Revista Mexicana de Fisica 42, No. 2 (1996) 263-282

On the problem of the neutron mean square intrinsic
charge radius

Yu. A. ALEXANDROV
Frank Laboratory of Neutron Physics, JINR
141980 Dubna, Moscow Region, Russia
Recibido el 12 de mayo de 1995; aceptado el 16 de octubre de 1995

ABSTRACT. The value of the neutron mean square intrinsic charge radius (MSICR) (r2 )y is
discussed. The experimental data table of the n-e scattering length values a,, is presented. The
experiments can be divided into two groups: (r? )y > 0 and (72 )y < 0. A possible reason for the
discrepancy between the results of the Garching (Germany) and Dubna (Russia) determination
of ane by the transmission method is discussed. It is shown that introduction into oy, of energy-
independent interresonance interference terms does not affect the result obtained in Dubna. The
results of (r%,)n > 0 are in contradiction with modern theory and the results of (r2, )y < 0 are in
confirmation of modern theory.

RESUMEN. Se discute el valor del radio de carga cuadritico medio intrinseco del neutrén (MSICR)
(r?)n. Se presentan datos experimentales de las longitudes de di%persién neutron-electron, a,..
Los experimentos pueden dividirse en dos grupos: {(rZ )y > 0y (r2 )y < 0. Se discute una razén
posible para explicar la discrepancia entre los resultados obtenidos por el método de transmision
para an. de los grupos de investigacién de Garching (Alemania) y Dubna (Rusia). Se muestra
que el resultado de Dubna no se ve afectado al introducir, en oy, termmos de interferencia
interresonantes independientes de la energia. Los resultados (r2 )y > 0 ((r2 )ny < 0) contradicen
(confirman) teorias modernas de la estructura intrinseca del neutrén.

in

PACS: 14.20.Dh; 13.40.Fn; 25.40.Dn

1. INTRODUCTION

In recent years the issue concerning the actual value of the mean square intrinsic charge
radius (MSICR) ((r? ) n) related to the internal structure of the neutron have been widely
discussed [1-10]. What is the history of the problem, and, ultimately, what is (r2 )N equal
to?

It is well known that in the limiting case of low energies the relation between the
mean square charge neutron radius and neutron charge form factor Gg(q?) is expressed
by equation

. dG g
(rE)n =6 ( ., ) , (1)
7°=0

dy?

where ¢? is a squared four-momentum transfer, or because the charge form factor is
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where Fy(g?) is the Dirac form factor describing the spatial distribution of a nuclear
charge and associated with the Dirac magnetic moment, F3(¢?) is the Pauli form factor
associated with the spatial distribution of an anomalous magnetic moment, pu, is the
neutron magnetic moment in nuclear magneton, it can be expressed by

dF; 3 pnh?
). 3)
q*=0

2 o
(rEyn =6 (d_q2 + ~2* M

The first term in Eq. (3) arises from the nuclear internal structure and it is directly
connected with the behaviour of the Dirac form factor Fj as a function of ¢%. If (rf)n is
the neutron MSICR connected with the neutron internal structure, then

et =(5z) (@

As for the second term in Eq. (3), it is of a magnetic nature associated with the “trembling”
or “dancing” (zitterbewegung) of the neutron which satisfies the Dirac equation and has
an anomalous magnetic moment.

Since the neutron is the Dirac particle one should expect analogous effects for it. Thus if
the neutron has an electromagnetic structure, the apparent extent of the charge will arise
from the inner extent and additional “smash” associated with the “trembling”. In order
to derive information concerning the structure of the neutron from the experimental data
from the n—e interaction, the contribution of the trembling effect should be determined.

More than 40 years ago Feshbach demonstrated [11] that the scattering of electrons at
energies of the order of magnitude of several tens of MeV (qR < 1, where g = 2ksinf/2
is the recoil wave number) makes possible only the measurement of a sole parameter
providing information on the size of the nucleus, namely of the MSICR determined by the
expression

r2) = [ oy &% (5)

At about the same time Foldy (see review of Ref. [12]) found the relation between (r2)n

and a,., the measurable scattering length of a slow neutron on an electron (the so-called
n—e interaction):

dFI) 3n?

= ——(Gne — 6

220 Me? (@ne ar), (6)

where ap = pne?/(2Mc?) = —1.468 x 1073 fm is the Foldy scattering length related to a
free neutron satisfying the Dirac equation and exhibiting an anomalous magnetic moment.
The Foldy effect depends on a combination of known constants, and to determine {ri)n
it must be subtracted from the quantity ane.

It should be pointed out that in principle the information on the MSICR of the neutron

can be obtained from the experiments on the scattering of high-energy electrons (of a
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few hundred MeV or more) on protons and deuterons providing the information on the
form factor Gg(¢?). The arising uncertainty level, however, are fairly high in such experi-
ments and the study of the low-energy neutron scattering is still the only direct source of
information on the MSICR of the neutron [9].

Besides the Foldy effect, however, there may exist a more interesting kind of interaction
between the neutron and the electron [13]. This interaction [the first term in Eq. (3)] is a
consequence of the meson theory of nuclear forces. The neutron is surrounded by a “meson
cloud” (“fir coat”) which has a size of the order of magnitude of /(mxc), so in the imme-
diate vicinity of the neutron the presence of an electric field may be expected. If a neutron
and an electron come sufficiently close to each other, electrostatic interaction forces are
to arise between them, and these forces should be short-ranged. Such an interaction will
influence the quantities a,. and consequently, (r?n) N.

Since ane and ap are both of the same order of magnitude, the determination of (r-fn)N
will require very precise measurements. Such measurements can be performed within the
framework of studies of the interaction of low-energy neutrons with heavy atoms.

As it has been established, the experimentally observed n—e interaction is mainly due
to Foldy effect. Moreover it has not been clear for a long time how essential the role is of
the internal interaction considered by Fermi between the neutron and electron, and how
strong it is.

The MSICR is a fundamental characteristic of the neutron, and its measurements permit
verification of modern theoretical ideas concerning nucleons (for instance, of the quark-bag
model, Skyrme model, Numbu-Jona-Lasinio model and others).

2. THEORETICAL ANALYSIS OF N—~E INTERACTION MANIFESTATIONS

The amplitude of the Dirac particle scattering by weak, slow-changing pure electrical
potential ¢(r) was obtained by Foldy [12] from the generalized Dirac equation

oV  Mec I o dA J0A
A e z o™ 1 map Sl =
T e + h L - €m0 Ay + Slm Y7, O (82:,, oz, )J 0, (7)

m=0

where the electromagnetic field is described by a four-dimensional vector potential A, (z) =
(A(r,t); ig(r,t)), = = (v, it), v,, is the Dirac matrix, O = A — 1/c? 8%/0t? is the
D’Alembert operator, and the coefficients €m and pu,, characterize the inner electromag-
netic structure of the nucleon. In particular ¢ is the total charge of the Dirac particle and
Ho 1s the anomalous magnetic moment for the Dirac particle. Other terms (m = 1,2,3,...)
describe higher radial moment in the distribution of the electric charge of the particle and
the current. The coefficient €; is thus connected with the second radial moment of the
charge distribution or with the MSICR of the neutron:

o =§edn =1 [ &7 ®)
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At m = 0 Eq. (7) is reduced to the usual Dirac equation with electromagnetic potentials,
the last two terms of which have the form

peh | - dueh | =
- H - 3
2Mec T P (9)

Qi

The term that contains H is the interaction energy of the magnetic dipole of the neutron,
peh/(2Mc), and magnetic field, H, which causes the magnetic interaction. The second
term is the Foldy interaction which is due to the trembling of the Dirac particle with
the magnetic moment pefi/(2Mc). In the case of low momentum transfer ik only the
terms with m = 0 and 1 are important and in the first Born approximation the scattering
amplitudes from Eq. (7) has the form

folB) = =555 [ exp(=iko) a7, (10)
- M i 1 B A2 o
1) =~ |+ o+ 5 (332 ] spl-FAVISA e (1)

For the neutron g = 0, g = uneh/(2Mc), and at k — 0 one obtains the n-e scattering
length

2Me eh?
Ape = ? €] + W‘uﬂ . (12)

In this relation €; describes the radial extent of the charge distribution in the neutron.
The term with pu, represents the Foldy contribution due to the trembling of the particle
with an anomalous magnetic moment fi,.

Using Eq. (8) expression (12) can be rewritten in the form (6). Note that the sign of
(rZ) N for an overall neutral object could be both positive and negative; it depends mainly
on the sign of a peripheral charge.

Taking into account Eq. (8) and comparing Egs. (1), (3) with (12) we find that

(CIGE

= 14.41 an., 13
dq‘z )q2_0 Qne ( )

where @, is given in fm. Thus the study of the n-e scattering allows one to obtain the
information on (dG’E/dqz)qzﬂ.

To conclude, we may say that two effects contribute to the experimentally investigated
n—e interaction: one of them which is due to the Foldy scattering can be calculated, while
the other being of great importance and caused by the neutron inner structure has to be
estimated experimentally.
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3. EXPERIMENTAL METHODS TO STUDY THE N-E INTERACTION

In the interaction of very slow neutrons with atoms when the process can be considered
to be pure elastic, the total n—e scattering length may be written in the form

a(f) = aneZ f(sin@/A), (14)

where ap. is the n—e scattering length, f(siné/\) is the atomic form factor.

Precise measurements of the n-e interaction were performed by the middle of the 40s
and also in succeeding years. Those attempts were either based on asymmetry observations
in the scattering of thermal neutrons or on studies of the energy dependence of the total
cross section in the electronvolt region.

The differential cross section for the coherent scattering of slow neutrons with the
wavelength of the order of the size of an atom is described by the relation

o(0) = la+ar + Zf(sin0/A) ane|?, (15)
where a is the coherent nuclear scattering length (=~ 10 fm) and

1 Z,u,,,e2

S Z x 1.468 x 1073 fm, (16)

ap

where ap is the Foldy term determined in this case by the relativistic effect produced by
the interaction of the anomalous magnetic moment of the neutron with the electric field
of the nucleus with the charge Ze.

Estimations show that the ratio Za, f(sin6/A)/(a+ar) may amount to approximately
1% for heavy nuclei and therefore can be measured. For the neutron total cross section,
using the generally accepted S-matrix of scattering,

; ¥ .
Sﬂ" = (l = ?,Z E:—%F) exp(?zépot), (17}

which does not take into account the small interresonance interference, and using the
optical theorem one can obtain for the case of the nuclear s-scattering:

5 I 0 ) .
Tk .. M = — sindg sin(bg + 2n9) — % sin(28g + 219)%;

4T K TR?
1 1
+322 X cos(28p + 2m) + 333 x cos(260 + 2mp), (18)
where &g is the phase shift of nuclear s-scattering, 79 = —kanF is the phase shift of n—e

scattering, F = %foﬂ f(sin@/A)sin@df is the angular integrated atomic form factor,

Yo gJ-I‘nJ-AEj
! Zk(AE}w}/q)’

]
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2= EJ: k2(AE? +T2%/4)’

Y. = J=03= 71 )
. ; F2(AE? +T2/4) (19)

The additional phase shift 79 was calculated using the first Born approximation. The
calculations performed using more accurate methods than the Born approximation method
have shown that the Born approximation fits our energy region adequately.

There are two old methods of measuring the n—e interaction. One of them, originally
used by Fermi and Marshall in 1947 [14] depends upon the fact that in the scattering of
slow neutrons an asymmetric angular distribution due to f(sin#/)) is observed.

The main disadvantage of experiments of this kind is the necessity to correct for the
effect of the thermal motion of atoms in a gas. The main contribution to the correction
is made by the neutrons of large wavelengths in the very region where deviations from
the Maxwellian distribution are expected. In the most precise experiments the correction
was determined experimentally by performing measurements in argon and neon with the
insignificant n-e scattering.

Precise measurements following the Foldy and Marshall method were performed at
the Argonne National Laboratory by Krohn and Ringo in 1965-72 [15]. The noble gases:
xenon, krypton, and argon were used. Measurements in neon were conducted to check the
calculated value for the asymmetry due to thermal atomic motion. The measured value
for the correction exceeded the sought-for effect for the xenon by four times and for the
krypton by 10 times.

Measures were taken to remove admixtures, especially light ones, because even in small
amounts they may greatly distort the result of the experiment.

As a result it was obtained that

ne = (—1.33 £ 0.03) x 1073 fm. (20)

In Ref. [9] the possibility of errors was noticed, now present in Ref. [15]. The reasons for
them to arise are mainly the following:

1. Very weak asymmetry of the neutron scattering on noble gases in comparison with
the strong symmetry of neutron-nuclear interactions (so in Ref. [15] 0.5 per cent of
the asymmetry effect of the n-e interaction is measured with the error of £2.5%).

2. Since the effect under measurement is so weak, experimentators must be absolutely
sure that no side effects affect it (e.g., caused by p-resonances, admixtures of light
gases, etc.).

3. Large values of corrections introduced in the experiment. So the neutron energy-
dependent correction for the scattering asymmetry caused by gas thermal motion
exceeds the measured effect for xenon by a factor of 4, for krypton by a factor of 10,
ete:
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The second method of studying the n—e interaction was used by Havens et al. (16]. It
consists in observing the dependence of the total scattering cross section on the neutron
wavelength near 0.1 nm. The nuclear scattering must remain constant, while the form
factor f(sin6/)) is the cause for the change in the total scattering cross section with .
In Ref. [16] molten lead and bismuth were used as scattering materials. The total cross
section was measured at A = 0.03-0.13 nm.

The most exact value for a,. obtained by this method is [17]

ane = (=1.56 £ 0.05) x 10™2 fm. (21)

The error is statistical. The correction for the Schwinger scattering as well as that for
the contribution for the resonance scattering was not included.

4. THE CURRENT SITUATION IN THE STUDY OF NEUTRON MSICR. TWO GROUPS OF
EXPERIMENTAL DATA

In order to study the n-e scattering and the polarizability of the neutron, in 1976-86
Koester et al. [5] (Garching, Germany) carried out very precise measurements of the
neutron coherent scattering length using a gravitational neutron refractometer by the
method of reflection of neutrons from bismuth and natural lead mirrors. This interesting
apparatus was proposed by Maier-Leibnitz and was built at the FRM reactor in Garching
by Koester [18].

The basic equation for the measurements of coherent scattering lengths using the neu-
tron gravity refractometer is

_ gm*h,
C2nNR?

(22)

coh

where N is atomic density (atoms per cm?), beop, is the neutron coherent scattering length,
h- is a height of falling of the neutron.

All quantities in Eq. (22) either are well-known fundamental constants or can be pre-
cisely measured. Thus it allows the high-accuracy determination of b.,, which is virtually
limited by the experimental errors of the measurements of h, and N only.

For liquid bismuth and liquid natural lead it was obtained

bp; = 8.5307 (25) fm, (23)
bpb = 94017(20) fm. (24)

The obtained results were compared by Koester et al. with the data from measurements
of cross-sections for bismuth and natural lead at neutron energies above several electron-
volts [5]. The total cross-sections were measured by transmission through melted lead and
bismuth at neutron energies corresponding to the resonances of rhodium (1.26 eV), silver
(5.19 eV), tungsten (18.8 eV) and cobalt (132 eV). The measurements were carried out
with a continuously operating resonance detector consisted of rotating discs made from
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resonance-absorbing foils. The upper sections of the discs were activated in the neutron
beam, while the activity of the diametrically opposite sections was recorded with a 3 de-
tector. This arrangement ensured a high statistical accuracy for the measurements. The
combination of two identically rotating foils was used. The first foil in the beam counts
the sum of resonance and nonresonace activation whereas the second one only spoils the
nonresonance activation. Thus the difference of the counting rates is proportional to the
neutron current of the resonance energy.

These measurements were repeated later at two energies: 1.97 keV and 143 keV. The
neutrons of 1.97 keV were obtained with the help of filters using the method of the double-
resonance scattering. The foil from the *Cu isotope serves as a resonance scatterer near
the reactor core. The neutron emerges with an average energy of 1.97 keV at the angle
of 7/4 through the beam tube. After the flight path of about 7 m the beam is scattered
again by the 80Se target at the resonance energy of 1.97 keV. Initially scattered neutrons
with other energies are suppressed by the filter combination of Sc, B4C and Co in the
beam line.

Cross section measurements at a median energy of 143 keV were performed in the silicon
filtered fission neutron beam of the converter facility [19] at FRM.

The obtained results should be corrected for the elastic incoherent scattering, the
Schwinger scattering and the solid-state effect in order to account for the effects con-
nected with the state of a sample under measurement and the scattering energy depen-
dence caused by resonances.

The total neutron cross section oy, may be written according to Ref. [5] as

Oior = 47|Re b(E) + Imb(E)|* + 0in(E) + osen(E) + 01(E) + 0sal( E), (25)

where a;, is the nuclear incoherent, og., is the spin-orbital Schwinger scattering, gy is
the solid state and o; is the angular momentum interaction [ > 0 cross sections.
The real part represents the coherent scattering amplitude:

Reb(E) = —R'e(E) + bp(E) + bue Z[f(E) — 1(E)] + byg(E), (26)

where R’ is the nuclear potential radius, e(k) = 1 — (kR")?/6 + (kR')*/120 — -+, by, =
—aneA/(A+1), f(E) is the angular averaged atomic form factor, h(E) = 1 - (kRy)?/5+
2(kRy)*/135 + -+, b,g(E) is the neutron electric polarizability scattering amplitude,
G(E) =1—n(kRn)/3+ (kRy)?/3 —---, Ry = 0.12027 A}/3107'2? cm is the charge radius
of nuclei, bg (E) is the amplitude of contribution of all resonances. The authors of Ref. [3]
believe that the Im b(E) yields only an absorption cross section. It is not quite correct.
The obtained oy should be corrected for the scattering energy dependence of by caused
by resonances which may be calculated. For Bi resonance data are available only up to
about 260 keV, for the isotopes of Pb, up to 1-2 MeV, some bound level parameters (at
negative energies) are also given [20]. In order to reduce the uncertainty caused by the lack
of information on other bound levels and on data for the high energy region the authors
of Ref. [5] calculated the resonance scattering term bg ~ 3°; g;Tn;AE;/(K(AE? + 1“12/4))
using the information on known levels and changing I') ; by So(Dy) and E; by x(Dy), where
Sy is the strength function, (D) is the mean level distance, @ is the integer number. This
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part of the processing procedure does not seem to be sufficiently correct. We will discuss
this question a little bit later. As a result the following value for the n-e scattering length
was obtained in Ref. [5] for natural lead and bismuth:

ane = (—1.32 £ 0.04) x 1073 fm. (27)

However, a processing procedure which is not exactly correct casts some doubt upon this
value.

In this situation it would be very useful (as it was noted in Ref. [7]) to measure the
neutron transmission for the double-magic 2*Pb isotope which has very rare resonances.
The 28Pb isotope provides by far the best properties for a heavy isotope to separate
the potential scattering from the resonance scattering contribution. It has a negligible
thermal absorption cross section o, = 0.48(3) x 1072 x 10724 ¢m?. In 2°Pb there are only
p-wave and d-wave resonances below 500 keV. Preliminary results of the previous 2°Pb
measurements are published in Ref. [21].

Let us consider the work of the Dubna group [7]. Precise measurements of the total
neutron cross section of bismuth in the electronvolt energy region were carried out at
the IBR-30 pulsed reactor in JINR. They covered the energy region from 1 to 90 eV and
were performed by the time-of-flight method over the flight path of 60 m using both a
liquid sample and a solid sample 18 mm thick. The background measured with the help
of rhodium, silver, and tungsten plates (resonance energies of 1.26, 5.19, and 18.93 eV,
respectively) placed in the beam, was 0.3-0.4% at 1-6 eV, and no more than 1.5% at about
20 eV. The energy dependence of the total cross section for the interaction between neu-
trons and bismuth is shown in Fig. 1. The same figure shows the values for o, measured
at Garching [5].

To obtain information on the n—e scattering length the corrections for the Schwinger
scattering and solid state effects were introduced into oo ; they did not exceed 0.8%. The
data were processed using the following expression:

= Q%STEU) — (LEOI}(E) = (12(22 — QZF') = Qﬂ-ﬂ-coh(E)(Z - F’)
(El = Elf) [“coh(E) - G'(Z - F')]
+41(21) —-E]E] + 53 +a"‘ff) (28)

where acon(E) = —beoh(E)A/(A + 1), a = —ape, £ and 22 are expressed using (19);
the electric polarizability of the neutron is taken equal to zero. The numerical value for
beoh = 8.5307(20) fm is taken the same as in Ref. [5].

In the energy range E < E; and I'; € AE,; for the term ¥; — ¥’ containing resonances
one can use the following expansion into E'/E series:

5l s
.(E2

9l | _ E'Roy(E)
k E3 R

p=5-5'= E’ (E’)2 (29)

2
ni gir”i
p2 = 1(Z1)* - IS + 1%y _4ZA2E2—%( ﬁ) : i)
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FIGURE 1. Dependence of oot of Bi on the neutron energy E: o, Ref. [7]; o, Ref. [5]. Curves 1 and 2
are calculated for two groups of parameters: 1, ane = —1.6 x 1073 fm, a,, = —4.5 x 10°% fm®; 2,
ane = —1.6 x 1073 fm, @y = 7 x 1073 fm3.

Introducing the numerical values for o, and (I';) into Eq. (29) one obtains
pr=51—-5"=06x10"*x1072E cm. (31)

The estimates show that the contribution of p into y is 10-15%, but the lack of information
on resonance levels with negative energies does not allow one to find its exact value.
Therefore, this contribution was changed to fit experimental data best and appeared to
be equal to —0.0023 x 10724 ¢m?/sr.

Experimental data were processed by the least square method. The results are summa-
rized below:

Garching data: ape = (—1.57 £0.10) x 1073 fmn;
Dubna data: @ne = (—1.55 £ 0.11) x 107> fm. (32)

The obtained data are in best agreement with the results of the neutron diffraction mea-
surements carried out with a tungsten single crystal [22,23].

It seems attractive to find a method with a more significant effect under measurement.
The most promising direction in the study of the n-e interaction is the investigation
of thermal neutron diffraction from single crystals of tungsten which was proposed and
developed in Dubna [22-25].

The tungsten isotope, %6W, is well suited since its neutron scattering length in the
thermal energy range is small and negative because of the interference between resonance
and potential scattering [24,25]. The coherent scattering length of neutrons from a mixture
of tungsten isotopes enriched with *6W is determined from

L. ﬁFn (
2A70E0

Bty 2 R 1+ E) + neZf(sin@/A) = a + aneZ f(sind/X), (33)

Eq
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where I', is the neutron width of the first resonance of 186W, E; is the neutron energy
corresponding to the first resonance of 36W, k, = 2m /Ao is the wave number, and 3 is
the W content in the mixture. Precise measurements of the neutron scattering length
using a mixture of tungsten isotopes containing 90.7% of 86W were performed by the
Christiansen filter method on a beam of cold neutrons ((A) =~ 1.5 nm) in Garching and
yielded beon = (—0.466 + 0.006) fm [26], the absolute value of which was an order of
magnitude smaller than the corresponding value of b}, for a natural mixture of isotopes,
and it also had the opposite sign. In the diffraction experiments two single-crystal balls
made of two different isotopic mixtures, being 5 mm in diameter each, were employed.
One mixture contained 90.7% of '86W (b, = —0.466 fm), the other (beon = +0.267 fm)
was prepared from the first one by adding 14% of natural tungsten. The experiments
were mainly staged at the IBR-30 pulsed reactor and at stationary reactors. At a given
wavelength the integral intensities I(hkiy of eight reflections were measured: (110), (200),
(220), (310), (400), (330), (420), (510).

Since tungsten is of paramagnetic nature, the magnetic scattering must not contribute
to the Bragg reflection and the integral intensity of the diffraction peak corresponding to
an (hkl) reflection is determined from

Tihkty = C[[“« + Z f(nkty (i 0/A)ane)® + [1 = finrny(sin 6/7)]%4? cot? 9] A(hki)

exp[—2B(sinf/))?
X 7 ’
sin 26

(34)

where C is a constant coefficient and A(nk) is the factor taking absorption in the crystal
into account. The second term in this equation describes the Schwinger scattering, v =
1/2pnZe* [(Mc?). Equation (34) shows that the quantity

(I(hk;) sin 20 exp[2B(sin /)2

1/2
i tzg L == inf@/\ % = VA ne
At C ¥ cot” O[1 — fipre)(sin 6/ X)] a+ Z frya

= beoh (35)

is to be a linear function of Zf(uk) with a slope determined by a,e. Further all the
experiments performed at various installations have shown that it appears impossible to
describe the results obtained for these two mixtures by a linear function of Z f(nk) at
one and the same value for a,.. As no simple cause for the deviation of experimental
results from Eq. (35) was found, Alexandrov and Ignatovich [27] advanced the hypothesis
that additional scattering contributes to the diffraction peaks. The additional scattering is
caused by the scattering of neutrons on the domains of ordered magnetic moments which
exist in the investigated tungsten sample. Later on this hypothesis was confirmed in other
experiments as well. The activation analysis has shown that the tungsten samples under
investigation contain a microadmixture of cobalt (several fraction of a per cent). Tungsten
atoms form magnetic clusters around cobalt atoms. In other words the tungsten could
be 1n a heterophase state which is characterized by the symmetry properties of both the
paramagnetic and ferromagnetic phases simultaneously. It should be noted, however, that
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magnetic admixtures are not a necessary condition for the formation of the heterophase
states. The heterophase fluctuations which take place over a vide range of temperatures (28]
are also important here.

If the magnetic cluster formation phenomenon is taken into account, Eq. (34) will take
the form

Ithkty = C([ﬂ + Z finka)(5in 0/ X)ane)® + [1 = fear(sin 0/M)]*+* cot? 0 + pz)A(th)

y exp[—2B(sin /1)?]

36
sin 20 ’ (36)

where p? = 2/3f%,a%,, and fy and apr are the magnetic form factor and the magnetic
scattering amplitude, respectively. Thus the problem of determining a,. from diffraction
experiments with tungsten single crystals is reduced to the determination of the depen-
dence of the transferred momentum of the fy magnetic form factor. This dependence
together with the value for a,. were found from the available diffraction data. For the
latter,

ane = (—1.60 £ 0.05) x 1072 fm, (37)

which is in agreement with the result (32) obtained by measuring the total cross section of
bismuth at the IBR-30 reactor. The results of all measurements are presented in Table L.
From this Table it follows that the most accurate experiments fall into two groups: the
measurements of Refs. [1, 5, 15] lead, in accordance with Eq. (6) to (rZ) > 0, which
contradicts the modern theory (see below), and the measurements of Refs. [7,17, 22, 23]
lead to (r?) < 0 which confirms it.

Recently, Leeb and Teichtmeister (2] have analyzed the results [5,7] of the low energy
(< 150 eV) total neutron-atom cross sections. They have confirmed that the discrepancy
between the a,. values is due to different ways of treatment of the resonance contribution.
They believe that the a,. value which is less negative than the corresponding Foldy value
(that is (r2) > 0) is more favorable.

Nikolenko and Popov [3] have tried to explain the difference between [5] and [7] by
the fact that inter-resonance interference terms are neglected in the analyses of Ref. [7].
However, as is shown in Refs. [4,6,29] the result of Ref. [3] cannot be considered sufficiently
correct. Though Eq. (28) does not contain any evident terms which do account for the
inter-resonance interference, this one has contributed to the p, term. The value of p5™* =
—2.3 x 10727 cm?/sr was determined in Ref. [7] by fitting experimental data and due to
this fitting procedure it contains the inter-resonance interference term.

Meanwhile one can evaluate analytically the contribution of the inter-resonance inter-
ference effect. There are well-known S matrices that do account for this phenomenon:

1. [30,31]

Spn = |1+ TV2TV2 Ay | exp(~2ikR), (38)
AN
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TABLE I. The results of measurements of a,,.

Magnitude of

Spn = exp(—2ikR) |1+ zzj: -

.j—E—wj

Authors, year Method effect, ne/tot —ane x (10%) fm  Ref.
Recoil electron in cloud
P. Dee, 1932 chamber —_ < 1000 —
E. Fermi, L. Neutron scattering on
Marschall, 1947 noble gases Ac/o = 0.5% 100 + 1800 [14]
Total neutron cross
W. Havens, et al., section on lead and
1947-51 bismuth Acfo =1.5% 1.91 £0.36 (16]
D. Hughes et al., Neutron total reflection
1952-53 from O,-Bi mirror AO/O = 50% 1.394+0.13 -
M. Hamermesh et Neutron scattering on
al., 1952 noble gases Ac/o =0.5% 1.5+04 —
M. Crouch et al., Neutron scattering on
1956 noble gases Ao /o =0.5% 1.43 £0.30 —
E. Melkonian et Total neutron cross
al., 1959 section on bismuth Ac/o = 0.5% 1.56 + 0.05* (17]
V. Krohn, G. Neutron scattering on
Ringo, 1966-73 noble gases Acjo =0.5% 1.30 + 0.03 [15]
Total neutron cross
section and atomic
L. Koester et al., scattering length on
1970-88 bismuth and lead Acfo =21.2% 1.32+0.04 [5]
Neutron diffraction on a
Yu. Alexandrov et tungsten-186 single
al., 1974-85 crystal Aajo = 20% 1.60 £ 0.05 [22,23]
Yu. Alexandrov et Total neutron cross
al., 1985 section on bismuth Agfo =12% 1.55 4 0.11 7
Total neutron cross
S. Kopecki et al., section on rediogenic
1994 lead (72.6% 2°®Pb) Acjo =1.2% 1.35 4+ 0.04 1]
*Without correction for Schwinger scattering and resonance scattering.
where the reciprocal of A has the components:
= - 1/2 +1/2
c
and the ¢ index runs through all channels.
2. 132]
Qpnj + 10n;j (40)
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where Zj(anj +iBnj) = L;jTnjy X;00j = 0, pj = ReE;, v; = —ImEj, Ej is the
complex energy of j—th resonance (at f,; = 0, l:}’j = E; —il';/2). At Bn; = 0 we have
oot = 2mg(1 — Re S,,)/k? as the sum of Breit-Wigner’s terms taking into account only
the interference between the potential and resonance scattering.

From Eq. (38) one can express [6,29] the inter-resonance term to gyo:

]_".
g:FniAEi > A—Ej

Tint _ 9+ it
4T 4k2 1 r. .
24 <~ 'y, _ j
AE! + 7 |Ti+ AE; Z AT,
JF
+ (a similar term for the other spin). (41)

At energies far from the resonance energy, owing to the fact that I' = I', + ', the term
containing I'p;[',; in Eq. (41) does not vary with energy (e.g., for bismuth at energies
below 50 eV), the second term containing I',;I';; is much less than the first one (for
bismuth it is 40 times less at an energy of 10 eV). Since in Dubna work [7] the ps term
does not depend on energy either, one cannot affect the result of the a,. determination
in [7] by introducing a constant term, oin./(47). Calculations of i, /(47) based on (41)
were performed for bismuth with the known resonances 0 < Ey; < 265 keV [20]. They
have shown that the additional interference term at an energy of about 10 eV makes
oint/(47) = 0.0086 x 1072* ¢cm?/sr (the total cross section of bismuth at this energy is
oot = 0.76 x 1072* cm?/sr, i.e. nearly 90 times larger).

5. ON THE CONTROVERSY ABOUT THE INTRINSIC CHARGE RADIUS OF THE NEUTRON.
DISCREPANCY BETWEEN THE GARCHING AND DUBNA RESULTS

As you know from the above-mentioned section there is a controversy in the physical
community about the value of intrinsic (r2 )y for the neutron. Part of physicists believe
that the value of {ane) = —1.309 x 1073 fm is true. The other part has another point
of view, i.e., {(ane) = —1.577 x 1073 fm. From the standpoint of an experimentalist the
question of the (a,.) value is to be solved by an experiment, e.g. by comparing oy
measured at different energies with be,, measured at very small energies (like in Ref. [7]).
This kind of measurements is carried out at the moment by the Dubna-Germany-Czech
Republic collaboration [33,34].

The results of the Garching experiments [5] and Dubna experiment [7] are at the center
of the controversy. Different ways of data treatment caused a discrepancy of not more
than 1.5 uncertainty in values for a,. in these experiments. Therefore, strictly speaking
one should look for contradictions between the works [5] and [22,23] but not between [5]
and [7]. Nevertheless, strange as it may seem, the discussion mainly goes around the latter
two works.
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By formulas (25) and (26) one may obtain for the s-wave scattering (at e(k) =
AE > T'/2 and R = sin 268y /(2k)):

Ttot _ Ocoh + Oin + 04
47 47

sin 6y sindy 9+TnAE g_-T.AE
k2 k2 |4 AE?+T?/4 < AE?+1?/4

Z 94+TnAE 9-TwdE 1" 0w o,
4k2 4T 47’

AET+T2/4 T & AE? +T%/4 i = (42)

where g = 1/2(2J +1)/(2I + 1), J = £1/2, I = 9/2 (for Bi).
From [7] it follows that

. 2 .
Otot  Sin“dy  sinédy g+ AFE g-T'r AE
ey e+ A

N —~ AE?+T2/4 " < AE? +T?/4
1 9413 iy oy
T [g IR 7RI vyri et (43)

The first two and the last terms in Eqs. (42) and (43) coincide, while the others are
different. The first reason for this difference is the fact that Eq. (43) was derived on the
basis of a generally accepted S-matrix of scattering (17), which does not take into account
inter-resonance interference. As it was shown above, however, taking this phenomenon
into account cannot influence the result of an. determination in Ref. [7].

So, from Refs. [7,17,22,23] it follows that (r2 )y < 0. What kind of error comes into
Ref. [5]?

Let us compare the formulas (42) and (43) for bismuth at the energy of 10 eV taking
mmto account resonances with the energy Ey; > 0 and the additional inter-resonance term:

2
1 Il -T.AE in
Vel [Z 94108 + Z i ] + — 2 = (0.0113 4 0.0006) x 10~* cm?/sr

—~ AE? +T%/4 * <~ AE? +T?/4 dr
='0.0119 % 10~** ¢cm?/sr, (44)
1 Q+Fn -ﬁFQ Tint 24 2
m{ZAE2+F?/4+§:AE2+F2/4 + = = (0.0029 + 0.0086) x 10%* cm?/sr
+ =3
= 0.0115 x 102* cm?/sr. (45)

Thus, if the contribution of the o, /(47) term is taken into account, expressions (44)
and (45) give practically the same results (at Ep; > 0).

There is some difference, however, between work [5] and [7] in their approach to calcula-
tion of the contribution of negative energy resonances (Ep; < 0) and unknown resonances
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to the total cross section. In Ref. [5] this contribution of one bound and unknown levels has
been calculated using the average parameters of s-wave scattering: the strength function,
Sy = 0.65+0.15, and the mean level distance (Do) = 4.5+ 0.6 keV [20]. In this situation I
think an error may easily creep in, since a resonance at Ep; < 0, e.g., may be at a distance
|Eg1| < (Do) from the point E = 0 and it will hardly be possible to estimate its influence
on the term by with any accuracy, because the uncertainty in the determination of Sy is
large (on the order of £23%).

In Ref. [7] we have used a more realistic method consisting in varying the ps parameter.
This is the main reason for the discrepancy between the results of Garching and Dubna
obtained for bismuth. The treatment of the experimental data of Ref. [5], taking into
account the parameter ps = —0.0023 x 1072* em?/sr found in Ref. [7] by the least squares
method, will lead to a 1.2 times increase in the absolute value of ape, t.€., to ane =
—1.57 x 1072 fm [see (32)].

Thus, to my thinking, the values of ane obtained in Refs. [5, 15] are not grounded
enough, and, consequently, the actual (r%) < 0 [if Eq. (6) is correct]. This conclusion is in
agreement with the measurements (7,17 22] but it disagrees with the result of the analysis
of available data made in Ref. [2] that favors a value of an. which is less negative than the
Foldy scattering length.

6. INFLUENCE OF RESONANCE SCATTERING

There is a possibility to calculate ps + gint/(47) directly.
It may be shown from Eqgs. (30) and (41) that

2
Tint g+9 - |
PPY o T [ZA B,k E]
4&2 Z Do A” + (a similar term for the other spin).  (46)

The second and the third terms in Eq. (46) may be negative. Their signs depend on
the influence on them of the neighboring levels with E; < 0. Thus, there exists no direct
argument in favor of excluding the possibility of the negative sign for ps + oin/(47). For
an even-even nucleus (g4 =1, g— =0)

Tint I'ng F
e 4&22 AE )

Calculations carried out for £ = 1 eV, two known resonances of *°*Pb (507 keV and
1735 keV [20]) and one negative dummy-resonance (—1910 keV) introduced in Ref. [35] give
the following result: pg 4 o /(47) =~ 6.7 x 1077 x 1072% ¢m?/sr. Thus, for nuclei of ***Pb
the contribution of resonance scattering is practically compensated by the contribution
of inter-resonance interference scattering. One can also calculate the pjac, term [see
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Egs. (28) and (29)]: p1acon ~ —1.3x 1077 x 10724 cm?/sr, i.e., is also very small. Therefore,
the Eq. (28) may be rewritten for the case of 298Pb as

o Utot(E’) 2

—

o — a2y (E) = ~2aacan(E)(Z - F'), (48)

1.e., we can make an important conclusion: in case of 2°Pb the value of a,. will not be
influenced by any resonance scattering.

For bismuth the situation is much more complicated: p; + ajn/(47) may be smaller
than zero (as it follows from Ref. [7]). One has to be very careful, however, when speaking
about py + i /(47) as being independent of energy, because the second and the third
terms in Eq. (46) depend on energy as 1/E'/2, Comparing values of py + i /(47) and
p5" at a neutron energy of about 1 eV one can also see that the calculated value is about
4 x 107%" cm?/sr larger than the experimental one. This difference may be explained by
the influence of unknown negative energy resonance levels (E; < 0) of bismuth which were
not taken into account under the calculations.

7. COMPARISON OF MEASURED INTRINSIC CHARGE RADIUS WITH ITS THEORETICAL
VALUE

Now about a comparison of the experimental results with modern theoretical ideas which
follow from the old meson theory by Yukawa.

The mean square intrinsic charge radius of the neutron is a fundamental characteris-
tic of the neutron, and its measurements permit verification of modern theoretical ideas
concerning nucleons. Knowledge of the signs and values of the anomalous magnetic mo-
ments of the neutron and proton permits establishing a qualitative picture of the p(r)
distribution in the nucleon. This point is illustrated by Fig. 2 [36]. Note that the sign of
(r2)n in the case of an object, which, as a whole, is neutral, may be either positive or
negative. This depends mainly on what charge is to be found at the periphery. Thus, for
instance, the charge distribution in a neutron, depicted in Fig. 2, should provide for the
sign of (r )y being negative. This distribution was already known before 1955-57 [36]. In
the 50s it was also known that in the old meson theory the process n — p + 7~ gave rise
to a negative tail for the intrinsic neutron charge distribution. In all old static models,
however, the core of nucleon was not understood and its properties were not calculable.

This problem was solved by modern ideas about the nucleon, e.g., by modern quark
models. During the last few years attempts were made to solve the quantum chromo-
dynamics (QCD) equations. In the absence of exact solutions it is natural to rely on
phenomenological models, which incorporate features expected from QCD. Of all these
models the bag model is the most attractive. The bag model has its beginning in the late
60s, when P.N. Bogoliubov described phenomenologically a system of relativistic massless
quarks moving freely inside a spherical volume. The development of Bogoliubov’s approach
has yielded the MIT (Massachusetts Institute of Technology) model. The main features of
the MIT bag model have proven to. be essential for the construction of the modern quark
model of the nucleon, that is Cloudy Bag Model (CBM) proposed by Thomas, Theberge
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plrl a.
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FIGURE 2. Expected electric charge distribution inside the nucleon: a) the proton; b) the neutron.

and Miller (see,e.g., Ref. [37]). In this model the nucleon consists of a spherical static
cavity with radius R filled with three massless free quarks. The quarks interact with a
pion field on the surface of the bag. This surface is the source of a field of negative pions
acting at a distance of the order of fi/(mc) > R. In the absence of pions CBM is identical
to the MIT model. The latter violates the chiral symmetry, and since chiral symmetry is
a property of QCD itself, this gives us quite justifiable concern. By introducing a pion
field coupled to the quarks on the bag surface, one can restore the chiral symmetry. The
CBM has been developed in response to this difficulty, and in CBM the nucleon is far from
being point-like, having a radius of about one fermi. This model has produced a number of
remarkable results for the properties of single hadrons, e.g., the magnetic moments of the
proton, neutron, and other members of nucleon octet, the form factors, the polarizabilities,
the charge radius and so on.

The value (r2)%" > 0 contradicts the present-day understanding of the neutron not only
in CBM but in other theories about the nucleon (see, e.g. Refs. [38-40]), which is essentially
based on the old Yukawa meson theory as well. By applying these concepts physicists can
precisely calculate within the framework of the static models under the assumption of
a motionless (not recoiling) heavy nucleon (M — oc) the value (rZ)n = [ p( (F)r? &3,
to obtain (r2) < 0 (see, e.g., Refs. [41-43]). This value cannot mclude the Foldy term
which is equal to zero at M — oo, and it seems to be correct to compare the calculated
result with (r? )5 obtained after the subtraction of the Foldy scattering length from the
measured a,. value.

Owing to the n — p + 7~ process, there appears a negative tail in p(7) (see Fig. 2),
like in the old static models; by new quark models (e.g. CBM) there also exists a negative
7~ —meson tail, which is just what causes the negative sign of (r)y. It is practically
impossible to obtain (r?)x > 0 following modern concepts. If the results of Refs. [1,5,15]
are correct, then a serious revision of our understanding of the structure of nucleon is
necessary.

Being a specialist in experimental physics I do understand that issues of the value of
ane and, consequently, of the sign of ( * ) v must be studied experimentally. But honestly,
I really do not understand why, from a theoretical point of view, the sign of (r?)n has to
be positive.
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