantum mechanics
(NRQM): we shall show that the existen ce of generic features related to the presence of
infinite degrees of freedom in RQFT -in particular vacuum polarization and ultra- violet
renormalization- gives rise to remarkable differences in the short-time behavior of the
survival probability in both theories.

Now, as far as NRQl\I is concerned, the short-time behavior of the survival probability
(SP) of unstable systems has been thoronghly studied (see, for instance, Re£. [1) and ref-
erences therein) in particular in connection with the quantum violations of the "elassical"
exponential decay law. For the sake of completeness we shall present here the main result
of those studies relevant to the purposes of this work.

Let P(t) (t > O) be the SP for an unstable system which is represented in NRQM by
sorne normalized state, I'V), and let H be the lIamiltonian governing the evolution of the
quantum system. Qne has P(t) = I('VI exp( -itH)I'VW (with h = 1). If one assumes the
finiteness of the energy dispersion in the initial (unstable) state

(1)

as in fact happens in non-relativistic quantum systems, then it can be shown that at very
short times

(2)

Notice that Eq. (2) shows the violation of the exponential decay law at very short times
whose consequences, such as the quantum Zeno effect, and possible experimental detection
have been profnscly discussed (see Re£. [13) for rclevant experimental work concerning the
quantum Zeno cffect).

Another aim of the present work is to show that (2) does not hold in RQFT (at least
in the two modcls here investigated) and that, instead, at very short times the PS evolves
linearly in time at very short times (t ~ 0+).

In Sect. 2, we carry out the analysis of the finite time evolution of the SP in a situation
which, in sorne way, lies in between the NRQ1\1 and RQFT cases and that is helpful in
order to get a proper understanding of the problems arising in the RQFT case: we are
referring to the time evolution of the SP in sorne well-known non-relativistic quantum
ficld lIlodels. Gcucral studies oC fillite time cvolutioll ilud oC the short-timc olle are carried
out in Sect. 3, and the corrcsponding conclusions alld opell questiolls are discussed in
Sect. 4.
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2. SURVIVALAMPLITUOEOF UNSTABLEPARTICLESIN SOME MOOELS
OF NON-RELATIVISTICQUANTUMFIELO TIlEORY

2.1. Characterization of the models

Our purpose is to analyze the evolution for times t > O, in particular for short times, of
unstable partides, which have been formed or "prepared" previously, say, at t S O. In this
section, our study will be carried out in the framework of non-relativistic quantum field
theory in three spatial dimensions.
Let li, Pi) be the initial state representing the unstable partide at t = O, with three-

momentum Pi. Let Ho be the field-theoretic hamiltonian describing that partide, regarded
as a stable one, so that li, Pi) is an eigenstate of Ho with eigenvalue EO,i:

Holi, Pi) = EO,ili, Pi)' (3)

\Ve stress that Ho also describes other partides besides the unstable one (say, its future
decay products) and that the interaction giving rise to the decay is not indnded in Ho.
\Ve will suppose that for t > O there is an interaction represented by the interaction
hamiltonian HI that produces the decay. Then for t > O, the total hamiltonian describing
the time evolution of tbe unstable partide, its decay, and the dynamics of the resulting
partides in the final state is

II = lIo + lIJ. (4)

None of the interactions considered in this section polarizes vacuum, by assumption,
thereby restricting ourselves to non-relativistic field-theoretic situations.
To fix the ideas we considero i) a non-relativistic quantum partide with (bare) mass

mo and position and three-momentum operators x, P (= -i\l, Planck's constant being
set equal to one throughout this work), and for simplicity with zero spin; ii) a quantized
spinless boson field described by the destruction and creation operators with momentum
k, a(k), a+(k) ([a(k), a+(k')] = ó(3)(k - k')). The energy of a boson with momentum k
is w(k)(k = Ikl), with w(k) ~ wo > O for any k. Let 10) be the vacuum, i.e., a(k)IO) = O
for any k. For t S O, the non-relativistic partide and the bosons evolve freely -there is
no interaction among them. Then they are described by the hamiltonian

lIo =L + jd3kw(k)é(k)o(k).
2mo

For t > O, we shall assume that an interaction described by

lI¡ = ,\J d3k [<t>(k)o(k) exp(ikx) + <t>.(k)a+(k) exp( -ikx)]

(5)

(6)

also acts. ,\ ami <t>(k) are a real coupling constant and a form factor, respectively. Notice
that III does not polarize vacuum. The total hamiltonian II is given in Eq. (4), for t > O.
The non-relativistic partide, when it acqllires a sufficient large three-momentllm, will
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become unstable for t > O, and the aboye bosons will appear in the final state after the
decay, as we shal! discuss later in more detai1.

The total three-momentum operator is

One has

[Ho, P] = [l!, P] = O.

(7)

(8)

Let H(po) be the subspace formed by al! the eigenstates of P with eigenvalue Po.
Accordingly, the initial state ji, Pi) representing the non-relativistic partide "prepared"
at t = O, which is aplane wave wilh three-molllentum Pi, belongs to H(Pi)' Notice that
it satisfies (3), with Eo .• = 1'; 12mi and that

(i, pli, p') = 6(3) (p - p'). (9)

Let a(Ho, Po) (resp., a(H, po)) be the set of al! eigenvalues of Ho (resp., H) when it
acts only on states belonging to H(po). In general, both a(l!o, Po) and a(H, po) wil! have
discrete and continuous eigenvalues. In the present case, EO.i = 1';;21110 is an jsolated
discrete eigenvalue of a(Ho, Pi) for EO•i < Wo.

\Ve shal! consider t\Vo models:
The polaron model. The non-relativistic partide and the boson field represent, respec-

tively, an electron and the optical phonon field in an ionic crystal through which the
electron moves. Furthermore, in this model one chooses w(k) = Wo > O for any k and
</>(k) = ilk; see Feynman [2] for further details.

The Gross-Nelson model. The non-relativistic partide and the boson field represent,
respectively, a nudeon and the neutral pian field. One no\V chooses w(k) = (JL2 + k2)1/2
and 4>(k) = iw(k)]-1/2, l' being the pion mass.
The behavior of this 4>(k) in the ultraviolet (k ~ 00) has posed several difliculties

for a proper characterization of the hallliltonian l! in the case of a stable nudeon. The
difficulties have been solved through a suitable renormalization implemented by a dressing
transformation; see Gross [3] and Nelson [4] for details.

2.2. Survival amplitude

In the polaron model, \Ve shal! suppose that the initial!y "prepared" state li, Pi) (fulfil!ing
(3), (9)) has three-momentum Pi such that Pi> (2mowO)I/2. Then, the actual HI [Eq. (6)]
implies that this electron is unstable against a sort of "Cerenkov effect" in the ionic crystal,
nameI)', the procc~s clectroll (pd ----.clcctron (Pi - k) + pllOllon (k) occurs physically, the
phonon mOlllelltum k fulfil!illg 1';/2111.0 = (Pi - k)2/2m + Wo. Then, the energy EO.i =
p; 121110 of ji, Pi) belongs to the coniinuum spectrum of a (JI, Pi).
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Our main interest will be focussed ou the non-decay (i.e., survival) amplitude A(t) aud
the associated probability IA(t)12 for t > o. One has

A(t) = (i, p,1 exp( -itH)li, p,)
(i, p,li, p,) (10)

The infinite volume divergence of (i, Pili, Pi) [see Eq. (9)] cancels with a similar factor in
the numerator in (10).

For short time t > O, upon expanding exp( -itH) in (10), a formal manipulation easily
yields

IA(tW = 1 - t2(!lE2),

(!lE)2 = (i, p¡JH2Ii, Pi)
(1, pil', Pi) (

(i, p¡JHli, Pi)) 2

(1, p¡JI, Pi)

(11)

(12)

where !lE is the energy uncertainty in the initial state li,Pi)'
Sorne time ago, the decay of an unstable partide (proton decay, specifically, as conjec-

tured by Grand Unified Theories) was studied in the framework of Lee-type models [5]'
which turo out to correspond to a simpler -and actually solvable- modified version of
the dass of models described by Eqs. (5), (6), also with a form factor q,(k). There [5]'
it was pointed out that the corresponding !lE (also given by (12)) could be either finite
or ultraviolet divergent, depending on the behavior of q,(k) at infinite momentum k -for
previous work on unstable partides in Lee-type models, see Ref. [61.

Let us analyze in the polaron model the probability for the electron in the state li, p),
with Pi> (2mawa)'/2, to survive at short time t, by using Eq. (11). For that purpose we
need to evaluate (!lE)2 (Eq. (12)). Sorne standard algebra yields

( 13)

which is linearly ultraviolet divergent for the polaron mode!. Consequently, (11) is no
longer useful in the present frame-work to evaluate the survival probability at short times
in the polaron mode!.

In spite of the failure of Eq. (11), the survival amplitude in the polaron model for any
t > O can be st udied through the following exact formula

¡ie-OOdE exp( -iEt)
A(t) = -, ,

ie+oo 2rr, E - Ea,i - R(E)
(14)

where R(E) can be regarded as the sclf-energy of the unstable partide, and it is given by

R(E) = (i~p¡JllJlW),
(1, Pi 1', Pi) (15 )
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where in tum l'li} satisfies the integral equation

(16)

[ being the unit operalor. In Eq. (14), c is a positive number, so that all singularities in
the denominator lie below the path of integration. \Ve refer to [7] for a thorough derivation
and analysis of Eqs. (14)-(16); see also fieL [81 for previous work.

Upon replacing l'li} in (15) by the series oblained by iterating (16) sucessivelly, one can
express the self-energy R(E} as a power series in [!J. The interesting point is that each
lerm in Ihal perlurbalion series is finite. This follows by using (5), (6), (3), (9) and the
form factor of the polarou model and by performing sorne direct countings of powers of
threemomenla in each lerm of that series. Since each 11>(kW provides a k-2 and so does
each (E - [[0)-1, Ihey are sufficient lO overcome Ihreemomenlum space volume element
k2 dk as k ~ 00 and, hence, lo render aU inlegrals finile in Ihe ullraviolet. Likewise, one
can see Ihal, in general, there are no iufrared divergences. Then (14) shows that A(t) does
exist and is well defined for t > O, ill Ihe polaron mode!. However, one should refrain from
expanding naively Ihe r.h.s. of (14) inlo a power series in t, as such a procedure could
inlrodllce IIltraviolel divergences in Ihe inlegration over E. SlIch divergences could be
relaled to Ihe one for t:J.E commenled aboye, which in facI carne from a formal expansion
of exp( -itJI} inlo pow('rs of t. \Ve now 111mlo the Gross-Nelson mode!.

Lel li, Pi} represent now a one nllc1eon slate. JI can also slltrer a "Cerenkov effect" when
Pi fulfills

( 17)

This eqllation has a non-trivial solution (when Pi and k are coUinear, with Pi' k> O), if

(18)

provided Ihal ko fulfills

(19)

Then, the nuc1eon state li, Pi} "prepared" at t = O, and with Pi fulfilling (17, 18) will
uecome unstaule when [[, ue tumed on for t > o. In what follows, we shall be specifically
interested ill the survival amplitude for Ihis unstaule nuc1eon. To slart with, a direcI
application of Eqs. (U, 12) for the short-time survival prouability fails because Ihe energy
uncerlainty t:J.E, (13), for Ihe unslaule partic1e in the Gross-Nelson model lums OUI lO
ue quadraticaUy ultraviolel divergent. i\[oreO\'er, a direct attempt to study the survival
amplitlld" 011 ti", basis of (14) is also doollled at failure for the H characterizing the Gross-
Nelson mode!. Consider the nuc1eon self-energy R(E), as given forlllaUy through (15) and
the series of ilerations for (I6). Now it tums out thal each term in the series for R(E)
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is ultraviolet divergent (since 1.p(kW now behaves as k-1 for k -+ 00). Consequently,
(14) cannot be used. Fortunately, by applying for t > O the same unitary (dressing)
transformation for the actual unstable nudeon case as Gross [3) and Nelson [4] did for
the stable one, the aboye difficulties can be overcome and the survival amplitude becomes
finite. Specifically, that unitary transformation is implemented by the unitary operator
expT, where

T = J d3k [¡3(k)exp(ikx)a(k) - ¡3'(k)exp(-ikx)a+(k)] = -7+ (20)

A[l - O(A - k)).p(k)
¡3(k) = w(k) + (k2 /2mo) . (21)

A is a non-negative arbitrary fixed constant and O the usual step function. Then one finds
that [expT]P[exp(-T)] = P and that, for t > O, H transforms into the new hamiltonian
H'as

[expT]H[exp(-T)) = H' + E'; (22)

E' = _A2 J d3k 1.p(kW [1 - O(A - k)), (23)
w(k) + k2 /2mo

H' = Ho + H;.! + H;.2; (24)

H}.l = A J d3k O(A - k)<J¡(k) [a(k) exp(ikx) + a+(k) exp( -ikx)], (25)

H;2=_1_[A2+(A+)2+2A+A+2(pA+A+p)], (26)
, 2m

A = - J d3k¡3(k)ka(k)exp(ikx). (27)

At this stage, we shall omit the logarihmic ultraviolet divergent constant self-energy E'
in Eq. (23) and regard ¡¡', in (24), as the hamiltonian describing the unstable nudeon
dynamics and decay for t > O. Then, the corresponding survival amplitude is naturally
given by Eq. (10) with the sole replacement of H by H'. The new energy uncertainty, as
given by (12) with H replaced by H' as wcll, still turos out to be ultraviolet divergent
as further computations show. Fortunately Eqs. (14)-(16), with HI rcplaced by H}! +
Hb are finite and well-defined and characterize the nudeon survival amplitude in the
(renormalized) Gross-Nelson mode!. In fact each term in the perturbative series for the
actual R(E) in powers of ¡¡; ! + ¡¡;2 turos out to be finite in the ultraviolet (and in the
infrared). This property follo~s fro~ further countings of powers of three-mom("nta when
use of the new interaction hamiltonian H;,I + H;,2 (see Eqs. 25)-(27) is made. Actually
the finiteness of R(E) in the present case is not surprising, but a direct consequence of
the unitary transformation in Eq. (22), which removed E' (at the expense of introduCÍng
the more complicated interaction H; 1 + H; 2)' as in the stable nudeon case [3,4]. Then,
(14) can be employed to characterize' the sn~vival amplitude for any t > O.
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\Ve will end this section by pointing out sorne curious -and perhaps somewhat paradox-
ical- property of the polaron model. As we wi11see, provided that certain dressing effects
be properly accounted for in the initial state, a new survival amplitude can be introduced
in such a way that the divergence in 6E is cured and hence the corresponding survival
probability at short times can be computed via (11). Specifica11y we will assume that the
initia11y "prepared" unstable electron state is no longer the aboye li,Pi) but the fo11owing
one, in which also Pi > (2mOWO)1/2

Ji, Pi)d = exp( -T)li, Pi), (28)

The operator T is given in (20), (21) with the form factor </>(k) characterizing the polaron
model. ji, Pi)d can be regarded as an electron state, partia11y dressed by a coherent phonon
state, which becomes unstable for t)O, when HI is turned on. Our choice for li, Pi)d is not
accidental but inspired on the properties embodied in (22), (23), as the fo11owing analysis
wi11show. Notice that the new iuitial state Ji, Pi)d is not an eigenstate of Ho any longer
-although it is sti11 an eigenstate of P.

The survival amplitude associated to the new initial state is

A(t)d = d(i, piI exp( -üH)li, Pi)d = (i, piI expO-it(H' + E')li, Pi) (29)
d(l, Pil', Pi)d (1, Pill, Pi)

where (22) has beeu used. Notice that E' is finite for the actual polaron case.
The survival probability IA(t)dI2 at short t > O is also given by (11, 12) with H ;eplaced

by H' +E'. By using (22)-(25) ami (i, p;I(Hi 1 +Hi 2)1i, Pi) = O,some easy power counting
of three-momenta shows that (6Ef < 00 in' the p~laron model for the new initial dressed
state. Then (11) can be used for the latter. Notice, however, that by dealing with ji, Pi)d'
we are disregarding the fo11owing conceptual paradox: that state includes at t = O dressing
effects associated to an interaction which wi11act for t > O!

3. UNSTAIlLE PARTICLES IN RQFT: SURVIVALA~lPLlTUDE

3.1. A general analysis

\\re now turn to analyze the short time decay of unstable particles in local RQFT in 3
space dimensions. Now, one should be carcful about both vacuum polarizing interactions
and ultraviolet divergent renormalization.
For prevíous general analysis of unstable particles in RQFT we refer to [9]. More recently

the short-time behavior has been treated in Ref. [lO).
To begin with, let us state clearly the problem.
\Ve consider -with respect to certain reference frame- sorne "free" hamiltonian Ho

which describes particles for t :-:::O in local RQFT in the Schriidinger picture. Also, let P
be the total three-Illomentulll operator, with.[P, Hol = O, and let li, Pi) be the initia11y
prepared state representing the unstable particle at t = O. By assumption, li, Pi) is a
common eigenstate of both lfo and P with eigenvalues EO,i and Pi, respectively, and
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the unstable particle is massive: EO,i > O for any pi. In the cases to be analyzed below,
the unstable particle will be either a neutral spinless boson or a neutral spin 1/2 fermion.
Notice that upon "preparing" the unstable particle we are disregarding (or at least cavalier
regarding) formal covariance since we are selccting one inertial frame, namely, that in
which the initial state has been prepared at t = O. As it seems a priori natural (and
simplest) we shall select the inertial frame (5) in which the unstable particle is at rest at
t = O, ¡.e., Pi = O.

Let 10) be the vacuum for Ho. Then, the initially prepared stale can be writlen as

li, Pi = O) = li) = é(Pi = OliO), (30)

a+lpi) being the associated creation operator for the unstable particle (in Schriidinger's
picture). Possible spin dependen ce for it will be written la ter, when nceded.

The interaetion hamiltonian HI, which acts only for t > O and its responsible for the
decay, has the following properties (by assumption):

1. It commutes with P.
2. It polarizes vacuum.
3. It gives rise to either a superrenormalizable local RQFT or to a renormalizable

one and ,so, it includes the corresponding ultraviolet divergent renormalization
counterterms. \Ve shall start, for simplicity, with superrenormalizable inleractions
in the next subsection.

4. It involves a small coupling constant, in the sense that one can reliably apply
perturbation theory. In this regard, a good example would be the interaction
hamiltonian responsible for the conjectured proton decay in Grand Unified The-
ories (GUT's): in particular the order of magnitude of this lh is much smaller
than that of the strong (QCD) hamillonian (which in tum would be the analogue
of Ho). The total hamiltonian, H, for t > O, is also given by the r.h.s. of (4) and
it also commutes with P.

It is worth noticing the following differenee between the treatment in this seclion and
that in the preceding one. On one side, in the non-relativistic field theoretie modcls of
Seet. 2 the same hamiltonians Ho, HI deseribed both: i) partide stmeture and dressing
(renormalization elfeets), ii) decay. On the other side, in the RQFT case of See!. 3, one is
distinguishing between the total hamiltonian for t < O, Ho, deseribing the strueture (and
formation) of the initial stale and the one for t ::::O, Ho + HI, in whieh HI gives rise to
the subsequent deeay.

Notiee that for a given initial state deseribing the unstable particle before decay, the
resolulion of the total hamiltonian for t ::::O into the sum of an unperturbed hamiltonian
and a perturbation is not unique, in general. They are split up in this way as a practical
eonsequence of our actual limitation to ealculate using perturbation theory (should we
have Leen able to solve thc cqllatiollS of 1Ilotion exa.ctly, thcll therc would he no need tú
make such a split). In this setting, ambiguities of that sort appear lo be nnavoidable (and
well known and understood).

An unstable particle could also be prepared in a state which is not an eigenstate of the
ehosen Ho, \Ve recall, in this eonneetion, that the lifetime of an \Instable particle could
depend on the way it has been prepared (sce Sehwinger's paper in Bcr. [9)).
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The survival amplitude A(t), for the unstable particle at rest in S for t > O is stil! given
by the r.h.s. of Eq. (10), with the actual H and li, Pi) being replaced by li) = li, Pi = O).
Again, the volume divergence embodied in (ili) = Ó(3)(Pi - Pi) wil! cancel with a similar

factor in the numerator of the counterpart of (10).
1n order to study A(t) in renormalized perturbation theory, we shall go over to the

interaction picture (ip), for I ~ O, in the standard way. 1n so doing, we shall give only
the essential formulas, thereby omitting standard and easy calculations which are well
documented [11,12). By assumption, both Schriidinger's picture and ip coincide at 1=0.
Let

U(I)ip = exp(iIHo) exp( -itH), t ~ O, (31 )

be the ip evolutiou operator. A generic operator B representing a dynamical variable in
Schriidinger's picture becomes in the ip

B(t)ip = exp(it/lo)B exp( -illlo).

Then, by using (31), (32), the survival amplitude for I > O can be easily cast as:

4( ) = (Ola(pi = O; l)ipU(I)ipa+(Pi = O; I = O)ipIO)
. I (ili)

(32)

(33)

a(p = O; I)ip being the ip destruction operator at I > O. For later convenience, we have
written a+(pi = O; t = O)ip instead of a+(Pi = O).
Equation (33) reminds the known representation for the one-particle Green's function

for the decaying particle (as if it were stable) in a formally similar RQFT also in the ip
(compare for instance with Eq. (35d), page 657, in Re£. [11)), although they turn out to
be different physical and mathematical quantities.
Dne crucial difference between them is that the survival amplitude involves operators

and states at finite non-negative times necessarily, whereas the one-particle Green's func-
tion requires them at all times, -00 < t < 00 (in the ip). Fortunately, in the present case
we can also use the standard perturbative expansion for U(I)ip,

(34)

The symbol T in the r.h.s. of (34) denotes the standard time-ordered product. Then, upon
replacing Eq. (34) into (33), we get the basic formula which will enable us to calculate the
survival amplitude in renormalized perturbation theory:

A(t)= f= (_l)n {'dl
l

•.. {'dl
n

(OIT[a(I)HI(t¡) ... HI(tn)a+(t = 0)110), (35)
n=O n! Jo Jo (111)

(where, for simplicity, we have omitted ip in the operators, as well as Pi = O in a and
a+). As I ~ 1" ... ,ln ~ O, it was allowed to write both a(t) and a+(t = O) inside each
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T-product in (35). One can now evaluate A(t) by using (35)and Wick's theorem in the
standard way [11,121.

Let EO,i(pi = O) = mi (> O) be the renormalized rest mass ofthe unstable particle (e = 1
throughout this work). After applying Wick's theorem, the first stage in the computation
consists in the cancellation of the infinite-volume divergence in (ili)-¡ with a similar
factor which comes from the vacuum expectation value of the contractions in (35). Such
straightforward calculations show, at the same time, that each perturbative contribution
to A(t) contains exp( -imit) as an overall factor. Consequently, after those cancellations,
A( t) bears the factorized form

A(t) = exp( -imit).4(t), (36)

where the "reduced" survival amplitude .4(t) tends to 1 for any t > O if H¡ -> O. The
structure of (36) can be inmediately checked from (33) when H¡ = O. After having cancelled
out the infinite-volume divergences contained in (il;)-1 in eaeh perturbative order, as
implemented in Eq. (35), new infinite-volume divergences crop up in A(t). In fact, since
H¡ polarizes the vacuum, upon applying Wick's theorem to each T-product one finds
unavoidably the contraetion of a(t) with a+(t = O). Such a special class of contractions give
rise to new infinite-volume divergences generically known (and represented graphically)
as disconnected vacuum contributions (dvc).

Let Advc be the sum of all contributions associated to dvc, as generated by the appli-
cation of Wick's theorem to the r.h.s. of (35), and let us write

(37)

Advc embodies all the remaining infinite-volume divergences which are generated by (35)
(those which do not cancel with (ili)-I). It can be shown in general that, to all orders in
perturbation theory, the "reduced" survival amplitude factorizes as

(38)

Aph(t), to be called hereafter the physical survival amplitude, is the sum of all perturbative
contributions to .4(t) in eaeh of which a(t) is not contracted with a+(t = O). Therefore,
all the contributions to Aph are free of infinite-volume divergences. Notice that Aph -> 1
as H¡ -> O.

In local RQFT, ultraviolet divergences will generically appear in the perturbative ex-
pansion of .4(t). However, since H¡ also includes, by assumption, all the necessary renor-
malization counterterms, it tums out that Aph(t) is ultraviolet finite. In other words, all
ultraviolet divergences whieh could appear in the contributions to Aph(t) cancel out to all
perturbative orders. The different key properties of A(t), .4(t), Advc(t), and Aph(t) will be
ehecked below through several explicit computations in certain superrenormalizable and
renormalizable models, to second-order perturbation theory. It is interesting to compare
the structures in Eqs. (36), (38) with the analysis made in [101: specifically, the squared
modulus of Eqs. (36), (38) coincides with Eq. (15) in !lef. [101.
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3.2. A superrenormalizable model

\Ve shall consider an unstable relativistic neutral scalar massive boson (i) with mass
mi > O, which can decay into two different stable neutral scalar bossons (a, b) with masses
ma, mb, so that mi> ma +mb' All masses are the renormalized ones. Then, Ho is the sum
of three terms, each of which is similar to the second contribution in the r.h.s. of Eq. (5),
with the corresponding energy and creation and annihilation operators (for the i, a, and
b bosons).
The interaction hamiltonian for t > O in the Schrodinger picture is by assllmption

"'i(X) is the standard free qllantized Klein-Gordon field for the i boson: its well-known
plane wave expansion in terms of the creation and annihilation operators (those appear-
ing in (30)) will be omitted. Likewise for the field operators "'a and "'b' A is a coupling
constant with dimensions (mass)2 óm; is the ultraviolet divergent mass renormalization
counterterm for the unstable i boson: its explicit expression will be given below, as it will
be needed latee. The symbol N in Eq. (39) denotes normal ordering of field operators,
while O.C.t. means other diyergent renormalization counterterms, specifically, mass renor-
malization counterterms for the a and b bosons -they will not be written explicitly, as
they are not needed in this work.
The RQFT model described by (39) is sllperrenormalizable. The mass renormalization

for the i-boson is (f ....•0+)

(40)

For this model, we shall giye the contriblltion of order A2 to Advc(t) to be denoted as
Advc(t)2 \Ve apply Wick's theorem, we cancel out (ili)-¡ and express the non-vanishing
contractions of boson field operators in terms of the corresponding free boson propagators;
then we replace the latter by their Fourier integral representations and we carry out
trivially all three-dimensional integrations oyer space coordinates as well as one integration
over the three-momentum of the internal i boson. The integrations over times are not
carried out explicitly at this stage. ThIlS, one arrivcs at (kj = (kJ, kj), j = 1,2; f •...•0+)

iA
2 r' r' J rooAdvc(t) = -ó(3)(O) (27r)6 Jo dtl Jo dt2 d4kl d4k2 J-oo dk~

x exp [ - i(k? + k~ + k~)(t¡ - t2)]

1

x (k¡ _ m;; + if)(ki - 71/~ + ú)[(I"8)2 - (k¡ + k2)2 - m[ + ú]'

which displays the infinite yolllme diyergcnrc ó(3)(O) neatly.

(41 )
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\Ve now turn to our main subject, i.e. the physical survival amplitude. Having dealt
with the dvc, we shall work out the consequences of \Vick's theorem for the remaining
contributions, that are free of infinite-volume divergences. Sorne computations, patterned
after those which have led to (41), yield a set of rules for writing the renormalized per-
turbative contributions to Aph(t). The analogy, commented aboye, between Eq. (33) and
the one partide Green's function, G, indicates that there is a one-to-one correspondence
between the renormalized perturbative contributions (free of infinite volume divergences)
for G and for Aph(t) and, hence, between the rules yielding each of them separately.

In short one can say that the diagrams contributing to both G and Aph(t) are formally
identical, but that the computational rules yielding the contributions for G and Aph (t)
are not the same (exactly) but slightly different. Then, it is natural and simpler to for-
mulate the rules for obtaining the renormalized perturbative contributions to Aph(t) by
starting from the ones for G in momentum spaee, which are well known (and need not be
reprodueed here) [11,12].

\Ve start by drawing a fully connected diagram D in four-momentum spaee, eontributing
to G to sorne perturbative order, n. Particular attention will be paid, in the sequel, to the
two external vertices in which the two external lines for the i-boson (say, the ineoming
and outgoing ones) join the diagram. By convention, the incoming (outgoing) partide
joins the diagram at vertex 2 (1). The two external vertiees may coincide in sorne special
case, as we shall see. In order to obtain the perturbative contribution of order n to Aph(t)
generated by D, we proeeed as follows:

1) \Ve attribute a time tj to each vertex iu D, induding the two external ones, so that
t\ (t2) corresponds to the external vertex 1 (2); in the special case in whieh both coincide
we will write ti, only.

2) For eaeh internal line in D for the x-boson (x = i, a, b) earrying four-momentum
k = (kO,k) and going frorn the vertex j towards the vertex j (which rnay be external or
internal), we write the eontribution (E -> 0+)

1
(27[ )4

exp[-ikO(tj - t,)1
k2 - m2 + i<x

Note that the external i-boson lines carry fourrnornenturn (mi, O).
3) For any three-boson vertex, we write ..\(27[)3Ó(3)(Kltotl, Ktot being the surn of all

three-momenta entering and leaving that vertex (with the sarne rules as those used when
dealing with the diagrarn for G).

4) For any two-boson vertex at whieh only two lines with four-mornenta kl, k2 join
(which is neeessarily generated by one of the mass renormalization eounterterrn appearing
in (39), we simply write

5) \Ve attribute no eontributian to ane af the two external vertiees (irrespeetive of
whether three bosons or two basons meet in that vertex). In ather words, for that vertex
we do Bot make use of rules 3 and 4, £Of1 otherwisc, we w011l<l give rise to a ,valume
divergenee (Ó(3)(0)): aetually, it is the ane which has airead y caneelled out with (iIO-I.
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6) \Ve multiply by (2m¡)-1 exp[im¡(t, - t2)1.
7) \Ve integrate over aH internal fourmomenta.
8) \Ve integrate over aH times tj, for aH vertices (internal and external) in O :$ tj :5 t.
9) Other factors, namely (_i)n In!, statistical factors (arising from different possibilities

in performing volllme-divergence-free contractions), ... , are the same as in the standard
rules yielding the renormalized perturbative contributions for G.

Using rules 1-9, the renormalized perturbative contribution to Aph (t) of order .x2,
Aph(t)(2), can be inmediately written. After a few trivial simplifications, it reads

Aph(t) - 1 '" Aph(t)(2)

=_I_{~Jd4kld4k2 b(3)(k¡+k2)
2m¡ (2rr)5 k¡ - m~ + i<)(kl- mi + iE)

x fo' dt, fo' dt2 exp [i(m¡ - k? - k~)(t¡ - t2)] + ibm; fo' dt,} (42)

Notice that the contriblltion bm; in (42) is just a,sociated to one diagram in which both
external vertices coincide.

Upon performing the time integrations and trivial algebra, Eqs. (40) and (42) yield.

X can be written as

where

with

A h(t)(2) = £X.
P 2Ul¡ (43)

(44)

(45)

where q = Ik¡J, alld (recaHillg (40)

1
(k~)2 - (q2 + mi) + i<' (46)

(47)
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The integration in (46) requires some care. A convenient procedure to do it is differen-
tiating the r.h.s., with respect to 1, twice and then performing a residue integration over
k~. By using that procedure, and taking into account that

(dXi) , +-d = XI (1 = O ) = O,
I '=0+

we get

Y~=

:1;' - y' + }"~ 1 - 1 2'

where

___ i __ [eXPI-il(k? + Eb - mi)]- 1 explil(k? - Eb - m¡)]- 1]
Y{ = 2 I O + O2(q2 + mb)l 2 (kl + Eb - mi - if)2 (kl - Eb - mi + if)2

I

(k? - m;J2 - El +if

(48)

(49)

(50)

(51 )

(for convenience we have defined Eb = (q2 + m~)1/2)
The last expression for Y~is now introduced in (45) and the corresponding result added

to X2 (Eq. (47)), so obtaining

y = X¡(Y~) + X2

= 4~2f' dq [E~Eb: Ea El (Ea + Eb;~'i_ mi - if] ,
where, obviously, Ea = (q2 + m~)1/2 Notice that (51) is no longer ultraviolet divergent.

Now by separating out real and imaginary parts in (51) we get

y = -~t +itI,
87TTJti

where Q (CM momentulll of the final partides) is given by

(52)

(53)

and 1, being essentially the principal part of the integral in (51), needs not be specified
since itI is pure imaginary and its contribution lo the surviml probability is then of order
,\ 4.

\Ve now tum to the remaining part of Xi, i.c. Y{, giv,'n in Eq. (49). The lalter once
introduced in Eq. (45) and after integrating over k~, yields the following result

Z=X¡(Y{)1100 q2 ["xpl-il(Ea+Eb-mi)l-l cxpl-il(Ea+Eb+mi)I-lj= - dq-- ----------- + ~~------~~-
8,,2 o EaEb (Ea + Eb - mi - ;,)2 (E" + Eb + mi + if)2

(54)
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In (54), we shall use (A - if)-2 = PA-2 - i"b'(A) for any A (P is the principal part
and b' the derivative of the b-function). The contributions to Z arising from b'(A) and
PA-2 are denoted by Z(b') and Z(RP), respectively. Sorne algebra yields, for any t > O

QZ(b) = -t,
87Tm¡

(55)

which exactly cancels out with the first term in the r.h.s. of (52). \Ve now compute the
remaining part of (54), Z(RP). By expanding in power series in t and taking only into
account linear and quadratic terms (as we are dealing with the short-time limit) we obtain
after some calculation

Z(RP) = Z _ Z(b) '" -t + (m. + mb)t
2

(56)
16" 16,,2

Now, recalling the first equality in (42) and (43) we get for the short-time survival prob-
ability up to order t2 (t ~ O)

A2 A2/"P(t) = IApil(t1l2 '" 1 - --t + --(m. + mb)t2, (57)
16"m; 161TTn;

which is valid (as one realizes by analyzing the expansion in powers of t in (57)) for
O.,:; t < (m. +mb)-l -a very short time indeed for "normal" decay processes.
In spite of not being directly concerned here with large time properties of decay, it

seems worth studying briefly the survival amplitude as t ~ 00 (still at order A2), simply
as sorne kind of consistency check of the present treatment. Thus, from (54) and recalling
that

l. sin(wt) ,()
1m --- = 7Tu W ,

t-oo W

we easily obtain

Qt
ReZ(RP) - --S-o

t-oo rrm¡ (5S)

(59)

Now, as the imaginary part of Z(RP) gives a contribution to P(t) which is of order A4
and (see (55))

Re Z(RP)t_oo + Z(b) = O,

we shall have, from (52) and (43)

A2QP(t) - 1 - --t.
t-oo 81i1nr

Notice that, as expected, the aboye expression coincides with the one obtained by nsing
Fermi's Golden Rule. \Ve again point out that the main result of this subsection is Eq. (57),
in which one sees that as t ~ 0+ the survival probability decreases linearly with t, instead
of the quadratic behavior appearing in Non-relativistic Quantum Mechanics. A similar
linear behavior will be present in the model we are going to study in the next subsection.
The physical discussion of this restilt is left for the last Section of the paper.
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3.3. A renormo/izob/e mode/

We shall now consider an (unstable) relativistic neutral spin-1/2 fermion (i), with renor-
malized mass mi > O, which can decay into two relativistic stable neutral particles (o, b)
with renormalized masses ma, mb > O, so that: i) mi > ma + mb, and ii) bis a spin-1/2
fermion while a is a scalar spinless boson.
Now, Ho is the sum of three terms; the free hamiltonian corresponding to a is similar

to the second ter m in the r.h.s. Eq. (5), while those corresponding to both i and b are the
well-known ones for relativistic free Dirac fermions. For t > O the interaction hamiltonian
in the Schriidinger piet ure is

A is a renormalized dimensionless coupling constant; lIt i and lIt b are the standard relativistie
free Dirac operators. Thus, the plan e wave expansion for lIt i contains the annihilation
operator ofthe decaying i-particle, O(Pi,Di), which now depends on its helicity Di (= :!:~)
as well.
The mass re normal izatio n counterterm for the unstable i-fermion is lo order A2 (VI =

kho - k¡ .1)

8m = ~Jd4k (-VI +mb)
• (27r)4 ¡ (k¡ - m~ + iE)(k¡ - m~ + iE)'

which is ultraviolet divergent. Notiee that this model is not superrenormalizable but sim-
ply renormalizable, a fact which will give rise to certain interesting differences in compar-
ison with the model discussed in the previous subsection. As before, the symbols O.C.t. in
Eq. (60) denote the remaining necessary ultraviolet divergent renormalization countert-
erms (for masses, wave functions and coupling constants). A crucial difference between
the actual renormalizable case and the previous superrenormalizable one is that O.C.t. now
contains, among ?ther contributions (irrelevant for our purposes) that corresponding to
the renormalization of the wave function for the unstable fermion. The latter contribution
comes from a term

in the corresponding lagrangian density, Zi,2 being the (ultraviolet divergent) associated
wave function renormalization constant for the unstable fermion -it will play an inter-
esting role in the subsequent computation of the survival amplitude.
The dvc and the rules for obtaining the physical survival amplitude Aph(t) in re normal-

ized perturbation theory for the present renormalized model are similar to those for the
superrenormalizable OIle, cxcept for so me simple modifications. For the case of Aph(t), thc
latter can be simply worked out just by appealing to the corresponding analogy with the
Feynman rules for the one-particle's Grecn function of thc i-fcrmion in momcntum spacc.
For the actual Aph(t), the modifications of the previous rulcs 1-9 of the superrenormal-
izable case (besides thc trivial one amounting to rcplacc the three-boson vertices by new
vertices with one boson and two fermions) arc:
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2') For each internal fermion line with four-momentum k, we replace (k2 - m; + if)-l
in rule 2 by the fermion propagator (V - mx + if)-l (x = i, b) -other factors remaining
unchanged.
4') For any two fermion vertex, at which only two lines with fourmomenta k¡, k2 join

(necessarily generated by the mass anu wave fllnction renormalization counterterms of the
unstable fermion), we write

6') \Ve mllltiply by u(p; = 0,0";) exp(imit¡) at left anu by u(p; = O, O"i)exp( -imit2) at
right (as we consiuer normalizeu Dirac spinors). u(p; = O,O"i) is a Dirac spinor for the
i-fermion at rest with spin projection O"i along some given axis (uu = 1).

\Ve shall concentrate in uiscussing briefly Aph(t )(2), the renormalized contribution to
Aph(t) of second aruer in '\. Using the rules one gets for t > O

Aph(t) -1 '" Aph(t)(2) = U(Pi = O,O"i)Ku(p; = OO"i)' (62)

On the other hand, the matrix K is given by the r.h.s. of (42) with the simple sub-
stitlltions: i) (2m;)-1 by unity, ii) (ki - m~ + if)-l by (k2 - mb + if)-l , iii) ómr by
ómi + (¡Qmi - mi)(Z;,2 -1). In turn, we shallllse Eq. (61) and approximate Zi,2 -1 by its
standard (llltraviolet uivergent) approximation to order ,\2 which for brevity wiII not be
written here. The inc!usion of both Óm and Z;.2 - 1, as indicated aboye, will imply that
K is llltraviolet finite.
After some ca1culations, similar to those in the previous subsection (integrations over kg

anu k?, cancellation of ultra-violet uivergences, a cancellation similar to that betwecn (55)
and the first term in the r.h.s. of (52), etc.) one finus

(63)

where the quantity in l...} is real, so that the rorrespollding contribution to the surviva!
probability is of order ,\4 and, hence, will not be consiuered here. From (63) we have

(64)

In this case the qllauratic ter m in t is much more complicated than in the previo liS,
superrenormalizable one, and we do not think its expression to be especially re!evant. The
main point to notice in the aboye eqllation is that, again, tlle sllrvival probability for t -+ O
uecreases -from its vallle 1 at t = 0- in a linear way in t, althollgh the corresponding
cocfficient is diffcrcut from tIte une in tile previo liS case, as IIDW it dcpends 011 the mass oC
the final fermion, b, whereas (compare (57)) tlle lincar term in the previolls rase uepenus
jllSt on the mass of tlle initial llnstable parlirle.
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4. CONCLUSIONSAND OUTLOOK

In this paper we have dealt with the problem of the finite time evolution of field-theoretic
quantum systems, and, in particular, with the behavior of the survival probability of un-
stable particles in RQFT. We have analyzed two cases: one of a (superrenormalizable)
three-boson interaetion and the other of a two fermion-one boson (renormalizable) inter-
aetion. In both cases, we have found that the sr deereases at very short times linearly
with the time, instead of quadratieally as predieted by NRQM. The origin of the different
behavior in NRQM and RQFT seems to be due to the faet that in the latter there are
vaeuum polarization and ultraviolet divergenees whieh made the energy dispersion in the
initial (unstable) state to be infinite, then invalidating the main assumption of NRQM, as
already eommented in the Introduetion.

In faet eertain differenee between NRQM and QFT is already present even in the non-
relativistie version of the latter, as we have tried to show through the study of two "classie"
models: the polaron model and the Gross-Nelson mode!. Sueh a study has been earried
out with the aim (mainly) of showing sorne speeial features -regarding the question of
the short-time behavior of the survival probability for unstable particles- whieh properly
belong to systems with infinite degrees of freedom. In the case of RQFT -the ehief subjeet
of this work- and as already pointed out, the most dramatie differenee with NRQM is
the linear -in t- behavior of the survival amplitude at small t.

However, sueh a behavior is valid only for very small times (t :'S (1IIa + 1IIb)-I). For
t-values suflieiently higher one reeovers the "normal" exponential deeay law. In faet, it is
enormously diflieult to carry out an experiment to clearly establish that non-exponential
behavior (due to the smallness of the relevant times). For instanee, assuming that the
results of this paper could be naively extrapolated to the case of neutron ¡3-deeay we
obtain that the times in whieh the linear (non-exponential) law would apply are those
smaller than t :'S(1IIp + 111,)-1 '" 10-23 s, whieh are by now impossible to measure.

Now besides the diflieult experimental question of finding sorne kind of evidenee for sueh
a behavior, two other points are worth diseussing. The first has to do with the extension
of the results obtained here for two rather simple RQFT modcls to more realistie cases, in
particular to Gauge-invariant theories as QED, Weinberg-Salam, QCD, cte. Of eourse, no
eonclusions can be rigorously drawn before making an appropriate treatment, but as the
origin of the odd linear behavior at very small t seems very "profound" (in the sense of
being aetually related to the f1uetuations of Ihe quantum vaeuum) one eould reasonably
guess that sueh a behavior will still appear in those, more realislie, cases. The seeond
point eoneeras the eovarianee of the method presented here: as commented in Seet. 3,
formal eovarianee is destroyed beeause a particular inertial frame (the one in whieh the
unstable particle is at rest) has in faet been scleeled. It is tme that one eould try to do a
formally eovariant treatment by using the Tomonaga-Sehwinger equation and appropriate
spaeelike surfaees; however, besides teehnieal diflieulties, it is hard to envisage the possible
advantages of that treatment, as the very definition of the survival probability (or of
the deeay probability) entails fixing a frame in whieh the unstable system is "prepared"
("observed", ... ) at t = o.

In this paper we have eonsidered RQFT models just al zero temperature. The case
of finile lemperature can be, however, of sorne inlerest, not only by its own, but also
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because it could be important in the quantum evolution of the early universe, as the times
involved in the relevant process at such early stages (we are thinking for instance in times
of ~ 10-12 s after the Dig Bang) are comparable to the times discussed here. However,
one should note that finile lemperatures actual!y iuvolve a new lime-scale (associated
precisely with the temperature) and, therefore, this case would require a careful study.

Final!y we wil! commeut upon another alternative treatment of the survival amplitude
for an unstable partide in RQFT at very short times. In a recent paper [10]' the unrenor-
malized survival amplitude is singular as t -> 0+ aud, in order to regularize it, the authors
have introduced a characleristic time, related to the time resolution of the measuring
apparatus. As we hopeful!y have showu here, such a "time resolution" regularization pro-
cedure can be replaced alternatively by a more conveutional renormalization procedure,
which makes the survival amplitude to exist and be finite for al! times.
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