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ABSTRACT. Electric and magnetic interactions are considered throughout the formalism of group
theory. We claim here that a general theoretical prescription may be established for the exact
solution of N-level atoms. However the achievement of a geometrical representation is hevealy
based on spin vector behavior of electric dipolar interaction. As an example an explicit geometrical
representation for 3 level atoms is presented using this pseudospin vector analogy.

PACS: 42.50; 32.80-t

1. INTRODUCTION

(MDI). At the classical level, the difference between EDI and MDI is based on the fact
that the electric dipole moment is a polar vector, whereas the magnetic dipole moment
is an azial vector. In the quantum domain, instead, the difference between EDI and MDI
tends to disappear, and we can analyse them in equivalent forms.

We know from elementary quantum mechanics that the theory of angular momentum

is to look for a geometrical representation of MDI; in fact, the firs attempt in this direction
was done , in a very extensive way, by R. Gilmore [1], upon consideration of symmetrized
state. This geometric representation of MDI provided a method to penetrate areas like
nuclear magnetic resonance and nuclear quadrupole resonance (NQR). We then inquire
wether a similar approach is possible for EDI; we think that a geometrical representation
of EDI could, in principle, provide a method to explore areas like laser cooling of atoms,
both theoretically and experimentally [2]; in this specific area, for example, a geometrical
representation of EDI would provide a method to obtain analytic, exact solutions.
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The idea of a geometric representation of EDI was first proposed by Feynman, Vernon
and Hellwarth [3] in 1957, for two-level atoms; the extension to N-level atoms was later
pursued by several authors, from different points of view [4-10]. We want to mention in
particular a paper by Cook and Shore [11], in which the authors present a nice analogy
that leads them to the original geometrical representation of Ref. [3].

This paper is organized as follows: In Sect. 2 we discuss briefly the comparison between

EDI and MDI, both classically and quantically. In Sect. 3 we describe the general formalism
for N-level atoms using SU(NN). In Sect. 4 we study in particular the well-known case of
3-level atoms. In Sect. 5 we present EDI in an explicit form.

2. COMPARISON BETWEEN EDI AND MDI

In classical mechanics the time evolution of angular momentum L is given by

dL

_'d'I = Text (1)

where 7 is the torque exerted by external forces; now, if Tex, may be expressed by
Text = L X na (2)

means that L precesses with angular velocity €. Thus, in an external magnetic field H,
the magnetic dipole moment M precesses according to the equation

F =M x (7H), (3)

where M = vH is an axial vector. It is not possible to have an equivalent equation for the
electric dipole moment p, although is known that in an external electric field the torque
experimented by the dipole is given by

Textzrx[p'VE]+pXE'
If the field is homogeneous, then VE = 0 and we obtain
Text = P X E. (4)

However, a direct relationship between p and L does not exist and therefore it is not
possible to have an equation like (3), we find, though, that (2) and (4) have a suggestive
similarity.
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2.1. Quantum similarities

The hamiltonian for a magnetic dipole moment M in a magnetic field H is
H,=-M-H=+hHI,, (5)

where we have introduced the dimensionless angular momentum I, and assumed H parallel
the z—axis; as consequence, eigenvalues of energy are integer multiples of YAH, i.e.,

E = —m(yhH), m=I1-1,...,~I; (6)

I corresponds to eigenvalues of 1.

In order to study transitions among levels is usual to introduce [12] an oscillating pertur-
bative field perpendicular to the static magnetic field H. The corresponding Hamiltonian
is then

H, = —vhHYI, cos wt. (7)

Now, I, has matrix elements of the form (m!|Iz|m) with m' = m £ 1. Thus the allowed
transitions through the coupling with H, take place among adjacent levels (for a given L).
This is the quantum form to describe a vector operator associated to a classical motion
equation given by (3). For electric interaction the Hamiltonian, in the case of two levels
may be written as [13]

P-E=(p2- ENo + 0l (py - E)
E and p have been expanded as

E(r,t) = BE(r)e~"* 4 Elgiut

—iwt

wt
P = piaoe + parote™,
where ¢ and ot are projection operators, and
OijOke = Oig Ojk.

So that o are ladder operators and transitions among no adjacent levels are allowed.
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3. GENERAL FORMALISM FOR N-LEVEL ATOMS USING SU(N)

Let us consider an N-level atom. The state vector |¢) may be written

N
lv) =Y aili), (8)
i=1

where a; are probability amplitudes of occupation of eigenstates |¢;).
We may consider coefficients a; as elements of a N-dimensional vector basis, that will
be assumed as that of definitorial representation of the special unitary group SU(N):

/5]

an

The number of generators G; is N2 — 1 and, in the definitorial representation they cor-
respond to N x N matrices. Now, let us propose the basis associated to the regular
representation whose dimension is N? — 1. Elements ¢; in this new representations are
calculated according to the rule

C = (ITG{G., (9)

where i = 1...N%2 — 1, and G; are expressed in the definitorial representation. As an
example, in SU(2), G; correspond to the Pauli matrices (0z,0y,0;), and ¢; are given by

¢z = aloza, Cy = a'oya, c; =alo,a (10)

This case corresponds to two-level atoms; a geometrical representation was proposed in
1957 introducing (10) as an ad-hoc definition. Thus

-t ) Y[

aja; + ajay. (11)

I

Analogously, using

we have

cy = i(may — ajay),

e L (12)
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Then, the equation of motion for c is

é=-—%cxa=wxc, (13)
describing the precession of ¢ with frequency w. This geometrical representation allows
to obtain the observables of the system using the values of ¢, and this simplifies the
calculations.

Now, is it possible to get equations like (13) for the atoms with higher number of levels?
or does an N? — 1 dimensional vector c associated to the regular representation of SU(N)
show precession? We may answer this question by deriving (9) with respect to time:

&= %(aﬁca) = ghey LalGa (14)
Using Schrodinger equation
iha = Ha, (15)
we have

¢ = —%[(ﬁa)TGa - a'G(Ha))

= —%[aTﬁTGa — a'G(Ha)]

- {dllf,Gla), (16)

where we have used the hermiticity of H.

We observe that Eq. (16) is valid in general form, as for any value of N. According
Eq. (9) the number of generators G fixes the dimension of vector space.

If G belongs to SU(N), ¢ belong to R¥*~1; thus according to group theory, for arbitrary
N, we may expand H as

H = o;G; + 1. (17)
I is the identity, a,  are complex constants and we use the sum convention for repeated
index, with ¢,j,k,¢,...=1,..., N2 — 1. Each component ¢ of ¢ may be written as
. 1 5
£ = —E{aT[H, Gg]a} (18)
1
M S,
== {a (G + ﬁI),G,g]a}. (19)

By using the conmutation rule for generators in SU(N),

[Gka Gf] — ifkfanrna
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Eq. (19) takes the form
. 1
C¢ = —;,-h-{a‘[(aka),Gg]a}
1
S
= m{a ak[Gk,Gg]a}

= -%{ﬂt(akifkeme)a},

where fi¢m are the structure constants of the group. Finally,

; 1 .
Ce = —a{ak %fum(flTGma)}

1

= e {O-’k ifkfmcm}
ih

= —%{ak fkfmcm} (20)

or

&f = _%{fktmakcm}- (21)
As the Levi-Civita symbol, the constants fis, are antisymmetrical. Equation (21) is anal-
ogous form to the vector product of e and ¢ in R? between a and c. However, our space
R has in general a higher dimension. For SU(3), the vector ¢ has 3 components and pro-
cesses in ordinary space. Thus we may consider (21) as the form of a vector product in the
space of the regular representation defined by (9). In fact, Elguin [14] and later Hioe and
Eberly [15], have worked 3-level atoms by considering the time evolution equation as a
rotation of ¢ in an 8-dimensional space. In this case G in (17) corresponds to 8 Gell-Mann
matrices.

Equation (21) will be useful if we may give it a geometrical representation in the 3-
dimensional ordinary space. In fact this is impossible for a vector with N 2 _1 components;
all we may state is that Eq. (21) has the form of a vector product or (21) defines the vector
product among vectors in the regular representation, and describes precession of ¢ in a
N? — 1 dimensional space.

4. 3-LEVEL ATOMS AND SU(3)

In this case vectors ¢, are calculated according Eq. (9):

1 _ i _
c1 = (@105 +ajag) = Uz, ¢5 = (105 — ajag) = Vy,

Co = %(a%cn — a;az) = Uy, Cp =

Bl B3j= O]

6= %(|a1|2 —lag|?) = U., cr = 3(a2a} — ajaz) = Wy, (22)

(

(azaj + ajaz) = Wy,

(

es = Maraj + azaf) = Vi, s = 535 (laa]? + |aal? - 2las|?)

1 1
v AL v AL
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Vectors ¢y, cg, c3, denominated as block U, are equivalent to those describing transitions
in two level atoms, i.e., correspond to components c,, ¢y, ¢z, whereas ¢4, cs5, correspond
to vectors cg, ¢y, of another block V, describing transitions between levels 1 and 3. cg,
c7, describe transitions between levels 2 and 3. cg contains components ¢, of the last two
blocks; in fact we may write

= 2 2 2
¢s = 7 (lal? - lasl?) + 32 (laal® = las]?).

In order to separate these three blocks U, V, W, let us introduce 9 matrices instead of the
8 ones of Gell-Mann, the ninth being a lineal combination of the other eight matrices. In
practice this is equivalent to a change of representation, so that it is necessary to calculate
again the constants fy,, (see Appendix). Thus , instead of the matrix

1 [1 0 0
Gg=—=10 1 0,
2310 0 -2
we propose
1 0 0 0 0 0
i 1 g A
G5=§00 0 GS=§01 0
0 0 -1 0 0 -1
so that we obtain the new components
= Vo= gl ~lasl). ¢ = W. = (laal? - lag?).

In this way we propose the blocks (or vectors)
(Ug, Wy, U,), (Vi Vy, Vi), and (W, W, W,).

Now we want to present a geometrical representation of Eq. (21) for N = 3. In this case
we introduce the following convention for indices:

6Lbmon — 1...8,
tL,jh,k— 1,23 — U,
a,b,c — 4,56 — V,
r,s,t — 7,89 — W,

(23)

then, from ¢, = I’-nﬂ,f:"ﬁ

(]

Ce = feim Wicm + feam Wacm + Jerm Ween, (24)
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where w, = a,/h. Expanding the m index

¢e = feij wicj + feiaWica + feir wicr
+ f!m' WqC; + flab WqCp + ftar WqCr

+ f!rj wrc; + ferowres + fers wres, (25)

we have

¢e = feij wicj + feab WaCh + fers wrcs

I ffia (wica = 'waci) o+ flir (wicr = wrci) + ffar ('wacr = w,ca), (26)

where we have defined w, = a,/h and took into account the antisymmetry of constants
fenm- Let us note with £ = 1,2, 3, that the first term on the right hand side is an ordinary
vector product (W, x U); with £ = 4,5,6, the second term on the right hand side is
(W, x V); and with £ = 7,8,9, we get (W, x W) for the third term on right hand side,
where
W, = precession frequency of U,
W, = precession frequency of V,
W, = precession frequency of W.
In order to represent geometrically Eq. (26) it is necessary to give the structure constants
and to write the 8 components in terms of components of blocks (vectors) U, V and W.
As this equation does not restrict the Hamiltonian, the dynamics of the problem may
correspond to electric or magnetic interaction or both.
Now we write the nine components of vector c:
é1 =1z = (wopcy — waca) + % (c6 — o) + gea(wy — we)
+ L (wycg — waes) — 3(wser — wrcs), (27)
ép = 1y = (w3 — wics) + F(co — c6) + F(we — wy)
+ %(m;cT — wreq) + %(wsce; — wgCs), (28)

é3 = U, = (wicp — waey) + (wacs — wseq) + (wger — wrce). (29)
The time evolution of vector U is described by
U=U.+U,+ U,

in other words, as it is seen throughout Eqs. (27)-(29), U may be described as a cross
product between frequency W,; and the vector U, plus the remaining non rotating terms
we named generically T,

U=W,xU+T,, (30)
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Py = %F(cs — ca) + gca(wo — we) + $(wacs — wyes) — Lwser — wres)
+ St (co — cg) + F(we — wq) + %(w‘ic-; - wycy) + %('LUng — wgcs)

+ (wacs — wseq) + (wger — wrcg).

Analogously,
¢4 = Uz = (wscs — wees) — 4 (wzes — wsez) — 3(wics — wgey)
— 3(wacr — wrey) + 3 (wsee — wecs), (31)
¢ = Uy = (weeq — wace) + 3 (wacy — wyes) + 3(wier — wrey), (32)
¢6 = U; = (wacs — wseq) — %('wgcl —wiey) + (wreg — wgey); (33)
and
V=W, xV+T,, (34)
Ty = —3(wses — wses) — 3(wics — wgey) — 3 (waer — wrey)
+ g(wseg — woes) + L(wseq — wyes) + 3(wier — wrey)
— 3(waey — wiey) + (wreg — wgcy).
Finally,
€7 = wz = (wgey — wycg) + 3(wacq — wyey) - 1(wies — wsey)
+ 3(wyes — wycey) + L(wges — wgcg), (35)
€ = wy = (wyer — wrco) + 3(wicy — wyey) + 3 (wacs — wsey)
— 3(wscr — wrey) — 1 (wser — wreg), (36)
Co = w; = (wres — wyer) + (waes — wsey) + (woey — wicy); (37)
and
W=W,xW4+T,, (38)

again I'y, corresponds to the remaining non-rotating terms in the time evolution equation
of W, then

Ty = J(wycq — wyey) — 3(wics —wsey) + 3 (w3cs — wgcs)
+ 3 (wees — wgeg) + 3(wics — wyey) + 3(waes — wsey)

= %(wgﬁ — wyeg) — %(w(;c? — wrce) + (wyes — wseq) + (waey — wiey).
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The complete set of previous equations is not necessary for describing the radiation-
matter interaction. As an example, components u,, v;, w;, correspond to atomic popula-
tion difference between levels (1-2), (1-3) and (2-3) respectively and their time evolution
equation might be our particular interest (population inversion in lasers, by example). In
contrast, in problems involving a deep knowledge of dipole transition (as luminescence,
super-radiance, etc.) a solution to equations containing components z, y of vectors ¢, v, w
will be necessary.

5. EDI IN AN EXPLICIT FORM
In the following lines we consider an atom in an electric field in the long-wave approxima-

tion.
The hamiltonian is

H=Ho+ H,=Ho—p-E. (39)

H, is the non-perturbed part of Hamiltonian and 7:{p = —p-E is the electric perturbation.
The state vector satisfies the Schrodinger equation:
ih|) = H|w)

each component |¢,) satisfying in this approximation
ih|Yn) = H|Yn). (40)

Eigenvectors |¢,) are eigenfunctions of Hp, in the long-wave approximation [16], when
['H, 'H.g] 0.

Now we consider a specific interaction where the electric field is a plane wave with
elliptic polarization defined as

E = (6. E2 + ig, EQ)e™ "1t = ¢E%(r) e ™%, (41)

We must take into account that a radiation field contains in general positive and negative
frequencies. By using a field as (41) we may introduce a RWA (rotating wave approxima-
tion), where there is not negligible optical terms.

Turning to Eq. (41)

ih|n) = (Ho — P - E)|¢n)
= (Hp — P - €EJe™™")|¢n), (42)

where we consider a monochromatic plane wave as that generated by a laser. This equation
may be written in a coordinate system rotating with the same angular frequency as the
field, by introducing the transformation

|¥n) = €7 H ). (43)



AN APPLICATION OF GROUP THEORY TO THE SOLUTION. . . 405

Eq. (42) is then
i) = [An — Q]|y}), (44)
where as definitions
An=(wp —w), @ =Qe7t, Q=-——. (45)

An is known as detuning and Q is the Rabi transition frequency in the rotating frame.
By introducing |4 )(¥m| in the second term on right hand side of (44), we write in
matrix form

[41) An —912 ‘913 [¥1)
i) = |-0f  An -l v, (46)
|¢3) _le -Q;? /_\33 |1»’J3)

where we have explicitly put A}, = wy; —wp, as detuning for the first active level, similarly
Agy = wyy — wy, as detuning for the second active level and A3z = w3z — wy, as detuning
for the third active level. On the other hand Q4 (4,7 = 1,2,3) is the Rabi transition
frequency between levels i and j, which take account of the strength of the coupling for
this (ij) particular coupling.

Using Eq. (46) and appendix A, we may calculate frequencies to propose a geometrical
solution for 3-level atoms. The vality of this solution is guaranteed for the followings
reasons:

1. Equation (21) stablishes that ¢ process in an 8 (extended to 9) dimensional space.
So that the behavior of c is like an azial vector in 8 dimensions. However it is not
clear that this means a rotation in the ordinary 3-space.

2. Definition (9) and Eqs. (22) suggest that the pseudovector ¢ describes properly
transitions in 3-level atoms; block U for example corresponds to the known de-
scription for 2-levels. Analogously with block V and W. The general time evolu-
tion of the system takes into account U, Vand W.

3. Finally, Egs. (29), (33) and (37) say that the components U,, V, and W, are
mixed in a simple form for ¢ > 0.

We now assume that initially (¢ = 0) U, V and W coincide with the z axis and are
now indistinguishable. The splitting of the system in U, V and W will happen for ¢ > 0.

We have drawn independently each one of the vectors. For any instant ¢, U, V and W
are located in a non-diagonal coordinate system (Fig. 1) but we may through a rotation of
coordinates [17] (Euler angles) get the coincidence of the z axis with these three vectors.
We write any vector in a non diagonal system as

F=hl+ ek 4ol

the same vector in a diagonal system is

J= (a2+b2+c2)%.];,
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FIGURE 1. The vectors U, V and W for ¢ > 0.

where (a2 + b% + )7 is the value of the angular momentum for m = 1. The angles a, 3
in Fig. 1 for each case are given by

tan o, = Ci', tan 8, = &, tan -y, = C—w; (47)
by by buw
or in general
Im (Qo)i 2
TaT G = e = :
ana; = g (Q0); (i = u,v,w)

Analogously for g3

/02 + ¢ :

tan ; = = )
STl T (o Gy

2

Q is the Rabi transition frequency associated with the basic energy levels, in the diagonal
system after RWA, and formally follows definition (45), in other words

_ P -Eg

= —

Q

where Ej is the electric field amplitude, P the dipolar electric moment corresponding
to the grown state transition and ~y; is a parameter including losses due to collisions or
ionizations.

In the new system, vectors are diagonal and eigenvalues of U, V and W are given as

Adw=mA, A, =mA) A, =mAl.

This vector is expressed in the original system through the Euler rotation matrices D}im-
These matrices will be expressed as in Ref. [11], i.e., by identifying an energy level n with
a specific magnetic sublevel, thus

N=2J+1—:J=3(N-1), n=M+J+1—M=n-3}(N-1).
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In our case (N = 3) we have J =1 or M = +1,0, —1 corresponding respectively to the
levels n = 1,2,3. The components of vectors U, V and W, in the non diagonal system
are

3
UMK = Z Di/f'M(a'U-!‘BUIO)U"N!'K’ (49)
M'=1
3
VMK = Z D?\J’M(av,ﬁvyo)vj(/!'l(s (50)
M'=1
3
Wak = Y Dipa(aw, Bu, 0) Whp k. (51)
M'=1

The time evolution equation giving information on the dynamics of 3-level atoms mix all
the components of the vectors in the original system. These components have been defined
for the new system in Eq. (21); however with that definition they do not give information
in presence of electric fields neither revels the mixing of fields. We may say, then, that the
solution for z is given by

Uzk = Y Diran(0u, Bu0) Unpric + Y Diypapi (@, Bo, 0) Vg

+ ZDier(aw,,@w,O) W;”rK. (52)

From now on we have J =1 (3 levels) so that

D,?LJM’(aua ﬁua 0) = eiM’a“ d!\fM'(ﬁ)!

and the same for vectors V, W.
The final expression for U, is

U, = €7 d3) (Bu) Ul + €% dya(Bu) Usgc + 3% diz(B,) Ui
+e7" v dyy (By) Vi + €7 dag(By) Vi + e dyz(B) Vi
+e7 % dyy (Bu) Wik + €720 diy(Bu) Wai + €% dya(Bu) Wi, (53)

and equivalent equations for V., W;, or any other component. Equation (53) give us all
the information concerning to atomic population inversion. In other words, the real part
of the first line of (53) (that associated to U’), expresses the population difference between
levels 1 and 2; whereas the second line does the same with levels 1 and 3. The real part
of the first line of (53) is shown in Figs. 2 to 5 for 4 different values of laser radiation
wg. In the resonant situation (zero detuning), we get a similar result to Sargent III y
Horowitz [18], although they work with two coincident Rabi frequencies. In practice it is
equivalent to working with just 2 active levels.
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FIGURE 2. Square module of the first line of U, (t/7), tmax = 10 periods of the laser (w;, = 10000 A).
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FIGURE 3. Square module of the first line of U,(¢/7), tmax = 10 periods of the laser (wy, = 8000 A).
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FIGURE 4. Square module of the first line of U.(t/7), tmax = 10 periods of the laser (wg = 7000 A).
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FIGURE 5. Square module of the first line of U.(t/7), tmax = 6 periods of the laser (wr = 5889.9 A).
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6. CONCLUSIONS

It has been demonstrated that EDI may be treated as MDI in a vector space defined by
Eq. (9). This is a general theory whose dynamics is determined by Eq. (21). As will be
noted is a matrix development worked for 3 levels by Aravind [19] and refined by Dattoli
and A. Torre [20]; the same that we have generalized to any number N of levels. The
purpose of this technique, introducing pseudo-spin is to get a geometrical representation
in ordinary 3-dimensional space in such a way that time evolution may be easily followed.

APPENDIX

A. FREQUENCY CALCULATION

B w500 (A1)
Hll H]g H13 0 a1 0 0 —tx9 0 a3 0 0
Hy;y Hjyy Hyl| = |o 0 0| 4+ |iag 0 0]+|0 —a3 0
H3;1 Hj3p Hag 0 0 0 0 0 0 0 0 0
[0 0 (14- 0 0 —iOts- ‘015 0 0 7
+10 0 O0|+]0 O 0 +]10 0 0
L4 0 0 J _z'a5 0 0 J B 0 0 —os
0 0 07 0 0 0 W 0 0 0 T
+ 10 0 a7 +]0 O —tag| + |0 a9 G |
._0 a7 0 " .0 (18 £33 0 it _0 0 — Qg |
from here
H;; = a3 + as, Hy = a1 +iay, Hs = a4 + tas,
Hy; = a1 —iay, Hjy = —a3 + ag, H3p = a7 +1as,
Hiz3 = a4 —ias, Hyy = a7 — iag, Hjz = —ag — ao.

Let us note that this equations could depend on the fact that the Hamiltonian has or not
zeros on the diagonal

Hy3 + Hy — i(Hy2 — Ha1)

a) = 2 3 2 = 2 3

S U &) o
Hyz + H3 i(Ho3 — H3)

e ap====s
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The diagonal elements have the equations:

Hy = a3 + ag, Hy = —a3+ o9 H3z = —ag — . (A3)
The Gell-Mann Matrices are
[0 1 0] [0 —i 0] 1 0 0
Gi=3[1 0 0|, Ge=1%1|i 0 o, G=1|o -1 of,
0 0 0] 0 0 0] 0 0 0
[0 0 17 [0 0 —1] 0 0 0
Gs=310 0 0, Gs=1l0 0 of, Ge =10 1], (A4)
1 0 o] i 0 0] 0 1 0
0 0 0 1 0 0
Gr=3[0 0 —i|, Gg==2=10 1 o].
0 i o Mlg o -3
The structure constants for this particular representation are:
kém Srem
123 €123
147 1/2
156 -1/2
246 1/2
257 1/2
345 1/2
367 -1/2
458 1/2V3
678 1/2V/3
The Structure Constants for the Proposition Gell-Mann + 1 with
1 1 0 0 1 0 0 0
/
G5=§0 0 0], Gg=§0 1 0], (A5)
0 0 -1 0 0 =1
are
fus = 3, fss2 = 3, fas = =4,
fist = =3, foea =1, fir2 = 4,
fiee = -4, fers =1, fi23 = e12a,
N 'f (46)
firs = 3, faar = 3, fas6 = €ase,
fi8a = =3, fara = =3, fr89 = €789.

b=

fi92 = %1 faas =
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B.

The intensity of any atomic transition is given as

2m
T = —-h-wka|erka|2. (B7)

The subindices a and k in fi, include all the quantum numbers of the final and initial
states. In particular fi, depend on the magnetic quantum numbers. It is convenient to
define an average transition intensity for |[nf) — |n'¢'), which is independent of the
magnetic quantum numbers and therefore of the polarization radiation:

] ¢ ¢
f(n',f’: Wl = Bp i Z Z fn'f‘m’,n.!m.; (BS)
g ML,

k a

the average it is running on the initial states. As an example we have taken in the present
work these transitions for the sodium atom:

3(2P%) 5889.9 A — fi, = 0.324
2P3) 5895.9 A — fi, = 0.648
3302.9 A — fi, =0.102

303.9 A — fra = 0.051

— 22084 A — frs = 0.167

=
N
=
=S
.
& .
A

)
) — 22057 A — fi, = 0.335
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