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ABSTRACT. Numerical estimates for the number of local optima of p-spin Hamiltonians with
p=3,4,5 and 6 are reported. The data can be explained by means of a simple estimate in terms
of the “correlation length” of the Hamiltonian.

RESUMEN. Se reportan estimaciones numeéricas para el nimero de estados metaestables para los
Hamiltonianos de p espines con p = 3,4,5 y 6. Los datos pueden ser explicados usando una
aproximacién simple en términos de “la longitud de correlacién” del Hamiltoniano.

PACS: 75.10.Nr

1. INTRODUCTION

A (combinatory) landscape [1] is a real valued function defined on the vertex set V of
a finite, but usually huge graph I'. The Hamiltonian of a spin glass can be viewed as
a landscape, provided a neighborhood relation is introduced on the set of all possible
spin configurations. In this contribution we shall be concerned exclusively with Ising spins
oi = £1. Let n denote the number of spins. The configuration space V therefore consists of
the set of the 2" spin vectors o = (o1,...,0,). Defining neighborhood by single spin flips
arranges V' as the vertices of the hypercube graph QF. A local minimum of a landscape
f:V — R is defined as a configuration & € V such that f(z) < f(y) for all y that are
neighbors of z in the graph T'. The use of < instead of < is conventional [2] and will not
affect our conclusions. A local minimum is hence a spin configuration that is stable against
single spin flips.

The number of local optima is a most important characteristic of a landscape because it
can be used to measure its ruggedness [3], which is, for instance, of crucial importance for
the performance of optimization heuristics [4]. In this contribution we report the results of
a numerical survey of the local minima of long-range p-spin models [5] which are defined
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by the Hamiltonian

o
1S

| =

HP(O') B Z J,jli2__,ip Oi1Oig + - Ty » (l)

1112...1p

where the coupling constants J,i,. i, are i.i.d. random variables with Gaussian distribu-
tion. The normalization constant is chosen such that the variance of the energy is unity.
This normalization is irrelevant for our purposes.

2. SOME EXACT RESULTS

We are interested in the probability P(n;p) that a given configuration o is a local minimum
of the p-spin Hamiltonian defined in Eq. (1). This quantity is easily evaluated in some
extreme cases.

p = 1. In this case the Hamiltonian

Hi(o) = ) Jioi (2)
=1

describes a paramagnet. The only local minimum is the configuration at which Jio; <0
for all i, since the energy of all other configurations can obviously be decreased by flipping
a spin g; for which Jio; > 0. Since the degenerate cases J; = 0 occur with probability 0,
we have P(n;1) =27".

p = n. In this case the Hamiltonian reduces to the single term

H?:-(U) = Ji123..n0102...0p. (3)

Flipping a single spin, ¢ — o, implies H,(0') = —Hqn(0), and thus each configuration is
either a local minimum or a local maximum. Therefore P(n;n) = 1/2.

n = 3. We already know P(3;1) = 1/8 and P(3;3) = 1/2. The remaining proba-
bility P(3;2) can be obtained by a combinatorial argument. We observe the symmetry
Hy(0) = Ha(—0) and consider the ground state configuration 4. It is a local minimum by
definition, and in the absence of degeneracies its three neighbors cannot be local minima.
The symmetry of the Hamiltonian implies that —& is also an isolated local minimum with
probability 1. The sets of neighbors of & and —é&, respectively, are disjoint and contain
three configurations each. Hence we know that for any generic choice of the coupling
constants 2 out of the possible 8 configurations are minima, while the remaining 6 config-
urations are not. Therefore P(3;2) = 1/4. Unfortunately, combinatorial arguments of this
type seem to fail for larger n.

p = 2 corresponds to the Sherrington-Kirkpatrick model [6]. It received considerable
attention around 1980; at least three groups have computed the number of local minima
of the SK model by means of what are now considered standard methods in Statistical
Mechanics. Tanaka and Edwards [7] computed the expected number of local optima (go),
while Bray and Moore (8] and De Dominicis et al. [9] used a replica approach to evaluate
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(Ingp). These papers provide also a detailed analysis of the distribution of local minima
as a function of their energies. The common result of the three groups is

1
lim 1 In{go) = lim —(Ingg) = a(2) = 0.19923 (4)
n—oo n n—oo n

The numerical value is obtained as the solution of a set of coupled algebraic equations. For
the case of short range spin glasses, in which only a small number z of coupling constants
J;; are non-zero for any given spin 4, a slightly larger number of local optima has been
found

o1 o1 B o 9
n]l_l']go e In(go) = nh_l}gc E(lngo) =a(2) + = =) (5)
where o’ & 0.0656 [7,10]. The only known case in which the logarithmic average deviates

from the direct average is the linear spin chain. Derrida and Gardner [11] found In{go}/n —
In(4/7) ~ 0.2416 and (Ingg)/n — (In2)/3 = 0.2310 for this example.

3. NUMERICAL SIMULATIONS

In this contribution we are interested exclusively in the long range case, for which we expect
no difference between the direct and the logarithmic average. Numerical simulations for
small n in fact do not show a difference. Since the direct average can be estimated from
much smaller samples it has been used to generate the data reported in this section.

We have used two models for the coupling constants. Following the original definition of
the p-spin models [5] we chose the coupling constants Jiyiy..i, to be ii.d. Gaussian random
variables with mean 0 and variance 1. As an alternative model we used i.i.d. random
variables distributed uniformly between —1 and 1. We find that the number of local minima
is the same for both distributions. There are no trends in the data that would suggest
that the number of local minima depends on the the choice of the distribution function.

Numerical estimates have been obtained by testing a moderate number (usually 1000)
of configurations for being local optima of the Hamiltonian with a given (random) choice
of the coupling constants. The result was then averaged over 103 to 105 different sets of
coupling constants. The reason for testing about 1000 configurations on the same land-
scape is that the assignment of the coupling constants requires substantial computational
resources for large p. Due to the memory requirements for storing the coupling constants
we had to restrict ourselves to p < 6.

We use the following notation for the constants governing the exponential scaling of the
number of local minima

P(n;p) wf (QWOZ ~ " = 2¥" = exp(an)/N (6)

where N is the total number of configurations, in our case N = 2. Therefore we have ¢ =
a/In2—1=Inpu/In2. The raw data are collected in Fig. 1. P(n;p) shows an exponential
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FiGURE 1. Logarithm (of base 2) of the frequencies of local minima in p-spin Hamiltonians versus

the number n of spins. The symbol x refers to the classical p-spin models with Gaussian coupling

constants, while + denotes a variant with uniformly distributed coupling constants. The coupling

order p increases from bottom to top.

TABLE 1. Best fits for the parameters (p) from the data in Fig. 1.

p Y % sdv CorT. k
2 —0.7144 £ 0.0011 —0.999945 1
3 —0.5761 £ 0.0011 —0.999914 2
4 —0.4937 £ 0.0028 —0.999261 1
5 —0.4363 £ 0.0021 —0.999631 2
6 —0.4061 £ 0.0036 —0.999521 *2

*The data suggest that v(6) is slightly (about a standard deviation) underestimated. Unfortu-
nately, the memory required for storing the coupling constants does not allow for the investigation
of larger systems.

decay with n for constant values of the parameter p. There are minor deviations from
an exponential function for small n, roughly n < p + 3. In order to minimize the impact
of these finite size effects we used the following procedure. Omitting the first k entries
from the data set we accept the estimate of the linear regression analysis for ¥(p) that
maximizes the correlation coefficient when k is varied. We have performed the analysis
separately for the data with the uniform and the Gaussian distribution of the coupling
constants, respectively. Since the two data sets are consistent with the hypothesis that
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FIGURE 2. Dependence of the exponent 1, Eq. (6), on the coupling order p. Numerical simulations
are indicated by e, the estimates obtained by assuming one local optimum in a ball with radius
R are shown as {. The full triangles are obtained by assuming one local optimum in a ball with
radius €.

P(n;p) is independent of which of the two probability distributions is chosen, we have
combined them for producing our best estimates, which are displayed in Table I.

Our numerical value for the SK model, ¥(2) = —0.714 + 1 is consistent with the analyt-
ical value 9(2) = —0.7126 given in Refs. [7-9]. As expected, the number of local minima
increases with the order p of the coupling.

4. LOCAL OPTIMA AND CORRELATION LENGTH
Weinberger [12] suggested to characterize the ruggedness of (fitness) landscapes by means

of correlation functions. He proposed to sample energy values along a simple unbiased
random walk and to use the autocorrelation function of this “time-series”,

r(s) 4 F@f () = ()

1L S8 <1
o0
or rather the corresponding correlation length, ¢ = Z r(s), as a measure of ruggedness.
s=0

The function 7(s) can be readily computed for the p-spin models [13]. The same result
can be obtained more easily by means of a general algebraic approach [14-17] which is
based on the observation that the p-spin Hamiltonian, Eq. (1), is an eigenfunction of the
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graph Laplacian —A [17] associated with the hypercube QF. For a regular graph I' the
Laplacian is defined as

~A=A-DI (7)

where I is the identity matrix, D is the common number of neighbors of each configu-
ration and A is the adjacency matriz of the configuration space with entries A, = 1 if
configurations = and y are neighbors and 0 otherwise. One finds explicitly

- AH, =2pH, (8)

for 1 < p < n which implies

r(s) = (1 - 2—”)3, (9)

n

and a correlation length ¢ = n/2p. The special properties of eigenfunctions of graph
Laplacians are discussed in [15].

Since both the number of local optima and the correlation length have been used to
quantify “ruggedness” it seems natural to look for a connection between these quantities.
Since ¢ does not depend on the distribution of the J;; while o depends on the number
2 of non-zero entries for a given spin 7, there cannot be a simple functional relationship.
Nevertheless one can look for such a connection at least in the long range case, which
corresponds to a “maximum entropy” assumption given the correlation length.

Stadler and Schnabl [18] conjectured that there is on the order of one local minimum
within a ball in the configuration space graph I, the radius R of which is given by the
correlation length ¢ of the landscape. This conjecture was tested for traveling salesman
problems, and was found to be remarkably accurate. It seems more natural to require
that the radius R is not £ but the average distance traveled in ¢ steps along the simple
random walk that is used to define the autocorrelation function r(s). In the TSP example
considered in [18] the difference between ¢ and R is very small, and hence this distinction
was not discussed there.

For a Boolean hypercube it is not hard to explicitly compute

REY pud, (10)
d

where @gq is the probability that the random walk is at distance d from its initial point
after £ steps. Along the lines of [19] one finds

v {4
R:?—??];l—(lnz—)]z
2 n

-~
-

[1 —(‘xp(~2(.’/ﬂ)]. (11)

|
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TABLE II. Comparison between the numerical data for 4 = 2¥ and the estimates based on the
correlation length ¢ = n/(2p) of the random walk autocorrelation functions.

Hnum F“(é) u(€)

0.6095 0.6091 0.5699
0.6708 0.6649 0.6372
0.7102 0.7062 0.6861
0.7391 0.7379 0.7222
0.7546 0.7628 0.7506

S U e W N

Since in our case the correlation length £ is proportional to n, it will be convenient to use
the scaled variables £ = £/n and £ = R/n, respectively. For the p-spin models we have
&€ = 1/(2p). The relation between R and ¢ becomes

Frach [l =), (12)

in the limit n — co.
The number of configurations inside a ball of radius » = 2n, 0 < z < 1/2, is also easily
evaluated for the Boolean hypercube graph Q7:

o= (1)~ (2).

9=0

The error introduced by approximating the sum by its largest term is a factor of order at
most O(n) which does not affect the exponential growth of B(r). As long as z is bounded
away from 0 we can replace the three Gamma functions in the binomial coefficient by
Stirling’s formula, yielding

B(T)%(’zt’")z{(l;m)xlixrm' (14)

Neglecting all non-exponential terms we have B(nz) ~ u(x)~™, where

) -2 ($22) (15)

1—=2

We conjecture therefore that P(n, p) ~ u(€)". A comparison with the numerical simulation

shows an excellent agreement, while using ¢ instead of & consistently underestimates the
number of local optima, see Table II and Fig. 2.
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5. DiscussioN

We have presented numerical data showing that the number of local minima of a p-spin
Hamiltonian increases exponentially with the number of spins. The fraction of configura-
tions that are local minima decreases exponentially as 2¥(P)®, The parameter 1 depends
strongly on the interaction order p. As expected, the number of local optima increases with
p, consistent with the expectation that more rugged landscapes have a larger number of
local minima.

The values of 1)(p) can be explained by assuming that there is about one local minimum
contained in a ball whose radius is determined by the correlation length £ of the landscape.
We have at present no explanation why this hypothesis yields such an excellent description
of the numerical data reported in this study as well as of the TSP data reported in [20]. Its
applicability to a number of different landscapes suggests that it is more than a numerical
coincidence.

A family of very rugged landscapes is obtained by choosing p = O(n) instead of a
constant. It has been shown recently that a random energy model [21,22] with a Gaussian
distribution of values can be represented [16] as a superposition of p-spin models in the

form
n

- e ()
REmua)_ggz (p)HAJ) (16)

The dominating terms on this expansion are those with p = n/2. Consequently, one might
expect that H,; behaves roughly like the random energy model. In particular this would
imply P(n;n/2) ~ 1/n, since P(REM(n)) = 1/(n + 1), see e.g. [23]. The numerical
data reported in Fig. 1 are consistent with this assumption, although they are not very
accurate because we have data only up to n = 12. The “correlation length hypothesis”
leads to power laws for the Hamiltonians H,, with 0 < y < 1/2: The correlation length is
¢ =1/(2y) and hence

mﬁzmm~( )Nwmu an

1/(2y)

Again we arrive at the prediction P(n,n/2) ~ 1/n. For y > 1 the autocorrelation function
7(s) has alternating signs and the definition of a correlation length becomes ambiguous.
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