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ABSTRACT. Two basic laws of multifractal elasticity are formulated in general form, leading to a
closed system of constitutive equations. This approach allows to explain the elasticity of materi-
als governed by multifractal and hookean mechanisms. It is also noted that for materials of pure
multifractal origin their elastic behavior can be used to estimate three first generalized dimensions
(metric, information, and correlation) of random (multifractal) microstructure. With the intro-
duced new framework, classical formulas for rubber-like and spring-like elasticity are derived as
well as constitutive equations for superelastic materials. The theoretical results reasonably agree
with experimental data and computer simulations reported in the literature.

RESUMEN. Se formulan en forma general dos leyes bésicas de la elasticidad multifractal, que con-
ducen a un sistema de ecuaciones constitutivas. Este método permite explicar el comportamiento
elastico de materiales gobernados por mecanismos multifractales y hookeanos. Se discute que para
materiales de origen puramente multifractal, su comportamiento eldstico puede ser empleado para
estimar las dimensiones métrica, de informacién y de correlacién de microestructuras estocédsticas
(multifractales). En este nuevo marco de referencia, se derivan las férmulas cldsicas dé elastici-
dad rubber-like y spring-like, asi como las ecuaciones constitutivas para materiales superelasticos.
Los resultados tedricos obtenidos coinciden razonablemente con los datos experimentales y con las
simulaciones computacionales reportadas en la literatura.

PACS: 03.40.Dz; 62.20.Dc; 64.30.4t

In the last ten years the theory of materials with random (fractal or multifractal) mi-
crostructure has become an attractive topic in mechanics and physics of solids [1-6].
Statistical properties of a multifractal are characterized by a spectrum of generalized di-
mensions dy [1]. Generally, the generalized dimension d, = 0 is equal to the metric (fractal)
dimension evaluated by means of the box-counting algorithm, i.e., dy = dp, which for mul-
tifractal structure is greater than its topological dimension dr, but smaller than, or equal
to, the topological dimension d of the enveloping Euclidean space, i.e., dr < dp < d; the
generalized dimension of order ¢ = 1 is equal to the information dimension d; = d;; and
the dimension d; = 2 is equal to the correlation integral exponent dc = dj, also called
correlation dimension. Acrogel, colloidal aggregates, polymers, some types of composite
materials, porous media, ctc. have a multifractal structure in a wide range of spatial scales
Tig = L < Ly [1*3}.
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In practice, four different types of elasticity [4]! are broadly used for modeling elastic
behavior of materials with multifractal microstructure: 1) elasticity of energetic nature
(elastic continuum, crystals, polycrystals, etc.), based on the generalized Hooke’s law;
2) entropy elasticity (elastomers), based on Gaussian statistics of elements (micro) struc-
ture; 3) hyper- and superelasticity, which are described by using phenomenological models
for elastic potential; and 4) spring-like elasticity (long polymer chains, foams, some struc-
tural composites, etc.) based on the empirical formula for spring.

In the series of our works [7-9] a new type of elasticity was suggested that is the multi-
fractal elasticity (see also reviews [5, 6]). Some models of elastic behavior for materials with
fractal and multifractal microstructures have been developed in the works [10-14] on the
basis of two postulated phenomonological laws of reversible deformations of multifractal
structures.

In this article we give a more general formulation for the basic laws of multifractal
elasticity and derive the closed system of constitutive equations. It will also be shown that
the entropic rubber-like elasticity, super- and hyperelasticity, and spring-like elasticity are
the specific cases of the multifractal elasticity. The generalization of the developed theory
which combines the multifractal and hookean models of elastic response is also discussed.

Basic laws of reversible deformations of an elastic multifractal can be formulated in the
general form as follows.

1) “When the external force F is applied to an elastic isotropic multifractal object,
deformations occur mostly on the length scale beyond certain characteristic length, which
depends of F. Thus, the presence of an external stress leads to the appearance of the unique
new characteristic scaling length Lg”.?

If this law is valid, from the second law of thermodynamics it follows that the force

obeys relation
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The first term on the right of Eq. (1) is evidently the energy component of internal forces,
and the second terms is the entropic component.

2) The reversible deformations of multifractals are homeomorphic and affine.

It is clear that a homoemorphic deformation (one-to-one and onto transformation) does
not change the metric (fractal) dimension of a deformed multifractal. Moreover in Ref. [15]
it was shown that there are no changes in the information and correlation dimensions af-
ter affine transformation (deforination) of multifractal structure, while the limiting values

! Theories of these types of elastic behavior are based on different phenomenological laws (ex-
perimental facts) and lead to different types of constitutive equations.

2 The initial morphology of a multifractal can either be characterized by one or more length
scale parameters L; or does not have them at all. In the first case the Ly may have physical
significance such as characteristic dimension of blobs in a polymer, characteristic size of cells, or
mean distance between inclusions in a composite material, characteristic radius of correlations in a
random network and aerogel, etc. As it follows from the law postulated above, only one of the set
of scale parameters L; (or their invariant combination) depends on the external forces. If the initial
multifractal structure has no scale parameters then the physical meaning of Ly is the characteristic
length above which deformations occur.
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of generalized dimension spectrum, e.g., do and d_ after affine transformation in gen-
eral differ from those for initial multifractal structure. Therefore, if the second postulate
(law) is valid the metric, information, and correlation dimensions of deformed multifractal
structure are constant.

The mass density p of a material with multifractal microstructure generally depends
on the length scale L [3]. Dimensional analysis implies the following general functional
relation:

p= 0¥ (55,58) = po¥(e, ), (2)

where ¥ is a dimensionless function of its dimensionless arguments A, = & /L and A; =
Ly /L; & is the correlation length of multifractal (micro)structure. It is well known that
within the bounded interval

Ly € L < & (3)

the mass density of multifractal structure p(L) obeys a power law behavior [3]. According
to inequality (3) the second argument of the dimensionless function ¥()\., A;) is small
(Af < 1); so that at the asymptotic self-similar state we can apply to the function ¥ a
scaling (incomplete self-similarity) representation [16]

P = pp)‘f‘_a ’d"()‘c)a a=d- dFa (4)

where dp is the fractal (metric, box-counting) dimension of the multifractal and ¢ is a
dimensionaless function of A.. Notice that p possess scaling behavior (4) in the initial state
of the multifractal structure as well as after any deformation of this structure, but & and
dyr, generally speaking, may be different before and after the deformation.

However, according to the first law of reversible deformations, only the characteristic
length Lr changes after elastic (reversible) deformation of elastically isotropic multifractal,
so that £ must be constant. Furthermore, elastic deformations are homeomorphic by
definition and thus do not change the metric dimension dy of the deformed multifractal,
so that the scaling exponent « is also constant.

By this means, the mass density of elastic multifractal structure after its reversible
(homeomorphic) deformation caused by different external forces F} and F; is equal to
p(F1) = poAn¥(Ac) and p(Fy) = poApi(Ac), respectively. Hence the ratio p(Fy)/p(F2) is
not dependent on neither the variable length scale L nor the correlation length & and
scales as

p(F1) (/\n ) - (Lﬂ)_“ -
—_ — —_ i = A 3 Q= d TR d y 5
P(FQ) )\I"Z LFQ T=const . g ( )

i.e. the relation governing the change in the mass density p of elastically deformed mul-
tifractals is similar to the relation that governs the change in the mass density because
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of the geometric change in the dimensionalities of (multi)fractal structure® (within the
interval (3)!).

It immediately follows form Eq. (5) that under uniaxial tension (compression) the
change in the dimensionality of multifractal structure in the direction of external force
F., which is A; = L;/l., is accompanied by the change in the lateral dimensionalities of
deformed multifractal structure in orthogonal directions of the surrounding d-space with
Ai = L;/l;, where i = 1,2,...,d — 1. The lateral deformations A; are related to Az = Ar as

Ai=AL= A0 = AR, i=2,3,...,d, (6)

where vp is the transverse deformation exponent.*
Substituting (6) into Eq. (5) we obtain a =1 — (d — 1)vF, so that

InA;  dr
InAp  d-1

= ], (7)

Therefore, if the first postulate (law) is valid, the transverse deformation exponent vp of
an elastically isotropic multifractal is defined uniquely by its metric dimension.’

The data of Table I demonstrate that the results of calculations by the analytical
formula (7) agree well with results of computer simulations of the elastic properties of two-
dimensional percolation networks near a percolation threshold (see also the Appendix), as
well as with the experimental data for aerogel SiO; (which were obtained in the studies of
the longitudinal and transverse elastic waves propagation), rubber, and a strongly twisted
nondeformable polymer filaments.

At the same time, it must be emphasized that Egs. (5) and (7) are not valid for materials
obeying conventional Poisson’s effect, or, what is equivalent, the generalized Hooke's law.
For such materials the correlation length &. is equal to the sample size in the direction of
applied external force, i.e., & = L,; so that £, and

/\cl écl
,\ = — = — 8
. ’\c2 Ecz ( )

must change after deformation. At the same time, for an elastic continuum Ay = 0 and
Ar = 1, while for a regular elastic lattice Af = a/ag (a and ag are the interatomic distances
before and after elastic deformation, respectively) and Ap = Ac. Hence, for materials
obeying Poisson’s effect our first postulate is not valid.

3 Notice that formerly this fact was postulated as the second law (see, for example reviews |5, 6]).
In fact, as is shown above, Eq. (5) is a direct consequence of the first law and of the homeomorphism
of reversible deformations.

4 Notice that the exponent of lateral deformations vp = —In A, /Af is equal to the Poisson’s
ratio v = —y/|A22 — 1|/|A1; — 1| only in the limit of infinitely small strains e, = \/|r\? -1 <« 1.

5 At first glance, it is surprising that lateral deformations are independent of the detailed ge-
ometry of deformed multifractal. Notice, however, that similar situations (power law distributions
of stresses and strains with exponents which are a function only of Poisson’s ratio) are common
within singular problems in the classical theory of the elastic continuum obeying the intermediate
asymptotic behavior (see, for example [17,18]).
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TABLE 1. Comparison of Poisson’s ratio v, calculated using analytical relationship (7), with the
computed values, based on two-dimensional elastic random networks, and with experimental data
for aerogel SiO,, strongly twisted nondeformable polymer filament, and rubber.

Two-dimensional random network
of size L x L near the percolation

Strongly twisted

Properties shrsakistd Aerogel SiO nondeformable Rubber
(¢ — correlation length) e
L/¢c — L/§c — 0
. Bonds,
Elastlcn).' of determining
Connectedness of network is elasticity of Fractal cluster Monomer Polymer network

random network

determined by

twork
dangling bonds e g

multiduplicated

Dimension of

dp, measured by
small-angle

Fractal peodenic L Dimension of red S Dimension of
dimension of i —— ’ bonds, scattering and self-avoiding dp = 3.00 + 0.04
elastic backbone * dF - = 114002 9%F =dm, S random walk: [25, 26)
min — o i e P
dp [29] dri, = 3/4 [29] adsorption [31]: da—n = 2 [29]
23101

vr, Eq. (7) 0.1+0.01 -1/3 0.15 + 0.05 0 0.50 + 0.02
Poisson’s ratio
(results of
numerical 0.08 + 0.04 —0.33 £ 0.01 0.12 £ 0.08 0 0.50 £ 0.01
simulation and [28] [28] [30) [27) [22)
experimental
data)

Furthermore, the metric dimension of an elastic continuum as well as a regular elastic
lattice (dp = d, for all ¢), which can be considered as a limiting cases for multifractal
structures, is equal to the topological dimension of structure dr; so that

d, 0,
dF:{d—l az{l

Now, it is easy to understand that in the case of an euclidean elastic structure obeying
generalized Hooke’s law the dimensionless function ¥p(Ac) = ¥(Ac1)/¥(Ae2) scales (in the

limit of infinitely small strains!) as
B (Lxm))“’ _
N LI(FZ)

where 3 = 1 — (dr — 1)v. The relation for the conventional Poisson’s effect ¢;; = veyy
(see footnote 4) may be derived by substitution of Eqs. (10) and (6) with dt = d in the
general relation (4).

Therefore, in the general case of an elastic multifractal structure, the lateral deforma-
tions of which are governed by the combination of lateral deformations of the multifractal
nature with those associated with the conventional Poisson’s effect, the scaling relation (5)

dr =d

iy = g~ )

(10)
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can be generalized into

p(F2)
It should be emphasized, that relation (11) is valid only in the limit of infinitesimally small
strains ;; = 4/|A? — 1] < 1!
Now, if a multifractal structure possesses Poisson’s effect with Ac = Ap, the transverse
deformation exponent is equal to

p(Fl) _ /\;(d_dl’))\(cd?_l)u_l‘ (11)

d— dp
d-1"

VF =V — (12)
This relation governs the lateral deformation of the multifractal as well as the Poisson’s
nature.

Below we will consider only the elastic multifractals’ reversible behavior, which is gov-
erned by the two laws postulated above. The lateral deformations of such a structure have
a pure metric origin (Ac = 1)® and are governed by the metric dimension of the structure
(see Eq. (7)).

Looking back at the two proposed laws of reversible deformations for multifractal struc-
tures, we see that we need to know the changes in the entropy and internal energy as func-
tions of deformations before the closed system of constitutive equations can be obtained.

Using the definitions of the information and correlation dimensions and their scaling
properties [1,2] with relations (1), (5) valid, it is easy to show that the changes in the
thermodynamic entropy AS();) and in the internal energy U();) during the reversible
deformation of an elastic multifractal in d-dimensional space can be represented in the
form [9]

d
TAS = -C; (Z X d) , (13)

g=1
and
AU = -C1(A\p¢ -1), ac=d-dc, (14)

respectively. Here C} and C; are constants (notice that parameters C} and Cy can also be
determined for any detailed model of the structure [19]).

Substituting (13) and (14) into (1), and using relations (5)-(7) we can derive the rela-
tionships between external force F; and relative deformations A; of multifractal structure.
For example, in the case of uniaxial deformation (tension or compression) we obtain

C

F = Cz{dl)\fl_l —di[dp — (d — 1)]/\1—(['[@/((1_1)—1]_1 Cy

(d - dc))\‘f‘dc‘l}. (15)

8 It is pertinent to note that in the case Ac = Ap and v = 1/(d—1) Eqgs. (11), (12) are equivalent
to Egs. (5), (7), so that all results considered below are also valid in this more general case.
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According to the obvious condition F(\; = 1) =0, it follows from Eq. (15) that

Ci_, d—de
G d—dg

< dp, (16)

so that”
Fi = Codr{ M7 = [dp - (d - DATA DI g geagieth )

Thus behavior patterns of elastic multifractals (for which two laws postulated above are
valid!) are completely determined by the metric, information, and correlation dimensions.
Moreover, it is easy to see that in the limit of infinitely small strains, Egs. (17) and (7)
can be generalized by using Eqs. (11) and (12).
In the case of monofractal structure all generalized dimensions are equal to the metric
(fractal) dimension, i.e., d; = dr = di = dc [1], and Eq. (16) results in the equality

Ci
& = (18)

So that, Eq. (15) may be rewritten in the form
Fi=C{MF! — [dp - (d- DTFHT - (d - dF)A;*—l}. (19)

The stress oy; is related to the force Fj(A;) by obvious equation 013 = FIA}_"’, which
by using Eqs. (7), (19) may be written in the form

E 144u, —1-2p2 ]
= ———|(A F-1)—-2 A F_1), 20
o11 1+6VF+4V%~ [ 1 ) vr( 1 ) ( )

where E = (9011/0211)r is the Young modulus.

It is easy to see that, within the limit of infinitesimally small strains, |e11] = 4/ A2 - 1| <
1, Eq. (20) leads to its classic counterpart for elastic continuum. Thus, for monofractal
structure we have C; = 2(1 + vy)Cy = (1 + 6vp + 4v2)E. Similarly, we can derive the
relations 0;;(Ax) for n-axial deformation of an elastically isotropic monofractal in the d
space. The pure shear is essentially a biaxial loading under the stresses o1} and 092 such
that there is no change in length along second direction, i.e., Ay = 1 (see Ref. [20]).

The relationships between the elastic moduli, i.e., Young’s modulus E, shear modulus
G, and balk modulus B, and Lamé coefficients A, iz of elastically isotropic (mono!)fractal,

7 In Refs. [5,6] we have conjectured that for an elastic multifractal dy(d — dg) = dc(d — dc).
This conjecture was made in the spirit of the Dirac’s manifest that “a physical law must possess
mathematical beauty”. However, there is no experimental evidence in support of this conjecture.
In this sense the Egs. (16) and (17) are more correct than the related equations in Refs. 5,6].
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which are derived by analogy to the derivation of the corresponding relationships in clas-
sical theory of elastic continuum [20], are the following:
Ed-1) E

2
= —_— B = — . 21

e d(d - dp)’

Notice that these relations differ from those which were conjectured for elastic fractals by
Bergman and Kantor [21]. On the other hand, substituting Eq. (7) in the Egs. (21) we
obtain expressions that for d = 2 and d = 3 are identical to those for two- and three-
dimensional elastically isotropic continuum!

Classical formulas for rubber-like elasticity [22]

=
3
may be derived within a framework of Eqs. (17) and (5)-(7) for multifractals obeying

F=Z(A=-272), A= =A"%(p = const), (22)

dp,=d=3, and dj=2.

Notice that the condition dj = 2 is associated with the Gaussian statistics [7,23], which
is used in the classical models of rubber-like elasticity [22], while the equality dp = d = 3
is the condition of incompressibility (see Eq. (5)), which is also assumed in the classical
theory [22].

In fact, however, calculations based on Eq. (22), with the value of E adjusted by fit-
ting, are in reasonable agreement with the experiments only in the range of relatively
small strains (A; < 1.2) [22]. Traditionally, the refinement of the relation (22) is made by
phenomenological modifications of the entropic theory, or by using empirical models for
the elastic potential [22,24]. At the same time, elastomers are known to have fractal or
multifractal microstructure (3, 25, 26]. Therefore, it is natural to describe rubber elasticity
of polymers by using the results of the concept of multifractal elasticity discussed above.

Generally the generalized dimensions of polymer networks swelled in a good solvent
are within the range 2 < dy < 3 [3,25,26]. Assuming in the first approximation that
dp = d; = dc and substituting Eq. (7) into Eq. (19), we obtain the relationship between
the nominal stress F} and the strain factor A; in the case of uniaxial tension (compression)
of an elastomer in the following form:

E

Al=——
1+ 6vp + 402

{)\%*’2”‘7 3 QUFAl—l—zVF(l'H/F) ] QVF),\;WF}, (23)

which was first derived in our work [7] by other means.® Notice, that behavior (23) differs
from (22) even in the limit of incompressibly deformed material, when Eq. (23) reduces
to the formula

E .
By = (A = A7), (24)

® We emphasize that Eq. (23) is a limiting case of the general equation (19) which gives a richer
set of various behavior patterns.
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obeying the experimentally established asymptotic (see Ref. [22])
Fi ox /\%, when A > 1.

It was shown in Refs. [5-11] that the calculations based on Eq. (23) agree well with
experimental data for rubbers without any adjustment of parameters (except E) right up
to Al =T,

The nonlinear stress-elongation asymptotic for superelastic networks [27],

o11 X )\}/3’ (25)

is a special case of constitutive equations (17) and (7), which is valid for multifractal
structures possessing

for example dp = 2, d = 3, dy = 4/3.
The basic relation of spring-like elasticity [22]

F=EM\-1) (27)

may be also derived from (17) and (5)-(7) in the case of multifractal structures for which
dp=udy = 2 {d=3).

Furthermore, the pscudo-elastic, super-elastic, and rubber-like behavior of alloys with
thermoelastic martensitic transformation [3] can be also evaluated within a framework of
the multifractal theory of elasticity.’

Hence the proper regard for the real morphology allows an adequate description for
the behavior of a reversible deformed material with fractal or multifractal microstructure.
Considered examples revealed that two laws of reversible deformations of multifractal
structure, which are postulated in present work, are valid at least for some classes of
materials with (multi)fractal (micro)structure.

We hope this work will stimulate experimental research along this line. We expect that
these investigations will support our concept of multifractal elasticity. If so, experimental
data on elastic behavior can be used to estimate the metric, information, and correlation
dimensions of the (multi)fractal microstructure.
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352 ALEXANDER S. BALANKIN

APPENDIX

The percolating network is a fundamental model for describing geometrical features of
random systems [2,29]. There are two main kinds of percolating networks: “site” and
“bond”. To create a site-percolating network, each intersection (site) of an initially pre-
pared d-dimensional lattice is occupied at random with probability p. Sites are connected
if they are adjacent along a principal direction. In a bond-percolation network, all sites
are initially occupied and bonds are occupied randomly with probability p. At a critical
(different) concentration p = pc (pc also depends on the dimension and symmetry of
original lattice), both site and bond percolation exhibit a single, infinite cluster spanning
all space.

When the occupation probability p is less than pc, there are only finite clusters, whereas
if p > pc an infinite cluster is present as well as finite clusters. The cluster both at pc
and away from pc are characterized by the number of sites, s, in the cluster and by the
radius of gyration, Ry(s), of the cluster. Over what distances are occupied sites connected?
The connectedness length {c is defined as the average root mean square distance between
occupied sites that belong to the same and finite cluster. This connectedness length is also
called the correlation length. The lower cutoff scale characterizing the percolation cluster
is the length a that forms the lattice spacing of the original lattice.

For the problem of the electrical conductivity of a random resistor network and transport
dynamic properties, another object is relevant: the “backbone” of an infinite percolation
cluster [29]. The backbone is defined as the network of unblocked connected bonds, through
which one can go to infinity by at least two nonintersecting paths. In other worlds, the
backbone is a set of bonds, through which electric current would flow were a voltage
applied to the cluster at infinitely remote electrodes. The rest of the cluster is referred to
as a collection of “dead” or “dangling ends”. A dangling end can be disconnected from the
cluster by cutting a single bond. In random resistor network near the percolation threshold,
some bonds carry the highest current. These bonds form the set of single connected bonds
of the backbone. This set of bonds were called “red bonds” (when one red bond is cut,
the current flow stops). The rest of bonds of the backbone is the “blue bonds” (blue
bonds carry current, but when a blue bond is cut, the resistance of the system only slowly
increases). Another important concept is the minimal or “chemical” path between two
points of a backbone, which is the shortest path between the two points. The shortest
path between the sites ¢ and j realizes along the “geodesic line” and can be defined as
the minimal number of steps by which we can reach j from i, with restriction to existing
paths between connected sites. This is termed the chemical distance Loyem (notice that it
is not the same as the lincar length measured between the two points and referred to as
the “Euclidean distance™).

For any length scale L > £c, a percolating system is macroscopically homogeneous.
But for a < L < ¢, the system possesses statistical scale invariance and may be referred
to as a fractal or multifractal object, all properties of which obey a power law dependence
on its characteristic linear size L [29]. For example, the total number of bonds (or sites)
of the cluster scales as Ny ~ L%, where d is the fractal dimension of the cluster; the
total number of backbone bonds scales as Ny, ~ L%b: the number of red bonds Nied
scales with L as N,.q ~ LP®. The chemical dimension dehem 18 defined from the relation
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Nchem ~ Lgf]‘;;;‘. The chemical length scales with L as Lpem ~ L%min, where the fractal

dimension of geodesic line dp, is equal to the ratio dg/dchem.

Recently, there has been a considerable interest in the elastic properties of percolat-
ing random networks [21, 28]. It was found that for elastic problem the critical value of
occupation probability pce differs from pe [32]. For example, for percolation on the two-
dimensional triangular lattice pc = 0.3473, whereas pce = 0.58 [32]. Hence the elastic
backbone which governs elastic behavior of percolating network also differs from back-
bone governed electrical resistance. Among the surprises that were uncovered was the
phenomenon of a negative Poisson’s ratio v of percolation network of size L < &c near
the percolation threshold (L > a) [28]. It was also found that the Poisson’s ratio is sen-
sitive to the precise value of L/{c, changing from —0.33 when L/éc — 0 to about +0.08
when L/§c — oo (a zero Poisson’s ratio was found for L/éc ~ 0.2) [28] The most im-
portant result of the refered works is that the limiting values of v (namely v(0) = —0.33
and v(oco) = 0.08) are independent of the elementary (microscopic) force constants of
the bonds. This give the rise to describe the elastic behavior of such networks within a
framework of the theory of multifractal elasticity (see Table I).
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