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ABSTRACT. Electric and magnetic interactions are considered thronghont the formalism of gronp
theory. We claim here that a general theoretical prescription may be established for the exact
solution of N-level atoms. Howc\'cr the achievcmcnt of a geometricaJ representation is heveaIy
based 00 spin vector behavior oE eJectric dipolar intcractioll. As an example an explicit geometrical
rcpresentation roc 3 level atoms is prescntcd using this pscudospill vector analogy.

RESUMEN.Las interacciones eléctricas y magnéticas son consideradas a través del formalismo de
la teoría de grnpos. Afirmamos que se puede resolver exactamente el átomo de N niveles mediante
el uso de una prescripción teórica general de teoría de grnpos. Sin embargo, una representación
geométrica sólo puede lograrse a través del comportamiento espinorial de la interacción dieléctrica.
Como un ejemplo de aplicación del método, resolvemos el átomo de 3 niveles utilizando esta
analogía seudoespinorial.

PACS: 42.50; 32.80-t

1. INTRODUCTION

In this paper we discuss electric dipole illteractions (EDI) and magnetic dipole interactions
(MDI). At the classical level, the difference between EOI and MOl is based on the fact
that the electric dipole moment is a polar vector, whereas the magnetic dipole moment
is an axial \'ector. 11I the qllantum domaill, illstead, the difference between EOI and MOl
tends to disappear, and we can analO'se them ill equivalent forms.

'Ve know from elementarO' quantum mechanics that the theory of angular momentum
allows a geometrical representation; we also know that the theorO' of angular momentum is
fundamental in onr understallding of MOl and lIluItilevel sO'stems. The natural conclusion
is to look for a geometrical representation of !IIOI; in fact, the tirs attempt in this direction
was done, in a very extensive way, by R. Gillllore [1), upon consideration of symmetrized
state. This geollletric representation of lIJDI provided a Illethod lo penetrate arcas Iike
nuclear magnetic resonance and nuclear 'luadrupole resonallce (NQR). \Ve then inquire
wether a similar approach is possible for EOI; we thillk that a geollletrica! representation
of EDI could, in prillciplc, provide a Illl'thod to explore arcas like laser cooling of atoms,
both theoreticallO' and experilllelltallO' [2); in this specific area, for example, a geollletrical
represelltatiOIl of EOI would provide a lIH'thod lo obtain analylic, exact solutions.
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The idea of a geometric representation of EOI was first proposed by Feynman, Vernon
and Hellwarth [31 in 1957, for two-Ievel atoms; the extension to N-Ievel atoms was later
pursued by several authors, from different points of view [4-101. \Ve want to mention in
particular a paper by Cook and Shore [11J, in which the authors present a nice analogy
that leads them to the original geometrical representation of Ref. [31.

This paper is organized as follows: In Sect. 2 we discuss briefiy the comparison between
EOI and MOl, both classically and quantically. In Sect. 3 we describe the general formalism
for N-Ievel atoms using SU(N). In Sect. 4 we study in particular the well-known case of
3-level atoms. In Sect. 5 we present EOI in an explicit formo

2. COMPARISON BETWEEN EOI AND !\IDI

In classical mechanics the time evolution of angular momentum L is given by

dL
"'dt = Text,

where T is the torque exerted by external forces; now, if Tex' may be expressed by

7"ext = L x n,

(1)

(2)

means that L precesses with angular velocity o. Thus, in an external magnetic field H,
the magnetic dipole moment M precesses according to the equation

dM
- = 1\1 x (-yH),
dt

(3)

where M =,.H is an axial vector. It is not possible to have an equivalent equation for the
electric dipole moment p, although is known that in an external electric field the torque
experimented by the dipole is given by

Tex' = r x [p. VEI + p x E.

If the field is homogeneous, then VE = O and \Veobtain

Text = P x E. (4)

However, a direct relationship between p and L does not exist and therdore it is not
possible to have an equation like (3), we find, though, that (2) and (4) have a suggestive
similarity.
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2.1. Quantum similarities

The hamiltonian for a magnetic dipole moment M in a magnetic field JI is

Hm = -M. JI = ,hHj" (5)

where we have introduced the dimensionless angular momentum j, and assumed JI parallel
the z-axis; as consequence, eigenvalues of energy are integer multiples of ,hH, i.e.,

E = -m(¡Ttll), 11l = 1,1-1, ... ,-1; (6)

1 corresponds to eigenvalues of r
In order to study transitious among le\'els is usual to introduce [12) an oscillating pertur-

bative field perpendicular to the static magnetic field JI. The corresponding Hamiltonian
is then

(7)

Now, jx has matrix eIements of the form (m'IJxlm) with m' = m:l: 1. Thus the allowed
transitions through the coupling with Hx take place among adjacent levels (for a given L).
This is the quantum form to describe a vector operator associated to a classical motioo
equation giveo by (3). For eIectric interaction the Hamiltonian, in the case of two levels
may be written as [131

E and p have beeo expanded as

where a and al are projection operators, and

So that a are ladder operators amI transit ions among no adjal'ent leveIs are allowed.
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3. GENERAL FORMALISM FOIl N-LEVEL ATmlS USI:>G SU(N)

Let us consider an N-level atom. The state vector l,p) may be written

N
l,p) = L ail,pi),

i=l

(8)

where ai are probability amplitudes of occnpation of eigenstates l,pi).
We may consider coefficients ai as elements of a N -dimensional vector basis, that will

be assumed as that of definitorial representation of the special unitary gronp SU(N):

The number of generators Gi is N2 - 1 and, in the definitorial representation they cor-
respond to N x N matrices. t'\ow, let ns propose the basis associated to the regular
representation whose dill1ension is N2 - 1. Elell1ents Ci in this new representations are
calculated according to the rule

(9)

where i = l."" N2 - 1, and Gi are expressed in the definitorial representation. As an
example, in SU(2), Gi correspond to the Panli matrices (C7"C7y,C7,), and Ci are given by

(lO)

This case corresponds to two-Ievel atoms; a geoll1etrical representation was proposed in
1957 introducing (lO) as an ad-hoc definition. Thns

Cx = [ai ail [~ b] [~~]
(11)

Analogonsly, using

[
O -i]

U2 = i O'

we have

"( . ')cy = 1 (L¡U2 - a1lL2 •

e, = iud2 -1"212. (12)
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Then, the equation oC molion Cor e is

. 2e = --c x a = w x c,
ft

(13)

describing lhe precession oC e with Crequencyw. This geometrical representalion allows
to obtain the observables oC the syslem using the values oC e, and this simplifies the
calculations.
Now, is it possible to gel equalions like (13) Cor the atoms with higher number oC levels?

or does an N2
- 1 dimensional vector e associated to lhe regular representation oC SU(N)

show precession? \Ve may answer this question by deriving (9) with respect lo time:

Using Schriidinger equation

we have

irla = f¡a,

1 • t t.e = --;-[(Ha) Ga - a G(Ha)]
1ft

= -"!-[atf¡tGa - atG(lfa)]
1ft

1 t.
= -.,.-{a [H,C]a},

"1

(14)

(15)

(16)

where we have used lhe hermiticity oC H.
\Ve observe that Eq. (16) is valid in general Corm, as Cor any value oC N. According

Eq. (9) the number oC gcncrators G fixcs lhe dimension oC vcctor space.
lf G belongs to SU(N), e belong to RN'-I: thus according to group theory, Cor arbitrary

N, we may expand H as

Ii = a,C, + (JI. (17)

I is the identity, a, (J are cOlllplex conslants and we use the sum convention Cor repeated
index, with i,j, k, e, ... = 1, ... , N2 - 1. Each componenl el oC e may be written as

el = - i~3at[f¡,Ctla}

= -i~l{at[(akCk+(Jl),Ctla}.

Dy using thc COlllIlutation rule for gCllcrat.ors in SU(N),

(18)

(19)
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Eq. (19) takes the form

CI = - i~{at¡(ctkCk), Ctla}

= - i~{atak[Ck> Ceja}

= - i~{at(aki!klmCm)a},

where ¡klm are the structure constants of the group. Finally,

CI = - i~{ak i!klm(atCma)}

= - i~t{aki!kl"'cm}

= -k{ ak/klmC",} (20)

or
(21)

As the Levi-Civita symbol, the constants ¡klm are antisymmetrica1. Equation (21) is anal-
ogous form to the vector product of Cl ami c in R3 between Cl and c. Howevcr, our space
R has in general a higher dimcnsion. For 5U(3), thc vector c has 3 components and pro-
ccsses in ordinary space. Thus we may consider (21) as the form of a vector product in the
space of the regular representalion defined by (9). In fact, Elgllill [141 and latcr ¡¡ioe and
Eberly [151, have worked 3-lcvel atoms by considcring thc lime cvolution cc¡uation as a
rotation of c in an S-dimensional spacc. In this casc G in (17) corresponds lo S Gell-~Iann
matriccs.

Equation (21) will be usefnl if we may give it a geometrical rcprescntation in the 3-
dimensional ordinary space. In fact this is impossible for a vector with N2 -1 componcnts;
all we may state is that Eq. (21) has thc form of a vcctor product or (21) defines the vector
product among vectors in the rcgular rcprcscnIation, and describes preccssion of c in a
N2 - 1 dimcnsional spacc.

4. 3-LEVEL ATOMSAND 5U(3)

In this case vcctors c, are calclllatcd accor<ling Ec¡. (9):

el = !(alai + aia2) = D:n es = 4(alaj - aiu3) = Vy,
C2 = ~(a2al - ai(2) = UYl C6 = ~(a2aj + ai(3) = W Il

C3 = !(Iad2 -l(212) = U" C7 = ~(a2aj - a2"3) = Wy,

c. = !(a¡aj + a3ai) = V" Cs = ~(lalI2 + la212 - 21a312)

= ~Vz +~\Vz.

(22)
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Vectors CI, C2, C3, denominated as block D, are equivalent to those describing transitions
in two level atoms, i.e., correspond to componcnts eXl cy, ez, whcreas C4, e5, corrcspond
to vectors Cx> cy, of another block V, describing transitions between leveIs 1 and 3. Cj;,
C7, describe transitions between levels 2 and 3. Cs contains components Cz of the last two
blocks; in fact we may write

In order to separate these three blocks D, V, W, let us introduce 9 matrices instead ofthe
8 ones of Gell-Mann, the ninth being a lineal combination of the other eight matrices. In
practice this is equivalent to a change of represent ation, so that it is necessary to calculate
again the constants ff"", (see Appendix). Tlms , instead of the matrix

1 [1
Cs = J3 O? 3- O

we propose

O
1
O
~] ,
-2

C~=~[~ ~ ~]
2 O O -1

so that we obtain the new components

O
1
O

In this way we propose the blocks (or vectors)

Now we want to present a geometrical representation of Eq. (21) for N = 3. In this case
we introduce the following convention for indices:

then, from el = ÚnmO'nCm•

f,l7l,n - 1 ... 8,

i,j, k .-.. 1,2,3 -+ U,
a,b,c -+ 4,5,6 ---+ ",

T,S,t ---+ 7,8,D _ W;

(23)

(24)
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where Wn = Qnlh. Expanding the In index

el = fl;j WiCj + fliaWiCa + feir Wie.

+ flai WaC; + flab WaCb + fiar lIJacr

+ ferj WrCj + flrb WrCb + fe •• wrc"

we have

(25)

el = fl;j W;Cj + flab WaCb + fe •• wrc,

+ flia (WiCa - wac;) + flir (WiCr - wrc;) + fiar (WaCr - WrCa), (26)

where we have defined w" = Q"lh and took into account the antisymmetry of constants
fenm' Let us note with f = 1,2,3, that the first term on the right hand side is an ordinary
vector product (W u x U); with f = 4,5,6, the second term on the right hand side is
(W v x V); and with f = 7,8,9, we get (W w x W) for the third term on right hand side,
where

W u = precessioll frequellcy of U,

W v = precessioll freq uency of V,

W w = preeession freq uelley of \V.

In order to represent geometrieally Eq. (26) it is neeessary to give the structure constants
and to write the 8 eompouents in terms of cOlllponents of blocks (veetors) U, V and W.
As this equation does not restriet the Hallliltonian, the dynamics of the problem may
correspond to electric 01' magnetie interaction 01' both.

Now we write the nine eomponents of vector e:

el = v'x = (W2C3 - W3C2) + T(C6 - C9)+ !C2(W9 - W6)

+ !(W4C8 - W8C4) - !(WSC7 - W7CS),

e2 = uy = (W3C¡ - W¡C3) + T(C9 - C6) + T(W6 - W9)

+ !(W4C7 - W7C4) + !(WSC8 - W8CS),

e3 = v., = (W¡C2 - W2C¡) + (W4CS - WSC4) + (W8C7 - W7C8)'

The time evolution of vector U is described by

V = Vx + Vy + V,;

(27)

(28)

(29)

in other words, as it is sccn throughout Eqs. (2i)-(29), U Illay be described as a cross
product between frequency \V u; and the vector U, plus the relllaining non rotating terms
we named generically r,..

U = W" x U + ru, (30)
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ru = !!f'(C6 - C4) + tC2(w9 - W6) + t(W4C8 - W8C4) - t(W5C7 -W7C5)

+ T(C9 - C6) + !f(W6 - W4) + t(W4C7 - W7C4) + t(W5C8 - W8C5)

+ (W4C5 - W5C4) + (W8C7 -W7C8).

Analogously,

C4 = Vx = (W5C6 - W6C5) - t(W3C5 - W5C3) - t(W¡C8 - W8CJl
- t(W2C7 - W7C2) + t(W5C9 - W9C5), (31)

C5 = vy = (W6C4 - W4C6) + t(W3C4 - W4C3) + t(W¡C7 - W7cJl, (32)

C6 = V, = (W4C5 - W5C4) - t(W2C¡ - W¡C2) + (W7C8 - W8C7); (33)

and

Finally,

v = \Vv x V + rv,

rv = -t(W3C5 -W5C3) - t(WIC8 -W8cJl- t(W2C7 -W7C2)

+ t(W5C9 - W9C5) + t(W3C4 - W4C3) + t(W¡C7 - W7CJl

- t(W2C¡ - W¡C2) + (W7C8 - W8C7)'

(34)

and

C7 = Wx = (W8C9 - W9C8) + t(W2C4 - W4C2) - t(W¡C5 - W5CJl
+ t(W3C8 - W8C3) + t(W6C8 - W8C6), (35)

C8 = wy = (Wgc7 - W7C9) + t(WIC4 - W4CJl + t(W2C5 - W5C2)

- t(W3C7 - W7C3) - t(W6C7 - W7C6), (36)

C9 = W, = (W7C8 -W8C7) + (W4C5 - W5C4) + (W2C¡ - WIC2); (37)

(38)

agaill rw corresponds to the remaining non-rotating terms in the time evolution equation
of W, then

rw = t(W2C4 -W4C2) - i(W¡C5 - W5cJl + t(W3C8 -W8C3)

+ t(W6C8 -W8C6) + t(W¡C4 -W4C¡) + t(W2C5 - W5C2)

- t(W3C7 - 1I17C3) - t(W6C7 - W7C6) + (W1C5 - W5C4) + (W2C¡ - WIC2).
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The complete set of previous e'luations is not necessary for describing the radiation-
matter interaction. As an example, components 1L" v" w" correspond to atomic popula-
tion difference between leveIs (1-2), (1-3) and (2-3) respectively and their time evolution
equation might be our particular interest (population inversion in lasers, by example). In
contrast, in problems involving a deep knowledge of dipole transition (as luminescence,
super-radiance, etc.) a solution to equations containing components x, y of vectors e, v, W
will be necessary.

5. EDI IN AN EXPLICIT FORM

In the following lines we consider an atom in an electric field in the long-wave approxima-
tion.

The hamiltonian is

H = Ho + Hp = Ho - p . E. (39)

Ho is the non-perturbed part of Hall1iltonian and Hp = -p. E is the electric pertnrbation.
The state vector satisfies the Schriidinger e'luation:

each component l,pn) satisfying in this approxill1ation

(40)

Eigenvectors l,p,,) are eigenfllnctions of Ho, in the long-wave approximation 1161, when
[H, Hol 2" o.

Now we consider a specific interaction where the electric field is aplane wave with
elliptic polarization defined as

(41 )

\Ve must take into account that a radiation field contains in general positive and negative
frequencies. By using a field as (41) we may introduce a nWA (rotating wave approxima-
tion), where there is not negligible optical terms.

Turning to Eq. (41)

iftI0,,) = (Ho - P . E)[1/),,)

= (Ho - P . £Eóe-iwLt)I,p,,), (42)

where we consider a monochromatic plane wave as that generated by a laser. This e'lllation
may be written in a coordinate system rotating with the same angular frequency as the
field, by introducing the transforll1ation

(43)
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Eq. (42) is then

where as definitions

il,j¡~)= [6n - n'Jl1/!~), (44)

P.E
n == -,,-; (45)

6n is known as detuning and n is the Rabi transition frequency in the rotating frame.
By introducing /1/!m)(1/!ml in the second term on right hand side of (44), we write in

matrix form

(46)

where we have explicit!y put 611 = W11 -WL, as detuning for the first active level, similarly
622 = W22 - WL as detuning for the second active level and 633 = w33 - wL as detuning
for the third active leve!. On the other hand nij (i,j = 1,2,3) is the Rabi transition
frequency between levels i and j, which take account of the strength of the coupling for
this (ij) particular coupling.
Using Eq. (46) and appendix A, we may calculate frequencies to propose a geometrical

solution for 3-1evel atoms. The vality of this solution is guaranteed for the followings
reasons:

1. Eqnation (21) stablishes that e process in an 8 (extended to 9) dimensional space.
So that the behavior of e is like an axial vector in 8 dimensions. However it is not
clear that this means a rotation in the ordinary 3-space.

2. Definition (9) and Eqs. (22) suggest that the pseudovector e describes properly
transitions in 3-level atoms; block V for example corresponds to the known de-
scription for 2-levels. Analogously with block V and W. The general time evolu-
tion of the system takes into account V, V and W.

3. Finally, Eqs. (29), (33) and (37) say that the components V" V, and W, are
mixed in a simple form for t > O.

\Ve now assume that initially (t = O) V, V and W coincide with the z axis and are
now indistinguishable. The splitting of the system in V, V and W will happen for t > o.
\Ve have drawn independently each one of the vectors. For any instant t, V, V and W

are located in a non-diagonal coordinate system (Fig. 1) but we may through a rotation of
coordinates [17] (Euler angles) get the coincidence of the z axis with these three vectors.
"'e write any vector in a non diagonal system as

J = bJx + cJy + aJ,;

the same vector in a diagonal system is

I

J = (,,2 + b2 + c2)' J;,
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FIGURE 1. The vectors U, V aJl(1W for t > O.

1
where (a2 + b2 + c2), is the value of the angular momentum for m = 1. The angles c<, {3
in Fig. 1 for eaeh case are given by

or in general

eu
tan Qu = bu' {3 c.

tan v = b
v
'

Cw
tan1'w = -;

bw
(47)

Analogously for (3

1m(no);
tan C<i= Re (nO)i (i = u,v,w).

(48)

no is the Rabi transition frequeney associated with the basie energy levels, in the diagonal
system after RWA, and formally follows definition (45), in other words

P .Eo
nO=-h-'

where Eo is the eleetrie field amplitude, P the dipolar eleetrie moment eorresponding
to the grown state transition ami 10; is a parameter inclnding losses due to collisions or
ionizations.

In the new system, vectors are diagonal aIHI eigenvalnes of U, V and W are given as

This vector is expressed in the original system through the Euler rotation matrices D~tM'
These matriees will be expressed as in ReL [11], i.e., by identifying an energy level n with
a specifie magnetie sublevel, thus

N = 2J + 1 ~: J = HN - 1), 11 = M + J + 1 ~: 111= n - !(N - 1).
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In our case (N = 3) we have J = 1 or M = +1,0, -1 corresponding respectively to the
levels n = 1,2,3. The components of vectors U, V and W, in the non diagonal system
are

3

UMK = :L D~I'A/(Ou,/3u,O)U~I'K'
M'=l

3

VA/K = :L D~I'A/(Ov,/3v,O) V.(¡,/(,
,M':;: 1

3

IVMI( = :L D~I'A/(Ow,/3w,O)IV~I'K'
.\f'=1

(49)

(50)

(51 )

The time evolution equation giving information on the dynamics of 3-level atoms mix aH
the components of the vectors in the original system. These components have been defined
for the new system in Eq. (21); however with that definition they do not give information
in presence of electric fields neither revels the mixing of fields. \Ve may say, then, that the
solution for z is given by

Uz/( = :LD~IA/,(ou,/3u,O)U~I'/( + :LD~IM,(ov,/3v,O)V;I'K

+ :L D~IM'(ow, /3w, O) IV~I'I(. (52)

From now on we have J = 1 (3 levels) so that

and the same for vectors V, W.
The final expression for U, is

U, = e-io. d31(/3u) U;/( + e-i20• d32(/3u) U~/( + e-i30' d33(/3u) U~K

+ -io'd (/3) V' + -i20, d (/3) ", + -i30, d (/3) ,,1e 31 v 1/( e 32 v V2l( e 33 v V3K

+ e-iow d31 (/3w) IV;/( + e-i20w d32(/3w) IV~/( + e-i30w d33(/3w) IV~K' (53)

and equivalent equations for V" IV" or any other component. Equation (53) give us aH
the information concerning to atomic population inversion. In other words, the real part
of the first line of (53) (that associated to U/), expresses the population difference between
levels 1 and 2; whereas the second line does the same with levels 1 and 3. The real part
of the first line of (53) is shown in Figs. 2 to 5 for 4 different values of laser radiation
WL' In the rcsonant situatioll (zcro dctuuillg), we gel a similar result to Sargent nI y
Horowitz [l8), although thcy work with two coincidcnt nabi frequencies. In practice it is
equivalcnt to working with just 2 activc Ic\'cls.
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FIGURE 2. Square module ofthe first line ofU,(t/r), tm •• = 10 periods ofthe laser (WL = 10000 A).
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FIGURE 3. Square module of the first line of U,(t/r), tm •• = 10 periods of the lascr (WL = 8000 A).
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FIGURE 4. Square module of lhe firsl line of U,(t/T), tm•x = 10 periods of lhe laser (WL = 7000 A).

o.,

o,

o.,

o.

o,

o .•

0.0004 o.oo~ 0.00011 0,001

FIGUHE 5. Sqnare modnle oflhe firsl line of U,(t/T), tm •• = 6 periods of the laser (WL = 5889.9 A).
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6. CONCLUSIONS

It has been demonstrated that EOI may be treated as MOl in a vector space defined by
Eq. (9). This is a general theory whose dynamics is determined by Eq. (21). As will be
noted is a matrix development worked for 3 levcls by Aravind [191 and refined by Oattoli
and A. Torre [20]; the same that we have generalized to any number N of levels. The
purpose of this technique, introducing pseudo-spin is to get a geometrical representation
in ordinary 3-dimensional space in such a way that time evolution may be easily followed.

ApPENDlX

A. FREQUENCY CALCULATION

H = ajG; + f31 (Al)

[HU
H12 Hl3] [~lal ~] + [+ -iQ2

O] [a
3 O ~]H21 Hn H2J = O O O + O -a3

H31 H32 H33 O O O O O

[}4

O 14

] [i~S

O -iaS] [a6
O -~J+ O + O O + O O

O O O O O

+ [~
O

~7] + [~
O

-~aB] + [~
O

O ]O O ag O ,
a7 laB O -ag

from here

Hu = 03 + 06, H2! = al + iQ2, H31 = 04 + iQs,

H12 = a! - ia2, H22 = -03 + Og, Hn = a7 + iaB,

H13 = a4 - ias, H2J = a7 - iaB, H33 = -06 - Og.

Let us note that this equations could depelld on the fact that the Hamiltonian has or not
zeros on the diagonal

HI2 + H21 i(H12 - H2d
QI = 2

02 = 2
1113+ H3! i(H13 - H3d (A2)

04 = 2
Qs = 2

H2J + H32 i(H2J - H32)
Q7 = 2

0'8 = 2
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The diagonal elements have the equations:

Hu = a3 +a6, H22 = -a3 +ag H33 = -a6 - ag. (A3)

The Gell-Mann Matrices are

GI = ~ [r 1 ~], G2 = ~ [! -1 ~], G3 = ~ [~

O ~],O O -1
O O O

G4 = ~ [~

O ~], G5 = ~ [~

O ~lG6 = ~ [~ O r] ,O O O (A4)
O O 1

G7 = ~ [~

O ~lG8 = ~ [~

O
~] .O 1

O -2

The structure constants for this particular representation are:

kim h(m
123 fl23

147 1/2
156 -1/2
246 1/2
257 1/2
345 1/2
367 -1/2
458 1/2v'3
678 1/2v'3

The Structure Constants for the Proposilioll Gell-Mallll + 1 with

G~= ![~
O
~] , G~=q~O ~] ,O 1

2 O O -1 - O O -1
are

ft48 = ~, / _1 /378 = -~,582 - 2'

/157 = -~, /594 = ~, /412 = ~,

ft62 = -~, f _1 ft23 = fl23,678 - 2'

/175 = ~, 1247 = ~, /456 = f456,

1184 = -~, fz74 = -~, h89 = '789.

ft92 = ~, /345 = !,

(AS)

(A6)
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13.

The intensity of any atomic transition is given as

(137)

The subindices a and k in !ka include aH the qllantllIll nllmbers of the final and initial
states. In particular !ka depend on the IIlagnetic quantum numbers. It is convenient to
define an average transition intensity for Ini) ~ In'f'), which is independent of the
magnetic qllantllIll nllIllbers and therefore of the polarization radiation:

1 l' 1

l(n'.I': n,l ) = U + 1 L L In'l'm',nlm;
.•..............•............. m'=-l' m=-(
•

(138)

the average it is running on the initial states. As an example we have taken in the present
work these transitions for the sodillIll atoIll:

5889.9 A ~ !ka = 0.324

5895.9 A ~ Ika = 0.648

3302.9 A ~ Ika = 0.102

303.9 A ~ !ka = 0.051

3ep~) ~ 4eS~) ~ 22084 A ~ ha = 0.167

3(2p~) ~ 4eS~) ~ 22057 A ~ ha = 0.335
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