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ABSTRACT. In the first part several mathematical properties of the non-linear mechanism are
shown which have not becn reported before. In particular it is shown that the traditional inter-
pretation of the experimental slope in terms of the constants of the mechanism corresponds to the
slope at an infiection point where the system is not asymptotically near equilibrium. In the second
part, with the help of the method of fast variables elimination, the linear and the quadratic rate
laws, which are identified with the experimental rate laws, are shown to be approximations when
the initia! concenlration oC the reaclant is high or low, respectively, compared lo combinations
oC the constanls oí the mechanism. The interpretation oC tlle linear rate law as emerging because
measurements are not near equilibrium alld a different interpretation for the constant oC the linear
rate law in lerros oC the constants oí the mechallism are presented.

RESUMEN. En una primera parte, se exhiben varias propiedades del mecanismo nalinea! que no
han sido reportadas previamente. En particular se muestra que la interpretación tradicional de la
pendiente experimental en términos de las constantes del mecanismo corresponde a la pendiente
del punto de inflexión donde el sistema no está asintóticamente cerca de equilibrio. En una segunda
parte se muestra, con ayuda del método de eliminación de variable rápida, que las leyes lineal y
cuadrática, que se identifican con las leyes de rapidez experimentales, son aproximaciones que
ocurren cuando la concentración del reactante es alta o baja, respectivamente, comparada con
combinaciones de las constantes del mecanismo. Se presenta la interpretación de que la ley de
rapidez lineal emerge porque las mediciones no han sido realizadas cerca del equilibrio y se ofrece
una interpretación distinta para la constante de la ley de rapidez experimental lineal en términos
de las constantes del mecanismo.

PAes: 82.20.Hf; 82.30.Eh

1. INTRODUCTION

Since the beginning of this century, after the work of Michaelis and Menten in enzymatic
reactions [1] anothat of Lilldemanll [21 ill gaseous decompositions, it has been a practice,
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when coming across with reactions whose phenomenological rate law does not comply in
one way or another either to the Guldberg- Waage kinetic equation form [3,4], or to the
expectations of collision theory for chemical reactions, to post ulate a mechanism formed by
several reaction steps each one of them obeying the Guldberg and Waage law, but involving
one or several intermediate species that are not directly observed al. the time scale al.which
the product of the reaction is measured and the rate law observed. The connection between
the set of differential equations implied by the mechanism and the phenomenological rate
law, a different differential equation, has been traditionally established by postulating that
al. all times during the evolution of the reaction, the rate of change of the intermediates
is zero. When the substitution of the ensuing "steady" reactant concentrations on the
equation of the rate of product formation is made, if the resulting equation is of the same
form as the experimental rate law, the mechanism is thought to be the kinetic explanation
of the reaction. Furthermore, as a consequence, the experimental Arrhenius constant can
be interpreted in terms of the reaction constants of the mechanism, thus lending them
physical meaning. This procedure is called the pseudo-steady-state hypothesis [3,4).
The pseudo-steady-state hypothesis is considered successful in the sense that the slope

of the rate law it predicts as the reaction approaches the equilibrium coincides with the one
numerically predicted from the mechanism, for example the Lindemann's and Michaelis-
Menten cases [5]. It is also considered successful, al. least in the case of gaseous decompo-
sitions [6], because of the good agreement between the value of the global rate constant
predicted by the statistical mechanical Rice-Ramsberger-Kassel-Marcus and Slater theo-
ríes [4,7) and the experimental rate constant identified in terms of the constants of the
mechanism [7-9]. However, from the point of view of mathematics, the procedure fol-
lowed by the pseudo-steady state-hypothesis to obtain the rate law from the mechanism
is objectionable, and to apply it with the belief that it must correspond to sorne sort of
approximation of the equations of the mechanism in a perturbative method when cer-
tain parameters are small, without knowing which they are, is to miss information on the
applicability and predictive capability of the mechanism, to say the least.
The pseudo-steady-state hypothesis was first criticized within the context of the simple

Michaelis-Menten mechanism and related enzymatic reactions, and the form of the rate
law justified from the postulated mechanism, by showing that it is the degenerate solution
of a singular perturbation method of approximation of the independent equations when
certain parameter, chosen from the particular experimental circumstances, is small [10].
In this particular case as in many others the smallness para meter makes evident the
existence of two different time scales associated with the reaction, one characterizing the
evolution of the intermediate species, called the fast variable, and the other characterizing
the evolution of one of the other reactants called the slow variable. The method to obtain
from a system of differential equations representing any type of physical process, the
one equation that will approximately fit its behaviour near a stable fixed point has been
systematized under the name of fast variable elimination [11]. However the selection of
the smallness parameter, depends on extra infonnation.
In most of the instances of rate laws that have been mathematically justified using per-

turbative methods, the smallness parameter is chosen either from particular experimental
conditions [10]' by deducing it from the pseudo steady state hypothesis itself [8]' or by
trying relations between magnitudes of the several constants involved. This last way of
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selection of the smallness parameter is fruitful to obtain the rate law of complex reactions;
like that of the formation of hydrogen bromide that has been justified from the mechanism
by choosing the smallness parameter from considerations on the relative magnitude the
involved rate constants ought to have, given that the intermediates concentrations are
to be fast variables since they are absent from the rate law [12]. Several other complex
reactions have been studied from the point of view of other perturbation methods [13).
It so happens that little attention has been paid to the mathematical properties of

mechanisms. A systematic study of the mathematical properties of a mechanism, as far
as it is feasible, can help in the identification of a smallness parameter and to c1arify the
approximation under which the experimental slope can be equated to the predicted slope.
But not only this, a study of the properties of a mechanism might lead to the direct
identification of one or more of its constants with experimentally measured quantities in
addition of giving information on interesting properties. No one knows what surprises
remain hidden if one simply applies the-pseudo-steady-state hypothesis without having
shown what the properties of the mechanism are, ami which is the approximation, in
terms of the constants of the mechanism and of the experiment, that leads to it. That is,
other than assuming the rate of formation of intermediate species zero at all times.
Although the study of the non-linear Lindemann mechanism is already a rather old

subject [4,6,14], we think that proper a!tention has not heen paid to the basic and most
simple of its mathematical properties and the approximations under which its associated
rate law is obtained. In the present paper we study them. Our central goal, besides getting
information, is to find out the circumstanees under whieh the traditional identification of
the experimental slope kexl' [3,4, 7), of the linear rate law with a combination of the
constants of the mechanism is valid, without having recourse to the pseudo steady state
hypothesis. In a second part we show which are the smallness parameters that will yield
from the mechanism the linear and quadratic laws that have been observed in gaseous
decompositions for which the Liudemann mechanism has been applied. In this second
part we use the method of elimination of fast variables [1lj. \Ve end the paper with a
section of comments on the new results ohtained and conc1usions.

2. GENERAL PROPERTIF:S

In this section we prove several properties of the non-linear Lindemann mechanism. They
are mostly associated with the slopes at differeut points of curves of different coordi-
nates. The spaces considered are those pertinent to the relation of the mechanism to the
experimental results.
The unimolecular deeomposition of reaetant R, to yield the produets P and Q, through

its transformation into the vihrationally exited speeies C. is represented by the following
mechanism:

R+R~C+R,

C+R~R+R,

c!2. P+ Q,

(1)

(2)

(3)
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where the k; represent the rate constants. Ir we dcnotc the concentrations by the lowcr-case
letters associatcd to the spccics reprcscntcd by capitals, the mass action law applicd to the
mechanism gives the following equations for the time rate of change of the concentrations:

r = -k¡ 1'2 + k2CT,

e = k¡r2 - k2cr - k3c,

P = k3c,

i¡ = p,

(4)

(5)

(6)

(7)

wherc the dot abovc the symbol dcnotcs thc timc dcrivativc. \Vc noticc that therc is onc
constant of motion sincc r + e + p = o, and thcrcforc that thcrc arc only two indcpcndcnt
equations of motion. Upon choosing for thc initial timc t = o, t hc following initial values
for thc concentrations:

the constant of motion is givcn by

r(t=O) =1'0,

c(t = O) = o,
p(t = O) = o;

ro = l' + c+ p.

(8)

(9)

(lO)

(ll)

\Vc choose as the indepcndcnt conccntrations thc sct (c, p) and havc as a conscqllcnce
the following indcpendent cqllations of motion:

e = kl(ro -c- p)2 - k2c(ro - c- p) - k3c

P = k3c.

(12)

(13)

\Ve obtain, aftcr applying thc initial conditiolls givcn in (8), (9), and (la) 1.0 thc indcpen-
dcnt Eqs. (12) and (13) that the ralc of prodllct formation is

¡;(t = O) = o,

and that the ratc of formation of thc intcrmcdiatc spccics is

C(t = O) = k¡r5.

(14)

(15)

On the othcr hand calling n thc timc al. which cqllilibrillm is achicvcd, bolh dcfining
eqllilibrium conditions,

¡;(t = n) = O (16)
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FIGURE 1. Curves e = e(t) alld p = I'(t), wilh kl = k2 = k3 = 1.00 alld "0 = 1.00, aeeordillg lo
cqualiolls (12) alld (13).

and

e(t = fl) = O,

¡cad to thc cqllilibrillm conccntrations

c(t=fl)=O

and

p(t = fl) = "0.

(17)

(18)

(19)

Taking into account that lhc variablcs arc rcslriclcd lo scmiposilivc valllcs bccallsc they
arc conccntrations, wc find from Ec¡. (12) lhal c(t) has a maximllm c(t = to) == Cm. This
maximllm is simultancolls wilh an inf!cclion poinl for p(t = tO) == Pi bccallsc of Eq. (13).
Thcse fealures are illllslralcd in Fig. 1 where we haw plOl c(t) and p(t). The relation
among lhc vallles Cm and Pi, from Ec¡. (12), is givell by

(20)

Up to now we have informalion concerning lhc valucs of lhe variables and of lhe slopes
of lhe curves c(t) amI p(t) al sclecled poinls. namcly al lhc inilial lime, al lime to whcre
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the maximum of c occurs and at the equilibrium time as predieted by the meehanism. \Ve
now want to use this information to find out the siope of the funetions ¡j(r) and ¡j(r + c)
at those same times. The spaee (r,¡j) is the one relevant for the diseussion of the relation
between the meehanism and the rate law and spaee (r + c,¡j) will show itseif useful in the
next seetion. To obtain the information we want, it is most helpful to find first the slope
of the curve in the phase spaee (1', c). The reason is that from the rules of ealculus, the
slopes we are looking for are lIlOSt easily expressed in terms of the slope in (1', c). In faet,
we have first that

(21 )

Then, using the eonstant (11) into the cxpress ion d¡j/ dr, we fiud also from calcuius that

d¡, l'=---
dr ¡,+ é

and with the use of Eq. (13) that

In an analogous fashion we also obtain from the exprcssion dp/d(r + c) the equality

dp k é
-d(-r-+-c-) = - '3p'

(22)

(23)

\Ve now proceed to the evaluation of the slope in coordinates (1', c) given by ~ for the
few seleeted poiuts, of initial time, maximum of c aud cquilibriuul. Its explicit expression
can immediately be written down from E'ls. (12) and (13). It is the followiug one,

é k1(ro - c - 1')2 - k2c(ro - c - 1') - k3c

l' k3C
(24)

We find, upon substitution of the initial conditions (9) aud (ID) in Eq. (24), that its vaiue
at the origin in (1', c) or initial time is

lim ~ = k¡ { __ r~6_._ k2ro _ k3} = oo.
1-0 P k3 lim,_o c k¡ k¡

(25)

This result carries over, with the help of relations (22) and (23), 10 ¡he following initial
time siopes, respectively:

d' 1
lim -.E = -k3 lim --o = -k3
1-0 dr .-0 1+ ~e

(26)
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and

l. dp
lm---=(X).

,-o d(r + e)

It is verified, with the use of (20), that in (p, e) there is a maximum, since

{de} = O
dp pi.Cm •

(27)

Also, because of relations (22) and (23) we find that Eq. (27) implies the presence of a
maximum also in coordinates (r,p) and (r + e,);).

\Vith respect to the value of the slope at equilibrium, let us denote for expediency,

P '" lim ~,,-n p (28)

and then apply the equilibrinm values given by (18) and (19) to Eq. (24). The result is

P = kl (lim rg + p2 - 2roP _ ka) .
ka ,-n e k¡

After applying L'Hópilal's rule lo resolve lhe indelerminalion, we have lhat,

P = k¡ (lilll,_n 2(p - ro) _ ka) .
ka P k¡

This result shows there are two possihle valnes for P. lf condition

ka lilll,_n 2(p - ro)
kl = P

is met, lhe value of the equilibriulll slope is

P = O,

(29)

(30)

(31)

(32)

but if not, we may evaluale tirst the limit in the right-hand side of Eq. (30) and then find

P = -1. (33)

These two values for the equilihriulll slope P, (32) and (33), bring by virtue of the transfor-
mation (22) the prediclion of two valnes fOl"the experimental eqnilihl"ium slope, in (r,p),
the space of the rate law; lhey are the following ones:

d'
lim dP

= O,
t-O r (34)
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corresponding to value the P = O (32); and

l
. djJ
1m -d = 00,
t-O r

(35)

corresponding to the value P = -1 (33). As the equilibrium slope in (r+c,jJ) is concerned,
two values are also predicted, corresponding to P = Oand to P = -1; they are, respectively

and

lim djJ = O
,-o d(r + c)

l. dI; 1.-
1m d( ) - .J.,-O r + c

(36)

(37)

Taking into account the information from experiments, we shall discard the set of equi-
librium sJopes coming from P = -1, (35) an,l (36), since one of them, prediclion

l
. dI;
un -d = 00
t-O r

up to our knowledge, has never been observed. This consideration leaves us with onJy
lhe set of equilibrium slopes equal lo zero, coming from the value P = O, namely (34)
and (36). Thus we condude that the mechanism predicts a zero value for the slope at
equilibrium as was to be expected since the Lindemann 's rnechanism has a birnolecular
step which will lead to a quadratic rate law. If such is the case, how can \Ve then reconcile
an experimental slope kexp l' O and kexp l' 00 in (r,jJ) with the rnechanism?
An obvious and immediate consequence of zero equilibriurn slope is that, because there

is also a maximum, there rnust be an inl1ection point. 'Ve now look for the slope of the
tangent line at the inl1ection point in the rate law coordinates (r,jJ), or for that matter,
as Eq. (13) shows, in coordinates (r,c). Thus with the help of Eqs. (4) and (5) and taking
into account that

we obtain the general expression for the slope * valid at all points of the curve c = c(r),
namely

de
=dr

k1,.2 - k2cr - kJc
-kl r2 + k2cr

(38)

From hefe, aftcr taking t}¡c second dcrivativc wit.h rcspcct lo r, cquating it to zera and
rearranging it \Veobtain the vallle of the slope at the illl1ection point. 11 is givell by

2k, C1" - 1.-2c2
kl,.2

(39)
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Now, we notice that at the inflection point the equality between the expressions (38)
and (39) must hold, yielding the following condition the coordinates (r, c) must satisfy at
that point. It reads as

2k¡ r - kzc k) rZ - kzcr - k3C
----c=

k)r -k¡r+kzc

From here we see that in the approximation when

(40)

that is, when the system has not arrived to equilibrium since still r # O, the equality (40)
is satisfied with value zero if k) r = kzc 01', what amounts to the same thing when

(41 )

01', taking into account Eq. (13), when

(42)

This last value for the slope is the one the hypothesis of the pseudo steady state assignes
to the maximum possible value of kcxp. Here we have shown from the mechanism that the
slope

(43)

coincides with the tangent at the inflection point il the approximation kzrc » k3c ho/ds,
since in this approximation Eq. (41) satisfies the equality (40).
In Fig. 2 the curve c = c(p) is shown, for the sake of illustration of the features given by

Eq. (25) and the maximum. In Fig. 3, the curve ¡j(r) is shown; in it we illustrate Eq. (26)
and the inflection point, locatcd, within the precision of the graph, at (r = 0.36, c = 0.13)
for the k; used, namely k¡ = kz = k3 = 1.0. With these values for the coordinates of the
inflection point, Eq. (39) yields a slope of 0.59, clearly not k1k3/kz = 1, as it must be
since in this case kzr < k3, however still with ,. # o.
In other words one finds a linear rate law in coordinates (r,]i) when the experiment

has not gone all the way towards the equilibrium. This occurs either because condition
kzr » k3 is met in whose case the slope is k) k3/ kz = 1, 01' beca use the experimental
measurements are located near the inflection point on the flat part of the curve between
the maximum and the cquilibrium.
Lastly but not least, we find that Eq. (42) predicts, with the help of relations (22)

and (23), the following slope at the inflection point in the coordinates (r + c,¡j):

(44)
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FIGURE 2. Curve e = e(]!), with k, = k2 = k3 = 1.00 and "0 = 1.00, fram Eq. (24).

3. FAST VAHlABLE ELlMINATION

In the present seetion, we show the fonn of the rate law prcdietcd from thc mcehanism
by the mcthod of elimination of fast variablcs for two eascs, low initial eonecntration and
high initial coneentration of rcaetant ro. Thc mcthod cmploycd is thc singular pcrturbation
method [11]. \Ve show that thc rate equation dcrivcd from thc proeedurc of the pseudo
steady state hypothesis, namcly

.. klk3r2- p = 1" = - ----,k2,. + k3
(45)

can be justifi",1 as a gross approximation of thc rate law obtain~d in thc low initial con.
eentration easc; in eonscqucnrc, wc arguc that thc result for 1hc slopc (42) eannot be
eonsistently obtained from (45) by applying lo it thc approxilllation k2r » k3. As for thc
high initial eoneentration easc, we obtain a lincar law that Icads to the resnlt (42).

In the first part of this scetion wc show thc ralc law that is oblaincd from the indcpcn-
dcnt equations in (e, 1') assoeiatcd to thc Liudcmann mcehanism, Eqs. (4) amI (5) undcr
the assumption that thc initial eonecntration of thc rcaetant "0 amI thc valucs of thc k¡
are such that tlle intcrmediate specics e, suffers decompositioll raster than recombination
or formation. This amo\lnts to the dcfinition of thc fol1owing smal1ness parametcr:

k.rTQ
Ex == -k-« 1,

'3
(46)
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where

(47)

and correspondingly lo

(48)

\Ve now look for a lransformalion of lhe Eqs. (4) and (5) sllch lhal with the proposed
é" one variable can be considered a slow one and the other a fast one. Let llS choose the
time scale defilled by

and the followillg dimellsiolliess variables:

kIl'O
T == Ta,

y

k,r1"O
e == -A-' -v,

y

(49)

(50)

(51)
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where, corresponding to the selection of kz aboye, the ky are lo be chosen respectively as

With the help of the transformation (49) to (51) the set of Eqs. (4) and (5) is seen to be
transformed into the fol!owing one:

da
dr
dv
dr

k¡ 2 k2= --a + -av,
ky ky

k¡ 2 k2 U
= -a - -av --.

ky kv Ez

(52)

(53)

Two time scales beco me apparent now, the slow one for variable a and the fast one for
variable u, since as Ez -> O, the rate ~~ becomes infinite while the rate ~~ remains finile.
Fol!owing the wel! known procedure syslematized in Ref. [111 we substitute for the fast

variable in Eq. (53) the following series:

and require the different orders in Ez to be equal on bolh sides of lhe equation. To order
£;1 we find that

UrO) = O,

and after reverting to the original variables that

r = -k¡r2 amI p = O.

To order E~ we find that

(1) kl 2
V = -u,

k y

alld after reverling lo lhe original variables lhat

. 2 kl k2 3 2T = -kIT + -k-T, while p = k¡T ,
'3

Since Dne of our goals is to filld out. thc approXill1atioll lIndel' which the ratc law givcn by
Eq, (45) is obtained, we push the calculation lo lhe next order, Ez, and filld that

(54)



SOME MATlIEMATICAL PROPEIlTIES OF TIIE LINDEMANN MECIIANISM 443

Upon reverting to the original variables the resulting rate cquations arc

• 2 ( k2 ( k2) k1 k2 2 2k1 kiTo 3)
l' = -kIT 1 - -k l' - 2 - k

l
71' + k

2
l'

3 3 Y

and

2 ( k1 ( k2) k2k1 2)jJ = kl l' 1 + - 2 - - l' - 2--1' .
k3 k1 k5

(55)

(56)

At this point, the connection betwcen thc rate law predictcd by the pseudo steady state
hypothcsis (45), and Eqs. (55) and (56) can bc secn in thc following way. Let us keep, in
Eq. (55), tcrms up to ordcr 1'3 only, and lct us considcr thc rcsulting expression as a !irst
ordcr approximation if

Whcn we do this, thc rcsulting eqnation is non othcr than thc equation for r in (45).
This approximation is a legitimatc one, since k2T « k3 is cither, independent from the
smallness parameter él, compatiblc with the smallncss paramctcr é2, or eompatible with
the smallncss paramctcr é3, sce Eq. (48), anyonc of thcm giving rise to Eq. (55). Notice
however, that we can now see that it is incongruous to try to obtain the linear rate law
by claiming in Eq. (45) that k2T » k3 as it is nsually donc, since Eq. (45) comes as we
have shown here from the oppositc approxilllation applied to (55).
It is pcrhaps worthwhile to point out that the approxilllation k2T » k3 applied to

Eq. (45) is cquivalent to take ro = oo. In fact thc cOlllparison of

le = _dlnT
exp - di

with Eq. (45) can be written as

1 k2 1-=-+-.
kexp kl k3 k1 l'

From here we sce that to takc thc lllaXilllUIllpossiblc valne of kexp = kk;' amounts to take
~= O. Ncverthclcss, thc idcnti!ication of thc slope

isjusti!ied apart from (45), in a particular approximation, because as we havc shown in the
previous scction, it corrcsponds to thc slopc of thc tangcnt at thc inficction point between
the maximum and the £'<]uilibriuInminimulll, only w1lcI1 k2T ~ ka still holds. Notice also
that contrary to what the pscudo stcady statc hypothesis cstablishes, sec Eq. (45), only
to ordcr 1'2 is p = _;..
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In the second part of this section we apply the singular perturbation method again. This
time let us assume that the intermediate species c, suffers recombination and formation
faster than decomposition; this assumption disqualifies e as a short lived variable. This
situation is taken into account through the following smallness parameter Ar, and time
seale IJ:

kJ
Ar == -k-« 1,

'xTa

IJ == Art.

Here, the k. are the same as in (47) aud, correspondingly,

(57)

Let us start once more from the independent equations (4) and (5) but this time, since we
have shown in the previous section that a linear rate law is to be expected when not near
equilibrium, that is when e # O is still valid, let us apply to them, the following change of
variable:

(e,r) ~ (Y == e+r, ,.).

The result is the set formed by

and

r = _k¡r2 + k2r(Y - r).

(58)

(59)

In the time scale IJ, the set of evolntion Eqs. (58) and (59) is seen to be transformed into
the pair for the slow variable Y, and the fast one r, given next,

dYdii = -(Y - r)kr,'o,

dr 1 2-=-(-klr +k2r(Y-r)).
dlJ Ar

The substitution of the series

(60)

(61 )

into the fast variable equation (G1) and the application, as before, of the well kuown
method [9], leads, to the first order in the smallness paramcter A-I, to two solutions,

,.(0) = k2 Y ami ,.(0) = O,
k¡ + k2
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whieh in their turn yield respeetively the following equations:

_d(_r_+_e_)= _k¡_k_3_'(r + e)
dt k¡ + kt

and

d(r + e) k ( )--d-t- = 3 r + e

To the next order, .xx, we find esselltially the same results, that is the straight lines

I(r + e) k k k kZ( = 1 3 (r + e) _ ¡ 3
dt k¡ + kt (k¡ + kz)Z

d(r + e) = k3(r + e).
dt

(62)

(63)

\Ve immediately recognize this rate laws as the oues giving slopes we have already ealcu-
lated. In faet, Eq. (62) has the inf!eetion point slope, Eq. (44), that is eonsistent with the
slope (42); whereas Eq. (63) has the near equilibrium slope given in the Eq. (37) which
we have disearded on the grounds of no experimental evidenee for it.
\Vith respeet to Eq. (62) an approximation similar to the one employed for (55) can

be devised if one insists in an equation of the form predieted by the pseudo steady state
hypothesis. In faet, expressing

k,k3(r+e)
k¡ + kz

as eommon factor in Ec¡. (62) and looking upon the resulting expression as an approxima-
tion when in addition of (57) the more stringent requisite

k
3 « 1

(k¡ +kz)(r+e)

is still satisfied, it can be writleu as

(64)

It might be argued that Eg. (62) does uot eorrespond to a true rate law beeause it
eontains the variable r + e aud e is a eonceutration that is not the one traditionally mea-
sured. However, in the case of gaseous deeompositions, the intermediate species invoked
by the Lindemann 's meehauism is not a chemieally different species from the reaetant r
as is the case of the interlllcdiatc in thc l\ljchaclis-~lentcn IIlcchanism for cxample. The
Lindemann's meehanism postulates speeies e to be the same as species r, only that having
some of its internal degrees of freedom enriehed in en('rgy; thus when the eoneentration of
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r is thought to be the measured one, it could be the couceutration corresponding to r + c.
If this is the experimental case, we may condude that the real linear rate law found is the
one given by (62) and the linear experimental slope kexp must be equated with

(65)

corresponding to Eq. (44), rather than with

k¡kJr
k2r + kJ .

\Ve must stress the fact that whether this is the case for a particular experiment or not, it
does not alfect the validity of Eq. (42). Iu any case, we are in the physical situation that
the occurrence of a constaut experimeul al slope comes from the fact that the experimental
measurement of the reactaut couceutration r has uot beeu mad~ wheu asymptothically
uear the equilibrium.

Fiually let us point out that it is inconsistent to apply the approximatiou

with the goal of obtaining the quadratic law form in expressiou (64) because it is the
opposite of the approximation that leads to Eq. (64) in the first place.

4. CONCLUDlNG REMARKS

Several properties of the non-linear Liudemaun mechauism have been demoustrated. They
are embodied by the new results expressed among others in Eqs. (26) for the initial slope
in the experimental space (r, ji), and particularly the Eqs. (32) and (33), for the near
equilibrium slope iu the phase space (p, c). These two possible values, predicted by the
mechanism, exhibit the existence of two branches of results; one of them, has not, up to our
knowledge, being observed in experiments. It is the one given by the set of Eqs. (33), (35)
aud (37). With respect to the other set of eqnatious for the uear equilibrium slopes, given
by (32), (34) and (36), and in view of the fact that there exists the maxima implied by
Eq. (27) for the spaces (r, ¡i) and (r +c, ¡i) we condude there must exist the corresponding
inflection points.

Since accordiug to the mechanislIl the equilibriulll slope iu (r,¡i) is zero, the idea is
advanced that if a constant slope is experimentall)' fouud, it is beeause the experiment
has been taking place along the f1at part of the curve where the inflectiou point is to be
found, that is, when still rojO anu cojO (see Fig. 3). lt was next shown that the value
of the slope that traditionally has beeu ascribed to the experimental slope kexp uamely
the one given by (43) corresponds to the slope of the taugeut at the iuflection point that
occurs, in the (r, ¡;) curve predicted by the Liudemauu's lIlechanism, when k2r » kJ. This
last condition however, is not always realized; given a decomposition reaction, at fixed
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temperature, the ki are fixed and if it holds or not will depend on the chosen TO. In fact, in
Fig. 3 the case is exhibited where an approximately flat part is found near the inflection
point, whose slope is not the one given by (43) since in this case the approximation
k2T » k3 is not applicable.
The question of finding the approximations that willlead to the linear and the quadratic

rate laws from the mechanism, was addressed with the singular perturbation method of
approximation known a.. fa..t variable elimination method in the second section.
'Ve have shown first than when the nature of the reactant and its initial concentration

and temperature are snch that the decomposition rate is the fastest process, that is when
kxTo « ka, the rate law is the polynomial given by either of the Eqs. (55) or (56), its
lowest order giving the quadratic law. The rate law predicted by the pseudo steady state
hypothesis, namely Eq. (45), is shown to be the cubic order in T approximation of (55),
when k2T « ka. In this way it is exhibited that it cannot be claimed to obtain the linear
law ¡i(T) in a consistent fashion from Eq. (45) because that requires to ask for the opposite
approximation, k2r » k3• Thus, the identification of the expression (43) with the k.xp at
high concentration is open to objection. The question remains then of how to obtain a
linear rate law from the mechanism. This we addressed next.
\Ve have shown that if a slope is found to be a constant, different from zero, it is

because the measurements are not yet near equilibrium, otherwise a zero slope would
be found (see (34) and (36)) and e would be zero. According to this fact, we applied the
approximation method of elimination of fast variable. The result we found is the prediction
of a linear rate law for Y(Y), where Y == T + e but not for r(T). This result is obtained
when the nature of the reactant and the initial concentration are such that ka « kxTo,
see (57), happens to be. l3ut if such is the physical situation, then, e cannot possibly act
as a fast variable. After transformation of the evolution equations to the variables T, and
T + c, the predicted rate law is the one gi\'en in Eq. (62). Its slope being the same as
in (44), which is consistent with the result given by Eq. (42). Our comment on this is
that beca use species T and e are chemically the same, their differences coming from the
excitation of internal degrees of freedom in e, it might well happen that the true linear
rate law experimentally obtained is the one given in Eq. (62) and the experimental slope
k.xp should then be equated with (44) and not with (42).
Thercfore, in opposition to the pseudo steady state hypothesis, Eq. (45), to which both

approximations k2T « k3 and k2T » ka have been traditionally applied, we have shown
here the following pro]>erties of the Lindemann 's mechanism. First, the application of
the approximation k2T » ka to Eq. (45) is inconsistent because Eq. (45) is shown to
be obtained when k2T « k3. As a consequence, the identification of the linear rate law
constant k.xp with (43) cannot be justified from Eq. (45). Second, a linear rate law is
obtained for the Sum of concentrations T + e which leads to a different identification of
k.xp, namely the one given in (65).
If, however, it is sure that the true experimental coordinates are (T,¡i), then the linear

rate law in coordinates (T, ¡i) is an experimental approximation along the tangent at the
inflection point of the curve predicted by the mechanism. \Vhatever the case, Eq. (42)
remains truc because it is a result dcrived dircctly frolll tlle mechanisnl itself without
having recoursc to au)' particular metltad Of interprctatioll; howcvcr it cannal come fraIn
elimination of a fast variable with independent variables (r, e).
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Summing up, we have found that for a given reaction, if one starts with an ro such
that k,ro « k3 is met and a linear rate law in (c,¡i) is found, kexp cannot possibly be
given by (43) but comes from the experiment being realized along the !Iat part of the
curve predicted by the Lindemann mechanism. But if one starts with an ro such that
k,ro » k3 is met and a linear rate law is found, then kexp is given by (44) provided it can
be shown that the measured concentration is r + c. The question of what is the correct
identification of the experimental, constant slope, (43) or (44) depends therefore on which
are the true experimental variables, but if Lindemann's mechanism is to be applicable,
a constant different from zero slope will emerge beca use Illeasurements have not been
taken up to the equilibrium but lie near the in!lection point of (r,¡i). The identification of
kexp, has an impact on the evalnation of the ki froIll the mechanisIll, but this and further
consequences in connection with statistical mechanics theories will be pursued elsewhere.
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