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ABSTRACT. Numcrical ('stimatcs for the nUlllbcr oC local optima oC p---spin Hamiltonians with
p = 3,4,5 and 6 are reported. The data can be explained by means of a simple estimate in terms
oC the "correlation length" of the Hamiltoniall.

RESUMEN. Se reportan estimaciones numéricas para el Il\ímero de estados mctacstables para los
lIamiltonianos de p espines con p = 3,4,5 Y G. Los datos pueden ser explicados usando una
aproximación simple en términos de lila longitud de correlación" del Hamiltoniano.

PAes: 7S.IO.Nr

1. I:-:TROOUCTION

A (combinatory) lautlscape [11 is a real valued f"uction defined on the vertex set V of
a finite, but usually huge graph r. The Hallliltonian of a spin glass can be viewed as
a landscape, provided a neighborhood relation is introduced on the set of all possible
spin configurations. In this contribution we shall be con cerned exclusively with Ising spins
a; = :!:1. Let n denote the number of spins. The configuration space V therefore consists of
the set of the 2" spin vectors a = (al"", a,,). Defining neighborhood by single spin f1ips
arranges V as the vertices of the hypercube graph Qz. A local minimulll of a landscape
f: V -> III is defined as a configuration x E V such that f(x) ~ f(y) for all y that are
neighbors of x in the graph r. The use of ~ instcad of < is conventional [2) and wil! not
affect our conclusions. A locallllinimum is hence a spin configuration that is stable against
single spin f1ips.
The nUlllber of local optillla is a Illost important characteristic of a landscape because it

can be uscd to me¿umrc its 7'1lfJgedness [3), which is, for instancc, of cfucial importance for
the performance of optilllization heuristics [4). In this contribution We report the results of
a numerical survey of the local minima of long-range p-spin models [51 which are defined
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by the Hamiltonian

(1)

where the coupling constants Ji!i, ...ip are i.i.d. random variables with Gaussian distribu-
tion. The normalization constant is chosen such that the variance of the energy is unity.
This normalization is irrelevant for ollr purposes.

2. SOME EXACT RESULTS

\Ve are interested in the probability P( n; Ji) that a givell cOllfigllration a is a localminimum
of the p-spin Hamiltonian defined in Ec¡. (1). This <¡Ilantity is easily evalllated in some
extreme cases.

p = 1. In this case the Hamiltonian

••
'H1(a) = 'L.J¡(Ji

i=l

(2)

describes a paramagnet. The only local Illinimum is the configuration at which J¡(Ji < O
for aH i, since the energy of aH other configurations can obviously be decreased by flipping
a spin ai for ••••.hich Jiai > O. Since the degenerate cases Ji = O occur with probability O,
••••.e have P(n; 1) = 2-".

Ji = n. In this case the Hamiltonian reduces to the siugle term

(3)

Flipping a single spin, a ~ a', implies 'H••(a') = -'H ••(a), aud thus each configuration is
either a local minimum or a local maximllm. Therefore P( n; n) = 1/2.

n = 3. \Ve already kno ••••.P(3; 1) = 1/8 and P(3; 3) = 1/2. The remaining proba-
bility P(3; 2) can be obtained by a combinatorial argument. \Ve observe the symmetry
'H2(a) = 'H2(-a) and consider the ground state configuration ir. It is a localminimum by
definition, and in the absenee of degeneracies its three neighbors cannot be local minima.
The symmetry of the Hamiltonian illll'lics that -ir is also an isolated local minimum with
probability 1. The sets of neighbors of ir and -ir, resl'ective1y, are disjoint and eontain
three configurations each. Hence we know that for any generic choice of the coul'ling
constants 2 out of the l'0ssible 8 configurations are Illinillla, while the remaining G config-
urations are noto Therefore P(3; 2) = 1/4. Unfortunately, combinatorial arguments of this
type seem to fail for larger n.

Ji = 2 corresponds to the Sherrington-Kirkpatrick model [G]. It received considerable
attention around 1!J80; at least three groul's have eom]lIlted the uumber of local minima
of the SI' modcl by means of what are no\V considel'l'd standard methods in Statistical
Mechanics. Tanaka and Edwards 171 coml'uted the expect('d number of local optima (!Jo),
while ¡hay and t\loore [8] amI De Dominicis el al. [!J] Ilsed a replica approach lO evaluate
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(In !ID). These papers provide also a detailed analysis of the distribntion of local minima
as a fnnetion of their energies. The eommon result of the three groups is

Iim .!:.In(!lo} = lim .!:.(In!lo} = 0(2} '" 0.19a23
n-oc n n-oo n (4)

The numerieal value is obtained as the solution of a set of eoupled algebraie equations. For
the case of sbort range spin glasses, in whieh only a small number Z of eoupling constants
Jij are non-zero for any given spin i, a slightly larger nllmber of local optima has been
found

. I . I} o' -2}hm -ln(!lo} = hm -(In!lo = 0(2) + - + 0(:
n-oo n n-oo 11 Z

(5)

where n' '" 0.OG5G[7,101. The only kno\Vn case in \Vhich the logarithmic average deviatcs
from the direet average is the linear spin chain. Derrida aJl(1Gardner 1III found ln(!lo}/n ~
ln(4/7f} '" 0.241G and (In !lo}/n ~ (ln2}/3 '" 0.2310 for this example.

3. NUMEltlCAL SI~IULATIONS

In this eontribution \Veare interested exclusivcly in the long range case, for \Vhieh \Veexpeet
no differenee bet\Veen the direet and the logarithmie average. Numerieal simulations for
small n in faet do not show a differenee. Since the e!ireet average can be estimated from
mueh smaller samples it has be('n used to g('nerale the data reported in this section.

\Ve have used t\Vo moe!cls fOl'Ihe coupling constants. Follo\Ving the original e!efinition of
the l'-spinmodels [5) we chose lhe coupling constants Ji,i, ...i, to be i.Le!. Gaussian random
variables with lllran O and variallcc 1. As an altcrnativc 1l10dcl we llsed i.i.d. random
variables distrilllll,'e!uniformly betw('en -1 ane! 1. \Ve find that the nnmber of loealminima
is the same for both e!istributions. Ther(' are no trends in the data lhat \Vould suggest
that the number of local minima e!epends on the the choice of the distribution funetion.

Numerieal estimates have been obtain('d by testing a moe!erate number (lIsually IODO)
of configurations for being local optima of lhe lIamiltonian with a given (rane!om) choice
of the cOllpling constants. The result \Vas then averagee! over 103 to 105 e!ifferent sets of
eOllpling constants. The re;L,on for te,ting about 1000 fOnfigurations on the same land-
scapc is that tlle a!"signmellt of lite roupliug (,ollstants re<¡uircs suustautial COlllputational
rcsources for large }J. Duc lo tll(' 1llC'lllOr)' rl'C{uirCIIlC'llts rol' st.orillg t.}¡c roupling const.allts
we liad to H'st.rict oursf'lvl's f.o ]J :S G.

\Ve use the follo\Ving nolation for the constants governing the exponential scaling of the
nllmber of local minima

( ) ,I<.r (!ID) n V'"Pn;Ji =--~I' =2 =exp(on}/N
N (G)

wherc f\r is the total 111111lhrr of (,ollfigtlratiollS, in 01lr case iV = 211
• Thcrcforc \\.e have t/J =

o/ hl 2 - 1 = Inll / In 2. Thl' ra\V <la1a are coliPcl e<l in Fig. 1. P( /1; Ji) sho,,"s an ('xponential
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FIGUHE l. Logarithm (of base 2) of the frequencies of local minima in ¡>-spiu llamillonians versus
the number n of spins. The symbol x refers lo lhe d"ssiea! ¡r-spin models \Vilh Gaussian coupling
constants, while + denotes a variant with ullifofmly distributed coupling cOllstants. The cOllpling
arder p ¡ncrcases from bottom lo topo

TAIlLE I. I3est fits for the p"ramelers lj;(p) from the data in Fig. 1.
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2

'2
'The data suggest lhat 1/>(G) is slightly (about a standard devialion) undereslimated. Unfortu-
nately, the memary required for storing lile couplillg constants uoes not aIlow for the investigation
oC largcr systcms.

deeay \Vith n for eonstant vaIues of the parameter p. There are minar deviations from
aH cxpollcntial fUIlction £01'small n, rOllghly n :s; ]J + 3. In arder lo millimizc the impact
of these finile size effeets \Ve used the fol1o\Ving proeedure. Omitting the tirst k entries
from the data set \Ve aeeept the estimate of the linear regression analysis for 1/;(1') that
maximizes the eorrelation eoelfieieut \Vhen k is varied. \Ve have perfarmed the analysis
separately for the data \Vith the unifut"ln aud the Gaussian distribution of the eoupling
eonstants, respeetively. Sinee the t\Vo data seIs are eonsistcnt \Vith the hypothesis that
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FIGURE2. Dependence oClhe exponent 1/J, Eq. (6), on the conpling order p. Numerical simnlations
are indicated by ., tite estimat.cs outaillcd by asslIJIliug one local optimum in a ball with radills
R are shown as O. The full triangles are obtaincd by assumillg Que local optimum in a ball with
radius R.

1'( n; p) is independent of which of the two prooaoility distriblltions is chosen, we have
combined them for prod IIcing our best estimates, which are displayed iu Table 1.

Our numerical value for the SI{ model, 1¡'J(2) = -0.714:!: 1 is consistent with the analyt-
ical value 1¡'J(2) "" -0.7126 given in Refs. [7-91. As expected, the numoer of local minima
iucreases with the order ]' of Ihe coupling.

4. LOCAL OPTIMA AND COIlIlELATION LENGTII

Weinberger [12] suggesteu lo characterize the ruggeduess of (lituess) laudscapes oy means
of cOITelatiou functious. lIe proposed to sample euergy values along a simple unbiased
random walk and to use t.he Hntocorre1atioll fUllctioll of this "time-series" 1

00

or rather the correspoudiug cOITelatiou leugth, R =¿,.(s), as a measure of rllggeuuess.
,,=0

Thc fUBction res) can 1)(' n'adily com}>lltcd £01' lile ]J-Spill Illodels [13). Thc sallle rcsult
cau oe ootaiued more easily hy means of a geu,'ral algehraic approach [14-17) which is
hased ou the ohservatiou that lhe p-spiu I1amiltouian, Eq. (1), is au eig,'ufuuctiou of the
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graph Laplaeian -~ [17] assoeiated with the hypereuhe Q2. For a regular graph r the
Laplaeian is defined as

-~=A-DI (7)

where 1 is the identity matrix, D is the eommon number of neighbors of eaeh eonfign-
ration and A is the adjaeency ma/,ú of the eonfigurat ion spaee with entries Axy = I if
eonfigurations x and y are neighbors and O otherwise. One finds explicitly

for I $ p $ " whieh implies

( 2)1) 8
r(8)= I-~

(8)

(9)

and a eorrelation length e = ,,/2)1. The specíal prop,'rties of eigenfunetions of graph
Laplaeians are diseussed in [15].

Sinee both the number of local optima and the rorrl'1ation length have been used to
C}llantify "ruggcdncss" it SCClI1S natural lo look for a COlllH'etioll bct\\"CCll t}¡esc q\lalltities.
Sinee e does not depend on the distrihution of ti", .Ji} while o depends on the nUlnber
z oC nOI1-z('[O cntrics [or a given spiu i, tlH'n' CHUIlot he a simple fUI1ctional rclatiollship.
Nevertbeless one can look for sueh a ronneetion at least in the long range case, whieh
corrcspollds to a "maximuIn entro}>,Y" a.,;slllnpt ion given the corrc1ation length.

Stadler and Sehnabl 1181 eonjeetured that there is on the order of one local minimum
within a hall in the eonfiguration spaee graph r, the radius R of whieh is given hy the
eorrelation length f of the landseape. This fOnjerture was tested for traveling salesman
problems, amI was found to be remarkahly areurate. lt seems more natural to re<¡uire
that the radius R is not f hut the average distanee traveled in e steps along the simple
random walk that is used to define the autororrelation funetion r(8). In the TSP example
considcrcd in {lS] tlle diffcrcncc betwcl'll ~ and n is ver)' small, ano hcnce this distinctioll
was not diseussed there.

For a 1300lean bypereube it is not hanl to explieitly compute

.1,.[ '" 1R = L "'Id' ,
d

(la)

wherc 9(11 is t11c probability that tile raudolll walk is al distanc(' el from its initial poil1t

after f steps. Along the Iines of [19] one finds

11 [ ( 2) 1]R=-;¡ 1- 1-;; (11 )
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TADLE JI. Comparisoll betwl'ell the Illllllerical data for l' = 2~ and the estimates based on the
correlatioll lellgth l = 1l/(2p) of the ralldolll walk autocorre1atioll functiolls.

P Jlnulll II(Ü /1(0
2 0.6095 0.6091 0.5699
3 0.6708 0.6649 0.6372
4 0.7102 0.7062 0.6861
5 0.7391 0.7379 0.7222
6 0.7546 0.7628 0.7506

Since in our case the correlation length C is proportional to n, it will be convenient to use
the scaled variables ~ = e/n and i, = R/n, respectively. For the l'-spin models we have
~= 1/(2]1). The relation between R and e hecomes

(12)

in the limit n ~ oo.
The number of configurations inside a hall of radius ,. = xn, O < x < 1/2, is also easily

evaluated for the 1J0olean hyperenbe graph QY,

D(,.) =t (;,)'"(~).
q=O ¡

(13)

The error introduced by approximating the sum by its largest term is a factor of order at
most O(n) which does not a!fect the exponential growth of D(,.). As long as x is bounded
away from O we can replace the three Gamma [unctions in the binomial cocfficient by
Stirling's formula, yielding

D (,.) '" ( n ) '" [(.!....=..:::) x _1 ] n
n~' :r 1 - x

1

J27rx( 1 - :e)n
(14)

Neglecting all non-exponential tenns we have D(nx) ~ I'(X)-n, where

d,r ( x )xI/(:r) = (1 - :r) --
1 -:e (15)

\\re (,Ollj<,ctllre ther('fon~ tlJat P(1I,1J)""" II(()". A ('omparisoll with tIle 11l1l1lcrical silllulatioll

shows an excellent agn'ement, while nsing ~ instcad of i, consistently underestimates the
mllllber of local optima, see Table 11 and Fig. 2.
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5. DlSCUSSION

'Ve have presented numerical data showiug that the number of local minima of a p-spin
Hamiltonian increases exponentially with the number of spins. The fraction of configura-
tions that are local minima decreases exponentially as 2,,(p)n. The parameter t/J depends
strongly on the interaction arder p. As expected, the number of local optima increases with
p, consistent with the expectation that mare rugged landscapes have a larger number of
local minima.

The values of t/J(p) can be explained by assuming that there is about one locallllinimum
contained in a ball whose radius is determined by the correlation length e of the landscape.
\Ve have at present no explanation why this hypothesis yields such an excellent description
of the numerical data reported in this study as well as of the TSP data reported in [201. Its
applicability to a nUlllber of different landscapes suggests that it is more than a nUlllerical
coinciden ce.

A falllily of very rugged landscapes is obtained by choosing p = a( n) instead of a
constant. It has been shown recently that a random energy model [21,221 with a Gaussian
distribution of values can be represented [16] as a superposition of p-spin models in the
form

REM(a) = ~ T" (;:) 'Hp(a). (16)

The dominating terms ou this expansion are those with ]J '" n/2. Conse'luently, one might
expect that 'Hn/2 behaves roughly like the random energy mode!. In particular this would
imply P(n;n/2) ~ l/n. since P(REM(n)) = 1/(n + 1), see e.g. [231. The numerical
data reported in Fig. 1 are consistent with this assumption, although they are not very
accurate because we have data only up to n = 12. The "correlation length hypothesis"
leads to power laws for the Ilamiltonians 'Hy" with O < Y :o; 1/2: The correlation length is
e = 1/(2y) and hence

(17)

Again we arrive at the prediction P(n, n/2) ~ l/n. For y > 1 the autocorrclation function
r(s) has alternating signs and the definition of a correlat ion length beca mes ambiguous.
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