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ABSTRACT.Two basic laws of lIIultifraclal eiasticily are forlllulaled in general farm, leading lo a
closed system of constitutive eqllatioIls. This approach allows to explaill tite clasticity of materi-
als governed by multifractal alld hookcan mcchal1istlls. It is also llotcd that for materials of pure
multifractal origin thcir ela.c;ticbehavior can be uscd to cstimatc threc first generalized dimensions
(lIletric, information, ami corrC'lation) of ralldom (mlllt.ifractal) microstructure. \Vith the intro-
duced new framework, classical formnlas for rubber-like and spring-like ela.,ticily are derived as
well as constitutive cql1ations for superelastic lIlatcrials. The theoretical results reasonably agree
with experimental data and computer simulations rcportcd in the literature.

RESUMEN.Se formnlan en forma general dos leyes básicas de la elaslicidad mullifraclal, qne con-
ducen a un sistema de ecuaciones constitutivas. Este método permite explicar el comportamiento
elástico de materiales gobefllados por mecanismos multifractales y hookeanos. Se discute que para
materiales de origen puramcntc multifractal, su comportamiento elástico puede ser empleado para
estimar las dimensiones métrica, de información y de correlación de microestructuras estocásticas
(multifractales). En este lluevo marco de referencia, se derivan las fórmulas clásicas dé elastici-
dad ru.bber-like y spring.like, así como las ecuaciones constitutivas para materiales superelásticos.
Los resultados teóricos obtenidos coinciden razonablemente con los datos experimentales y con las
simulaciones computacionales reportadas en la literatura.

PAes; 03.40.Dz; 62.20.Dc; 64.30.+1

In lhe lasl len years lhe theory of materials with random (fractal or mullifraclal) mi-
croslructure has become all allractive topic in mechanics alJ(1 physics of solids [1-6].
Slalislical properties of a mllllifracta] are characterized by a speclrum of generalized di-
mensions dq [1]. Generally, lhe gelleralized dimension dq = Ois equal lo lhe melric (fractal)
dimension evalualed by m('aIlS of lhe box-coUlllillg algorilhm, i.e., do = dF, which for mul-
lifraclal slruclure is grealer lhan ilS lopological dimension dT, but smaller than, or equal
lo, lhe lopological dimension el of lhe ell\'eloping Euclideau space, i.e., dT < dF $ d; the
generalized dimension of arder q = 1 is equal lo lhe infonnalion dimension dt = di; and
lhe dimension elq = 2 is eqnal lo the correlalion integral exponent de = el2, also called
correlation dimensiono ;\f'rogpi, colloidal aggrC'gatt'S, polymC'rs, some typcs of composite
malerials, porous media, etc. have a multifrartal strurture in a wide range of spatial scales
Lo < L < LM [1-3).
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In practice, four different types of elasticity [4jl are broadly used for modeling elastic
behavior of materials with multifractal microstructure: 1) elasticity of energetic nature
(elastic continuum, crystals, polycrystals, etc.), based on .the generalized Hooke's law;
2) entropy elasticity (elastomers), based on Gaussian statistics of elements (micro) struc-
ture; 3) hyper- and superelasticity, which are described by using phenomenological models
for elastic potential; and 4) spring-like elasticity (long polymer chains, foams, sorne struc-
tural composites, etc.) based on the empirical formula for spring.

In the series of our works [7-9] a new type of elasticity was suggested that is the multi-
fractal elasticity (see also reviews 15,6]). Sorne models of elastic behavior for malerials wilh
fraclal and multifractal microstructures have been developed in the works [10-141 on the
basis of two postulated phenomonological laws of reversible deformations of multifraclal
slructures.

In this article we give a more general formulation for the basic laws of multifractal
elasticity and derive tllC closed systelIl of conslitutive ec¡uations. It will also be shown tbat
the entropic rubber-like elasticity, super- and hyperelasticity, and spring-like elasticity are
the specific cases of the multifractal elasticity. The generalization of the developed theory
which combines the multifractal and hookean models of elastic response is also discussed.

nasic laws of reversible deformations of an elastic multifractal can be formulated in the
general form as follows.

1) "When the external force F is apl'lied to an e/astie isotropie multifmetal objeci,
deformations oeeur mostly on the Icngth sealc bcyond certain chamcieristic length, whiclt
depends of F. Thus, the presence of an external stress leads to tite al'peamnce of the unique
new ehamcieristie sealing length LF". 2

Ir this law is valid, from lhe second law of lhermodynamics it follows lhal lhe force
obeys relation

F - (~) - (.!!!!...) - T (~)- DLF T - DLF T DLF T.

The first term on the right of Ec¡. (1) is evidently the energy component of internal forces,
and the second terms is the entropic component.

2) The reversible deformations of rnultifmetals are horneornorl'hie and affine.
It is clear that a homoelllorphic dcformalion (one-Io-one and onto lransformation) does

not change the metric (fraelal) dimension of a deformed mullifracta!' ~Ioreover in ReL [151
it was shown that there are no rhanges in lile informatioll ami rorrelation dimensions af-
ler a!fine lransformalion (defortnation) of mullifractal slructure, while lhe limiling values

I Theories oí these types of elastic IH'haxior are ba.")C'dOH different phC'llomenologicallaws (ex-
perimental faets) and lcad to diffcrcllt typcs oí cOllstitutivc cquatiolls.

2 The initial morphology of a multirractal eau either be eharacterized by one or more length
scale parameters Li or does uot have them at aH. In the first ea$e the L,. may have physicaI
~igl1ificallce sueh as charactcristic dilllCIlSioll of l>lous in a polymcr, cl1aractcristic sizc oC cclls, Of

mean distance between inclusions in a cOlllposite material, characteristic radius of correlations in a
random network and aerogcl, etc. As it follows fraIn the law postulatcd aboye, only one of the set
of scale parameters L¡ (or their illvariant comuinatioll) depends on the external forces. If the initial
multifractal structurc has no scale paraJllcters then the physical mcaning of LF is the cliaractcristic
length above which deformations occur.
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of generalized dimension speelrum, e.g., doo and d-oo afler affine transformalion in gen-
eral differ from those for inilial mullifraelal slruelure. Therefore, if the seeond postulate
(law) is valid lhe melrie, informal ion, and eorrelation dimensions of deformed multifraetal
struet ure are eonstant.

The mass density P of a material with rnultifraetal rnierostrueture gene rally depends
on the length seale L [3]. Dimensional analysis implies lhe following general funelional
relation:

(2)

where >li is a dimensionless fUllelion of ils dimensionless argumenls .\C = ~c/ L and .\r =
LFf L; ~c is lhe eorrelalioll l('ngth of multifraelal (miero)slmelur('. JI is well known lhal
wilhin lhe bounded inlen'al

(3)

lhe mass densily of multifraelal slmelure p(L) obeys a power law behavior [3]. Aeeording
lo inequalily (3) lhe seeond argumenl of lhe dimensionless funelion >li(.\c,.\r) is small
(.\r « 1); so lhal at the asymplolie self-similar slale we can apply lo the funelion >li a
sealing (ineomplele self-similarity) repres('ntalion [16]

" = d - dF, (4)

where dF is lhe fraelal (melrie, box-eounting) dimension of lhe mullifraelal and 7/J is a
dimensionaless funetion of .\C. 1'\otiee lhat p possess sealing behavior (4) in lhe inilial state
of lhe mullifraetal stmeture as well as aCter any ddormation of lhis struelure, but ~c and
dF, generally speaking, may be diff('renl before aud after the deformalion.

1I0wever, aceording lo lh(' !irsl law of reversible deformalions, only the characlerislie
length LF ehanges after elaslie (reversible) deformation of elaslieally isolropie mullifraelal,
so lhal ~c musl be eonslant. Fnrlhermore, elaslie deformations are homeomorphie by
de!inilion and thus do not change lhe melrie dim('nsion dF of lhe deformed mnllifraetal,
so that the sealing exponent n i5 also conslanl.

Ey this means, the maS5 density of elaslie multifraclal slrnelnre aCter its reversible
(homeomorphie) deformalion eaused by differ,'nl external fore(,5 F¡ and F2 is equal 1.0
p(F¡) = po.\n7/J(.\c) and p(F2) = po.\r2,p(.\c), r('sp('etively. IImee the ralio p(F¡)/p(F2) is
not dependenl on neilher the variable lenglh seale L nor the correlation l('l]glh ~c and
scales as

p(F¡) = (¿:)-o =
p(F2) ""

(
L )-0-!:l _ \-0- .....r '
L F2 l'=const

n = d - dF, (5)

¡.C. the relalion governing lhe ehange in lhe mass densily p of elastieally deformed mul-
tifraelals is similar 1.0 the r('laliou lhal govern5 the change in lhe mass density because
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of the geometrie ehange in the dimensionalities of (multi)fraetal strueture3 (within the
interval (3)!).
It immediately follows form Eq. (5) that under uniaxial tension (eompression) the

ehange in the dimensionality of multifraetal struetme in the direetion of external force
F" whieh is Ax = Lx/Ix, is aecompanied by the ehange in the lateral dimensionalities of
deformed multifraetal strueture in orthogonal direetions of the surrounding el-space with
A; = L;J I¡, where i = 1,2, ... , el - 1. The lateral deformations A; are related to Ax = AF as

i = 2,3, ... , d, (6)

where "F is the transverse deformation expone'lt.4

Substituting (6) into Eq. (5) we obtain a = 1 - (el - 1)IIF, so that

In AL dF
IIF = --- = -- - 1.

In AF el - 1
(7)

Therefore, if the first postulate (Iaw) is valid, the transverse deformation exponent IIF of
an elastieally isotropie multifraetal is defined uniquely hy its metrie dimension.5

The data of Table 1 demonstrate that the results of calculations hy the analytieal
formula (7) agree well with results of computer simulations of the elastic properties of two-
dimensional pereolation networks near a pereolation threshold (see also the Appendix), as
well as with the experimental data for aerogel Si02 (which were obtained in the studies of
the longitudinal and transverse elastie waves propagation), rubber, and a strongly twisted
nondeformable polymer filaments.
At the same time, it must be emphasized that Eqs. (5) and (7) are not valid for materials

obeying eonventional Poisson's elfeet, 01', what is equivalent, the generalized lIooke's law.
For sueh materials the correlation length (, is equal to the sample size in the direetion of
applied external force, i.e., (, == Lx; so that (, and

(8)

must change after deformation. At the same time, for an elastie continuum A¡ = O and
AF == 1, while for a regular elastie lattiee A¡ = a/ao (a an,l ao are tbe interatomie distanees
before and after elastie dcformation, respectively) amI AF = AC. Hence, for materials
obeying Poisson's elfeet om first postulate is not valido

3 Nolice lhal formerly lhis fact was postulatcd as lhe second law (see, for cxample reviews [5,6]).
In fact. as is shown aboye, Eq. (5) is a dicect cOlIsequencc oC the first law and oC lhe homeomorphism
of reversible deformations.

4 1\oticc that lile eXpOlll'lIt oC lateral dcforlllatioll? LJF= -111 AJ./AF is cqual lo lile Poisson's
ratio /.1 = -vl).22 - ll/IA)I - 11oHly in lile ¡¡Iuit. of iufinitdy slllilll straius ~II = )1..\; - 11« 1.

5 At first glance, it is sucprising lhat latpcal ddormat.iolls are indcpelldcnt oC lhe detailed ge-
ometry oC deformed muitifracta1. Notice, Iiowcver, that similar sitllations (powcr law distriuutiolls
of stresscs and strains with exponents wliich are a fUIlCtiOIl 0111)' of Poissoll's ratio) are comlllon
within singular problems in the classical tiJ('ory of the elastic rontinuum obeying the intermediate
asymplolic uehavior (see, for cxample 117,18]).
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TADLEI. Comparison of Poisson's ratio v, calcnlated using analytical relationship (7), with the
computed va1ues, based 011 two-dimcnsional elastic random networks, and with experimental data
for aerogel 5i02, strongly twisted nondeformable polymer filament, and rubber.

Two-dimensional ranclom nelwork
Strongly lwisteJof size L x L oear lhe percolationProperties

threshold Aerogel Si02 nondt'ronnable Rubber

(ee - correlatioll length) mamenl

L/(c - 00 L/(c - o
Elasticity of

Bonds,
determining

Connectedness of nelwork is elasticity of Fractal cluster Manomer Polymer nelworkranclom nelwork delermined by nelwork are
dangling boncls multiduplicatl'd

dF, rneasured by

Fractal
Dimension of

Dimension of red
small-angle

Dimension of
dimension of

geoclesic I¡oe,
bonds,

neutron
self-avoiding dF = 3.00" 0.04

elastic backbone
• dF ;:; dminl dF ;:; drb•

scatll'ring and
random walk: [25,26Jdmin = 1.1.:i:O.02 lIIolecular

dF [29J d,b = 3/4 129J adsorptioll [31]: d._. = 2 129J
2.3,,0.1

l/F. F..q. (7) 0.1" 0.01 -1/3 0.15" 0.05 O 0.50" 0.02
Poisson '5 ratio
(results of
numerical 0.08" 0.04 -0.33" 0.01 0.12,,008 O 0.50" 0.01
simulation and [28J [28J [30J 127J I22J
experimental
data)

Furtherrnore, the rnctric dimcnsion of an clastic continuum as wcll as a regular elastic
lallice (dr == dq for all q), which can be considered as a limitillg cases for lIlullifractal
struclures, is equal lo Ihe topological dillH'lIsion of structure eh'; so that

dF = {~'-I, Q = {O,
1,

(9)

Now, il is easy to understand lhat iu lhe case of an euclidean clastic struclure obeying
generalized Hooke's law the dimensionless funetion '¡'p(,\c) = '¡'(.\c) )/'¡'('\c2) scales (in lhe
limil of infinilcly slllall straius!) as

(10)

where {3= 1- (eh- - I)v. The relatioll for Ihe conwntional Poisson's <'ffect 0jj = VOII
(see footnote 4) lIlay be derived by substilulion of E'ls. (10) and (G) with eh = d iu the
general rdat ion (4).

Therefore, in the general case of an e"",tic multifractal structure, the lateral deforllla-
lÍons of whieh are goverued by the cOlllbination of lateral deforlllatiolls of the lIlultifraclal
nature with those associated with the conventiollal Poisson's dfect, the scaling rclation (5)
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can be generalized into

p(F¡) = A -(d-dy) A (dr-1)v-l
p(F2) p C . (11)

It should be emphasized, that relation (11) is valid only in the limit of infinitesimal!y smal!

strains Eii = jlAr - 11« l!
Now, if a multifractal structure possesses Poisson's effect with AC = Ap, the transverse

deformation exponent is equal to

d - dp
vp = v- ---o

d-l
(12)

This relation governs the lateral deformation of the multifractal as wel! as the Poisson's
nature.
Below we wil! consider only the elastie multifractals' reversible behavior, which is gov-

erned by the two laws postulated above. The lateral deformations of such a structure have
apure metric origin (AC == 1)6 and are governed by the metric dimension of the structure
(see Eq. (7)).
Looking back at the two proposed laws of reversible deformations for multifractal struc-

tures, we see that we need to know the changes in the entropy and internal energy as func-
tions of deformations before the closed system of constitutive equations can be obtained.
Using the definitions of the information and correlation dimensions and their scaling

properties [1,2] with relations (1), (5) valid, it is easy to show that the changes in the
thermodynamic entropy 6.S(A¡) and in the internal energy U(A¡) during the reversible
deformation of an elastic multifractal in d-dimensional space can be represented in the
form [9]

and

T6.S= -C2 (tAl -d),
1=1

(13)

QC = d - dc, (14)

respectively. Here C1 and C2 are constants (noti~e that parameters Cl and C2 can also be
determined for any detailed model of the strueture [19]).
Substituting (13) amI (14) into (1), and using relations (5)-(7) we can derive the rela-

tionships between external force F¡ and relative deformations A¡ of lJ1ultifractal structure.
For example, in the case of uniaxial deformation (tension or cOlnpression) we obtain

F - C {d ,d¡-! 1[1 (1 1)],-dddF/(d-l)-lJ-1 Cl(1 d ),d-dc-l}1 - 2 1"1 - (1 (F - (- "1 - C2 ( -C "1 . (15 )

6 It is pertinent to note that in the CaBe>'c = >'p aIHIv = 1/(d-1) Eqs. (11), (12) are equivalent
to Eqs. (5), (7), so that all res\llts considered below are also valid in this more general CaBe.
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According to the obvious condition F(>'; = 1) = O, it follows from Eq. (15) that

Cl d - dF
C

2
= di d _ dc $ dF,

so that7

(16)

Thus behavior patterns of elastic multifractals (for which two laws postulated aboye are
valid!) are completely determined by the metric, information, and correlation dimensions.

Moreover, it is easy to see that in the limit of infinitely small strains, Eqs. (17) and (7)
can be generalized by using Eqs. (11) and (12).

In the case of monofractal structure all generalized dimensions are equal to the metric
(fractal) dimension, ¡.c., dq '" dF = di = dc [11, and Eq. (16) results in the equality

(18)

So that, Eq. (15) may be rewritten in the form

(19)

The stress 0'11 is related to the force F1(>'¡) by obvious equation 0'11 = FI>'¡-", which
by using Eqs. (7), (19) may be written in the form

O' = E [(>.1+1VF_1)_2V (>.-1-2V~_1)]
11 1+ 6VF + 4v~ ¡ F 1 '

(20)

where E = (éJO'II/8£II)T is the Young modulus.
It is easy to see that, within the limit ofinfinitesimally small strains, 1£111 = JI>'; - 11«

1, Eq. (20) leads to its classic counterpart for elastic continuum. Thus, for monofractal
structure we have Cl = 2(1 + VV)C2 = (1 + 6vr + 4vnE. Similarly, we can derive the
relations O'ij(>.kl for n-axial deformation of an clastically isotropic lllonofractal in the d
space. The pure shear is essentially a biaxial loading under the stresses 0'11 and 0'22 such
that there is no change in length along second direction, ¡.c., >'2 = 1 (see !le£. [20]).

The rclationships betweCll the clastic moduli, ¡.c., Young's modulus E, shear modulus
G, and balk modulus n, and Lamé coeffi('ients >., l' of elasti('ally isotropic (mono!)fractal,

7 In !lefs. [5,61 \Vehave eonjeetured that for an clastie lIlullifraetal d¡(d - dF) = dc(d - de).
This conjecture wa.s made in thc spirit oC thc Dirac's lIlanifcst tllat "a physical law must possess
mathcmatical bcauty". Howcvcr, thcrc is no CXIlC'rimclltal cvidcncc in support oC this conjecture.
In this sense the Eqs. (16) amI (17) are lIlore correet than the rclated equations in !lcfs. [5,6J.
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which are derived by analogy to the derivation of the eorresponding relationships in clas-
sieal theory of elastie eontinuum [20], are the following:

G = E(d - 1)
2dF '

B- E
- d(d - dr)'

2
B = A + "dI/. (21 )

Notiee that these relations differ from those which were conjectured for elastic fractals by
llergman and Kantor [21]. On the other hand, substitnting Eq. (7) in the Eqs. (21) we
obtain expressions that for d = 2 and d = 3 are identieal to those for two- and three-
dimensional elastically isotropic continnnm!

Classical formulas for rubber-like elasticity [22]

\ -1/2( )A2 = A3 = "1 P = const , (22)

may be derived within a framework of Eqs. (17) and (5)-(7) for mnltifractals obeying

dF = d = 3, and di = 2.

Notice that the condition di = 2 is associated with the Gaussian statistics [7,23], which
is used in the classical models of rubber-like elasticity [22]' while the equality dF = d = 3
is the condition of incompressibility (see Eq. (5», which is also assumed in the classical
theory [22].

In fact, however, calculations based on Eq. (22), with the value of E adjusted by fit-
ting, are in reasonable agreement with the experiments only in the range of relatively
smalJ strains (Ai < 1.2) [22]. Traelitionally, the refinement of the relation (22) is maele by
phenomenological moelifications of the entropic theory, or by using empirical moelels for
the elastic potential [22,24]. At the same time, elastomers are known to have fractal or
multifractal microstructure [3,25,26]. Therefore, it is natural to describe rubber elasticity
of polymers by using the results of the concept of multifractal elasticity discussed aboye.

Generally the generalized dimensions of polymer networks swelled in a good solvent
are within the range 2 < dq :S 3 [3,25,26]. Assuming in the first approximation that
dF = di = de anel substituting Eq. (7) into Eq. (19), we obtain the relationship between
the nominal stress F1 anel the strain factor Al in the case of uniaxia! tension (compression)
of an elastomer in the following form:

F = E {Al+2VF_2v,A-I-2VF(1+VF)_(1_2v.)A-2VF} (23)
1 1+ 6VF + 4v~ 1 1 1 f 1 ,

which was first elerived in our work [7] by other means8 Notice, that behavior (23) differs
from (22) even in the limit of incompressihly cleformecl mal erial, when Eq. (23) reduces
to the formula

(24)

8 \Ve emphasize that Eq. (23) is a limiting case of the general eqllation (19) which gives a richer
set of various behavior pattcrns.
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obeying the experimentally established asymptotic (see Re£. [22])

FI o::>.¡, when >'1» 1.

It was shown in Refs. [5-111 that the calculations based on Eq. (23) agree well with
experimental data for rubbers without any adjustment of parameters (except E) right up
to >'1 = 7.
The nonlinear stress-elongation asymptotic for superelastic networks [27]'

1/3
<Tll o:: >'1 , (25)

is a special case of constitutive equations (17) and (7), which is valid for multifractal
structures possessing

dF + di - d = k,
for example dF = 2, d = 3, di = 4/3.
The basic relation of spring-like elasticity [221

F=E(>'-I)

(26)

(27)

may be also derived from (17) and (5)-(7) in the case of multifractal structures for which
dF = dI = 2 (d = 3).

Furthermore, the pseudo-elastic, super-elastic, and rubber-like behavior of alloys with
thermoelastic martensitic transformation [31 can be also evaluated within a framework of
the multifractal theory.of elasticity.9

Rence the proper regard for the real morphology allows an adequate description for
the behavior of a reversible deformed material with fractal or multifractal microstructure.
Considered examples revealed that two laws of reversible deformations of multifractal
structure, which are postulated in present work, are valid at least for sorne classes of
materials with (multi)fractal (micro)structure.
\Ve hope this work will stimulate experimental research along this lineo \Ve expect that

these investigations will support our concept of multifractal elasticity. If so, experimental
data on elastic behavior can be uscd to estimate the metric, information, and correlation
dimensions of the (multi)fractal microstructnre.
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ApPENDlX

The pereolating network is a fundamental model for deseribing geometrieal features of
random systems 12,291. There are two main kinds of pereolating networks: "si te" and
"bond". To ereate a site-pereolating network, eaeh interseetion (site) of an initiaUy pre-
pared d-dimensionallattiee is oeeupied at random with probability p. Sites are eonneeted
if they are adjaeent along a principal direetion. In a bond-pereolation network, aU sites
are initiaHy oeeupied and bonds are oeeupied randomly with probability p. At a eritieal
(different) eoneentration P = Pe (pe also depends on the dimension and symmetry of
original lattiee), both site and bond percolation exhibit a single, infinite cluster spanning
aU spaee.
\Vhen the oeeupation probability P is less than pe, there are only finite clusters, whereas

if P > pe an infinite cluster is present as weU as finite clusters. The cluster both at Pe
and away from Pe are eharaeterized by the number of sites, s, in the cluster and by the
radius of gyration, Rg(s), of the cluster. Over what distanees are oeeupied sites eonneeted?
The eonneetedness length ~e is defined as the average root mean s<¡uare distanee between
oeeupied sites that belong to the same and finite cluster. This eonneetedness length is also
eaUed the eorrelation length. The lower eutoff seale eharaeterizing the pereolation cluster
is the length a that forms the lattiee spacing of the original lattiee.
For the problem ofthe cleetriea! eondueti\'ity of a random resistor network and transport

dynamie properties, another objeet is relevant: the "backbone" of an infinite pereolation
cluster [291.The baekbone is defined as the net\\'ork ofunbloeked eonneeted bonds, through
whieh one can go to infinity by at least two noninterseeting paths. In other worlds, the
baekbone is a set of bonds, through \\'hieh eleetrie eUITent \\'ould Ro\\' were a voltage
applied to the cluster at infinitely remote cleetrodes. The rest of the cluster is referred to
as a eoUeetion of "dead" 01' "dangling ends". A dangling end can be diseonneeted from the
cluster by eutting a single bond. In random resistor network near the percolation threshold,
sorne bonds carry the highest curren!. These bonds form the set of single eonneeted bonds
of the baekbone. This set of bonds were eaUed "red bonds" (when one red bond is cut,
the eurrent Row stops). The rest of bonds of the baekbone is the "blue bonds" (blue
bonds carry eurrent, but when a blue bond is cut, the resistanee of the system only slowly
inereases). Another important coneept is the minimal 01' "ehemieal" path between two
points of a baekbone, whieh is the shortest path bet\\'een t he t\\'o points. The shortest
path between the sites i and j realizes along the "geodesie line" and can be defined as
the minimal number of steps by whieh we can reaeh j from i, with restrietion to existing
paths between eonneeted sites. This is termed lhe ehemieal distanee L,h.m (notiee that it
is not the same as the linear length measured between the two points and referred to as
the "Euclidean distance").
For any length seale L » ~e, a pereolating system is maeroseopieaUy homogeneous.

But for a « L « ~e, the system posscsses statistieal sea le invarianec and may oc referred
to as a fractal 01' multifra<:lal oojeet, aH properties of which ol",y a powcr law dependenee
on its eharaeteristie linear size L [291. For example, the total numoer of bonds (01' sites)
of the cluster seales as Nd ~ Ldd, where dd is the fractal dinJ('nsion of the cluster; the
total number of baekhone oonds seales as Nbb ~ Vlbb; the mlmher of red bonds N,ed

scalcs with L a.o;¡ Nretl """ LDrb. Thc chcmical dimcllsioll dcil(,lll is defillC'd from the rclation
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Nehem ~ L~¡;~;;;'.The chemical length scales with L as Lehem ~ Ldmi", where the fractal
dimension of geodesic line dmin is equal to the ratio dd/dehem•

Recently, there has been a considerable interest in the elastic properties of percolat-
ing randolIl networks [21,28]. It was found that for elastic problem the critical value of
occupation probability PCel differs from Pc [32]. For example, for percolation on the twa-
dimensional triangular lattice Pc = 0.3473, whereas PCel = 0.58 [32]. Hence the elastic
backbone which governs elastic behavior of percolating network also differs from back-
bone governed electrical resistance. Among the surprises that were uncovered was the
phenomenon of a negative Poisson 's ratio v of percolation network of size L «~cnear
the percolation threshold (L » a) [28). lt was also found that the Poisson's ratio is sen-
sitive to the precise value of L/~c, changing from -0.33 when L/~c ~ O to about +0.08
when L/~c ~ 00 (a zero Poisson's ratio \Vas found for L/~c '" 0.2) [28] The most im-
portant result of the refered \Vorks is that the limiting values of v (namely v(O) = -0.33
and v(oo) = 0.08) are independellt of the elementary (microscopic) force constants of
the bonds. This give the rise to describe the elastie behavior of such networks within a
framework of the theory of multifractal elasticity (see Table ¡).
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