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ABSTRACT. In the first part several mathematical properties of the non-linear mechanism are
shown which have not been reported before. In particular it is shown that the traditional inter-
pretation of the experimental slope in terms of the constants of the mechanism corresponds to the
slope at an inflection point where the system is not asymptotically near equilibrium. In the second
part, with the help of the method of fast variables elimination, the linear and the quadratic rate
laws, which are identified with the experimental rate laws, are shown to be approximations when
the initial concentration of the reactant is high or low, respectively, compared to combinations
of the constants of the mechanism. The interpretation of the linear rate law as emerging because
measurements are not near equilibrium and a different interpretation for the constant of the linear
rate law in terms of the constants of the mechanism are presented.

RESUMEN. En una primera parte, se exhiben varias propiedades del mecanismo nolineal que no
han sido reportadas previamente. En particular se muestra que la interpretacién tradicional de la
pendiente experimental en términos de las constantes del mecanismo corresponde a la pendiente
del punto de inflexién donde el sistema no est4 asint6ticamente cerca de equilibrio. En una segunda
parte se muestra, con ayuda del método de eliminacién de variable répida, que las leyes lineal y
cuadrética, que se identifican con las leyes de rapidez experimentales, son aproximaciones que
ocurren cuando la concentracién del reactante es alta o baja, respectivamente, comparada con
combinaciones de las constantes del mecanismo. Se presenta la interpretacién de que la ley de
rapidez lineal emerge porque las mediciones no han sido realizadas cerca del equilibrio y se ofrece
una interpretacion distinta para la constante de la ley de rapidez experimental lineal en términos
de las constantes del mecanismo.

PACS: 82.20.Hf; 82.30.Eh

1. INTRODUCTION

Since the beginning of this century, after the work of Michaelis and Menten in enzymatic
reactions [1] and that of Lindemann [2] in gaseous decompositions, it has been a practice,
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when coming across with reactions whose phenomenological rate law does not comply in
one way or another either to the Guldberg-Waage kinetic equation form [3,4], or to the
expectations of collision theory for chemical reactions, to postulate a mechanism formed by
several reaction steps each one of them obeying the Guldberg and Waage law, but involving
one or several intermediate species that are not directly observed at the time scale at which
the product of the reaction is measured and the rate law observed. The connection between
the set of differential equations implied by the mechanism and the phenomenological rate
law, a different differential equation, has been traditionally established by postulating that
at all times during the evolution of the reaction, the rate of change of the intermediates
is zero. When the substitution of the ensuing “steady” reactant concentrations on the
equation of the rate of product formation is made, if the resulting equation is of the same
form as the experimental rate law, the mechanism is thought to be the kinetic explanation
of the reaction. Furthermore, as a consequence, the experimental Arrhenius constant can
be interpreted in terms of the reaction constants of the mechanism, thus lending them
physical meaning. This procedure is called the pseudo-steady-state hypothesis [3,4].

The pseudo-steady-state hypothesis is considered successful in the sense that the slope
of the rate law it predicts as the reaction approaches the equilibrium coincides with the one
numerically predicted from the mechanism, for example the Lindemann’s and Michaelis-
Menten cases [5]. It is also considered successful, at least in the case of gaseous decompo-
sitions [6], because of the good agreement between the value of the global rate constant
predicted by the statistical mechanical Rice-Ramsberger-Kassel-Marcus and Slater theo-
ries [4,7] and the experimental rate constant identified in terms of the constants of the
mechanism [7-9]. However, from the point of view of mathematics, the procedure fol-
lowed by the pseudo-steady state-hypothesis to obtain the rate law from the mechanism
is objectionable, and to apply it with the belief that it must correspond to some sort of
approximation of the equations of the mechanism in a perturbative method when cer-
tain parameters are small, without knowing which they are, is to miss information on the
applicability and predictive capability of the mechanism, to say the least.

The pseudo-steady-state hypothesis was first criticized within the context of the simple
Michaelis-Menten mechanism and related enzymatic reactions, and the form of the rate
law justified from the postulated mechanism, by showing that it is the degenerate solution
of a singular perturbation method of approximation of the independent equations when
certain parameter, chosen from the particular experimental circumstances, is small [10].
In this particular case as in many others the smallness parameter makes evident the
existence of two different time scales associated with the reaction, one characterizing the
evolution of the intermediate species, called the fast variable, and the other characterizing
the evolution of one of the other reactants called the slow variable. The method to obtain
from a system of differential equations representing any type of physical process, the
one equation that will approximately fit its behaviour near a stable fixed point has been
systematized under the name of fast variable elimination [11]. However the selection of
the smallness parameter, depends on extra information.

In most of the instances of rate laws that have been mathematically justified using per-
turbative methods, the smallness parameter is chosen either from particular experimental
conditions [10], by deducing it from the pseudo steady state hypothesis itself [8], or by
trying relations between magnitudes of the several constants involved. This last way of
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selection of the smallness parameter is fruitful to obtain the rate law of complex reactions;
like that of the formation of hydrogen bromide that has been justified from the mechanism
by choosing the smallness parameter from considerations on the relative magnitude the
involved rate constants ought to have, given that the intermediates concentrations are
to be fast variables since they are absent from the rate law [12]. Several other complex
reactions have been studied from the point of view of other perturbation methods [13].

It so happens that little attention has been paid to the mathematical properties of
mechanisms. A systematic study of the mathematical properties of a mechanism, as far
as it is feasible, can help in the identification of a smallness parameter and to clarify the
approximation under which the experimental slope can be equated to the predicted slope.
But not only this, a study of the properties of a mechanism might lead to the direct
identification of one or more of its constants with experimentally measured quantities in
addition of giving information on interesting properties. No one knows what surprises
remain hidden if one simply applies the-pseudo-steady-state hypothesis without having
shown what the properties of the mechanism are, and which is the approximation, in
terms of the constants of the mechanism and of the experiment, that leads to it. That is,
other than assuming the rate of formation of intermediate species zero at all times.

Although the study of the non-linear Lindemann mechanism is already a rather old
subject [4,6,14], we think that proper attention has not been paid to the basic and most
simple of its mathematical properties and the approximations under which its associated
rate law is obtained. In the present paper we study them. Our central goal, besides getting
information, is to find out the circumstances under which the traditional identification of
the experimental slope ke, (3,4, 7], of the linear rate law with a combination of the
constants of the mechanism is valid, without having recourse to the pseudo steady state
hypothesis. In a second part we show which are the smallness parameters that will yield
from the mechanism the linear and quadratic laws that have been observed in gaseous
decompositions for which the Lindemann mechanism has been applied. In this second
part we use the method of elimination of fast variables [11]. We end the paper with a
section of comments on the new results obtained and conclusions.

2. GENERAL PROPERTIES

In this section we prove several properties of the non-linear Lindemann mechanism. They
are mostly associated with the slopes at different points of curves of different coordi-
nates. The spaces considered are those pertinent to the relation of the mechanism to the
experimental results.

The unimolecular decomposition of reactant R, to yield the products P and Q, through
its transformation into the vibrationally exited species C, is represented by the following
mechanism:

B4R-S50% R, (1)
O e By B i, (2)

55 p 4 (3)
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where the k; represent the rate constants. If we denote the concentrations by the lower-case
letters associated to the species represented by capitals, the mass action law applied to the
mechanism gives the following equations for the time rate of change of the concentrations:

# = —kyr? + kger, (4)
¢ = kir? = kaer — kac, (5)
p = kac, (6)
i=p, (7)

where the dot above the symbol denotes the time derivative. We notice that there is one
constant of motion since 7 + ¢+ p = 0, and therefore that there are only two independent
equations of motion. Upon choosing for the initial time ¢ = 0, the following initial values
for the concentrations:

rit =0) = 7y, (8)

ce(t =0) =0, (9)

p(t =0) = 0; (10)
the constant of motion is given by

ro=r+c+p. (11)

We choose as the independent concentrations the set (c,p) and have as a consequence
the following independent equations of motion:

é = ky(rg — ¢ —p)? = kac(ro — c — p) — kac (12)
f) — k3c' (13)

We obtain, after applying the initial conditions given in (8), (9), and (10) to the indepen-
dent Eqgs. (12) and (13) that the rate of product formation is

p(t=0) =0, (14)
and that the rate of formation of the intermediate species is
é(t = 0) = kyry. (15)

On the other hand calling Q the time at which equilibrium is achieved, both defining
equilibrium conditions,

p(t=0Q)=0 (16)
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FIGURE 1. Curves ¢ = ¢(t) and p = p(t), with k; = k; = k3 = 1.00 and ro = 1.00, according to
equations (12) and (13).

and
&t =R =1, (17)
lead to the equilibrium concentrations
e{t=8) =0 (18)
and
p(t = Q) =ry. (19)
Taking into account that the variables are restricted to semipositive values because they
are concentrations, we find from Eq. (12) that ¢(¢) has a maximum c(t = to) = cm. This
maximum is simultaneous with an inflection point for p(t = to) = pi because of Eq. (13).
These features are illustrated in Fig. 1 where we have plot ¢(t) and p(t). The relation
among the values ¢, and p;, from Eq. (12), is given by
k](’t"() —Cm — pi)2 — Jl‘--QCm(TCI — € — i) + k3Cm. (20)

Up to now we have information concerning the values of the variables and of the slopes
of the curves c(t) and p(t) at selected points, namely at the initial time, at time ¢; where
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the maximum of ¢ occurs and at the equilibrium time as predicted by the mechanism. We
now want to use this information to find out the slope of the functions p(r) and p(r + ¢)
at those same times. The space (r,p) is the one relevant for the discussion of the relation
between the mechanism and the rate law and space (r + ¢, p) will show itself useful in the
next section. To obtain the information we want, it is most helpful to find first the slope
of the curve in the phase space (p,c). The reason is that from the rules of calculus, the
slopes we are looking for are most easily expressed in terms of the slope in (p, ¢). In fact,
we have first that

dc ¢

rrity @)

Then, using the constant (11) into the expression dp/dr, we find also from calculus that

W_.. =2
dr p+e
and with the use of Eq. (13) that
. (22)
dr La 5

In an analogous fashion we also obtain from the expression dp/d(r + ¢) the equality

dp é
— = —=k3-. 23
d(r + ¢) 3p (#8)

We now proceed to the evaluation of the slope in coordinates (p,c) given by ;E; for the
few selected points, of initial time, maximum of ¢ and equilibrium. Its explicit expression
can immediately be written down from Eqs. (12) and (13). It is the following one,

¢ _ ki(ro—c—p)® — kac(ro —c = p) — ksc

p ksc 4

We find, upon substitution of the initial conditions (9) and (10) in Eq. (24), that its value
at the origin in (p,c) or initial time is

R Y r} karo ks
— = — -_— —_— = 00, 25
L p ks {lirn,ﬂo c ki ki W

This result carries over, with the help of relations (22) and (23), to the following initial
time slopes, respectively:

lim 2 = —ky lim —— = —k3 (26)
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and

. /4
th—l:I(]) d(r+c¢)

It is verified, with the use of (20), that in (p,c) there is a maximum, since

Also, because of relations (22) and (23) we find that Eq. (27) implies the presence of a
maximum also in coordinates (r,p) and (r + ¢, p).
With respect to the value of the slope at equilibrium, let us denote for expediency,
.. B
P = lim - (28)
t—p

and then apply the equilibrium values given by (18) and (19) to Eq. (24). The result is

ki rd+pi-2rop k3
P= s (32151_2 - 5 (29)

After applying L’Hopital’s rule to resolve the indetermination, we have that,

ki (lime_q 2(p — 7o) kg)
P=— - — .
k3 ( P k1 (a0
This result shows there are two possible values for P. If condition
ks  limy_.q2(p — o)
ky P ()
is met, the value of the equilibrium slope is
P=0, (32)

but if not, we may evaluate first the limit in the right-hand side of Eq. (30) and then find
P=-1 (33)

These two values for the equilibrium slope P, (32) and (33), bring by virtue of the transfor-
mation (22) the prediction of two values for the experimental cquilibrium slope, in (r,p),
the space of the rate law; they are the following ones:

dp

lim — =0
et dr ! (34)
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corresponding to value the P = 0 (32); and

. dp
tler!;! o =% (35)
corresponding to the value P = —1 (33). As the equilibrium slope in (r+¢, p) is concerned,
two values are also predicted, corresponding to P = 0 and to P = —1; they are, respectively
. dp
lim ——— =10
M T +0) (H6)
and
. dp
lim ——— = ks.
R drta 2 (94)
Taking into account the information from experiments, we shall discard the set of equi-
librium slopes coming from P = —1, (35) and. (36), since one of them, prediction
dp
Iim— =
qdr

up to our knowledge, has never been observed. This consideration leaves us with only
the set of equilibrium slopes equal to zero, coming from the value P = 0, namely (34)
and (36). Thus we conclude that the mechanism predicts a zero value for the slope at
equilibrium as was to be expected since the Lindemann’s mechanism has a bimolecular
step which will lead to a quadratic rate law. If such is the case, how can we then reconcile
an experimental slope kexp # 0 and kexp # 00 in (r,p) with the mechanism?

An obvious and immediate consequence of zero equilibrium slope is that, because there
is also a maximum, there must be an inflection point. We now look for the slope of the
tangent line at the inflection point in the rate law coordinates (r,p), or for that matter,
as Eq. (13) shows, in coordinates (r,¢). Thus with the help of Egs. (4) and (5) and taking
into account that

de ¢

dr 7’
we obtain the general expression for the slope :f—,f valid at all points of the curve ¢ = ¢(r),

namely

dc k11'2 = kgCT‘ — kg(_‘

i 38
dr —k1r2 + kocr (38)

From here, after taking the second derivative with respect to r, equating it to zero and
rearranging it we obtain the value of the slope at the inflection point. It is given by

CONR: .
(d_c) _ 2k1cr ngc (39)
dr inflection kyr
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Now, we notice that at the inflection point the equality between the expressions (38)
and (39) must hold, yielding the following condition the coordinates (r,c) must satisfy at
that point. It reads as

2k - kgcc _ kir? — kger — ke

(40)
kir —kir + koc

From here we see that in the approximation when
sz‘C > k3C,

that is, when the system has not arrived to equilibrium since still r # 0, the equality (40)
is satisfied with value zero if k17 = koc or, what amounts to the same thing when

(#),-2
dr)kyrsks k2
or, taking into account Eq. (13), when
), .-
Ar ) kyrsks k2

This last value for the slope is the one the hypothesis of the pseudo steady state assignes
to the maximum possible value of kexp- Here we have shown from the mechanism that the
slope

kaky
% (43)
coincides with the tangent at the inflection point if the approzimation kare > ksc holds,
since in this approximation Eq. (41) satisfies the equality (40).

In Fig. 2 the curve ¢ = ¢(p) is shown, for the sake of illustration of the features given by
Eq. (25) and the maximum. In Fig. 3, the curve p(r) is shown; in it we illustrate Eq. (26)
and the inflection point, located, within the precision of the graph, at (r = 0.36,c = 0.13)
for the k; used, namely k; = ky = k3 = 1.0. With these values for the coordinates of the
inflection point, Eq. (39) yields a slope of 0.59, clearly not kiks/ks = 1, as it must be
since in this case kor < k3, however still with r 0.

In other words one finds a linear rate law in coordinates (r,p) when the experiment
has not gone all the way towards the equilibrium. This occurs either because condition
kar > k3 is met in whose case the slope is kjk3/k; = 1, or because the experimental
measurements are located near the inflection point on the flat part of the curve between
the maximum and the equilibrium.

Lastly but not least, we find that Eq. (42) predicts, with the help of relations (22)
and (23), the following slope at the inflection point in the coordinates (r + ¢, p):

(_dp_) i M (44)
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FIGURE 2. Curve ¢ = ¢(p), with k; = ky = k3 = 1.00 and r¢ = 1.00, from Eq. (24).

3. FAST VARIABLE ELIMINATION

In the present section, we show the form of the rate law predicted from the mechanism
by the method of elimination of fast variables for two cases, low initial concentration and
high initial concentration of reactant ro. The method employed is the singular perturbation
method [11]. We show that the rate equation derived from the procedure of the pseudo
steady state hypothesis, namely

L kiksr?

p=r= k2T+k3, (45)
can be justified as a gross approximation of the rate law obtained in the low initial con-
centration case; in consequence, we argue that the result for the slope (42) cannot be
consistently obtained from (45) by applying to it the approximation kor >> k3. As for the
high initial concentration case, we obtain a linear law that leads to the result (42).

In the first part of this section we show the rate law that is obtained from the indepen-
dent equations in (c,7) associated to the Lindemann mechanism, Eqgs. (4) and (5) under
the assumption that the initial concentration of the reactant ro and the values of the k;
are such that the intermediate species ¢, suffers decomposition faster than recombination
or formation. This amounts to the definition of the following smallness parameter:

k =
=0 (46)

Ex

3
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FIGURE 3. p = p(r), with ky = kz = k3 = 1.00 and 7, = 1.00 from Eqgs. (12)-(13) with the help of
Eq. (22).

where
ke = ki, ko, (k1 + k) (47)
and correspondingly to
€r = €1, €9, €3. (48)

We now look for a transformation of the Eqs. (4) and (5) such that with the proposed
€z, one variable can be considered a slow one and the other a fast one. Let us choose the
time scale defined by

T = k1ot (49)

and the following dimensionless variables:

kg
r= kloa, (50)
c= klrov, (51)
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where, corresponding to the selection of k; above, the ky are to be chosen respectively as

ky = kg, kl, kl or kz.

With the help of the transformation (49) to (51) the set of Eqgs. (4) and (5) is seen to be

transformed into the following one:

do kl

e sk
- KT TR

d_’U . k102 kz v
dr k7 ke

(52)

(53)

Two time scales become apparent now, the slow one for variable ¢ and the fast one for
variable v, since as £; — 0, the rate % becomes infinite while the rate ﬂ{- remains finite.
Following the well known procedure systematized in Ref. [11] we substitute for the fast

variable in Eq. (53) the following series:

v =0 40V 4 2@ 4 ...

and require the different orders in £, to be equal on both sides of the equation. To order

e;! we find that
(9 =0,
and after reverting to the original variables that
7 =—kir? and p=0.

To order €2 we find that

and after reverting to the original variables that

klkﬂ 3

'f‘=—k11"2+—j€—1‘ ,  while ﬁ=k]1"2.
3

Since one of our goals is to find out the approximation under which the rate law given by

Eq. (45) is obtained, we push the calculation to the next order, £, and find that

= —0 —_———

2 K 3 9 k2 _ 2kakaro
k2 ki kyks

(54)
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Upon reverting to the original variables the resulting rate equations are

k ka\ kik 2kq k2
s 2 _ k2 __‘2 1A2 9 1h9T0 3 55
F=—kr (1 " (2 kl) 2 + B r) (55)
and
k k kok
5 = kyr? e [ o8 i gt Ll 56
p=kyr (1+k3(2 kl)r kgr) (56)

At this point, the connection between the rate law predicted by the pseudo steady state
hypothesis (45), and Egs. (55) and (56) can be seen in the following way. Let us keep, in
Eq. (55), terms up to order 73 only, and let us consider the resulting expression as a first
order approximation if

kQT < ks.

When we do this, the resulting equation is non other than the equation for 7 in (45).
This approximation is a legitimate one, since kar < k3 is either, independent from the
smallness parameter €, compatible with the smallness parameter €3, or compatible with
the smallness parameter ¢3, see Eq. (48), anyone of them giving rise to Eq. (55). Notice
however, that we can now see that it is incongruous to try to obtain the linear rate law
by claiming in Eq. (45) that kor > kj as it is usually done, since Eq. (45) comes as we
have shown here from the opposite approximation applied to (55).

It is perhaps worthwhile to point out that the approximation ker > k3 applied to
Eq. (45) is equivalent to take ry = oco. In fact the comparison of

_ dlnr

ke = e
w dt
with Eq. (45) can be written as

1 ks 1

kexp  kiks ke

From here we see that to take the maximum possible value of key, = % amounts to take
}, = 0. Nevertheless, the identification of the slope

dp  kiks

dr N kz
is justified apart from (45), in a particular approximation, because as we have shown in the
previous section, it corresponds to the slope of the tangent at the inflection point between
the maximum and the equilibrium minimum, only when kor > k3 still holds. Notice also

that contrary to what the pseudo steady state hypothesis establishes, see Eq. (45), only
to order r? is p = —7.
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In the second part of this section we apply the singular perturbation method again. This
time let us assume that the intermediate species ¢, suffers recombination and formation
faster than decomposition; this assumption disqualifies ¢ as a short lived variable. This
situation is taken into account through the following smallness parameter);, and time
scale 0:

Az = ks « 1,
kzro (57)
0 = Mt

Here, the k; are the same as in (47) and, correspondingly,
'\1' — /\], A21 A31

Let us start once more from the independent equations (4) and (5) but this time, since we
have shown in the previous section that a linear rate law is to be expected when not near
equilibrium, that is when ¢ # 0 is still valid, let us apply to them, the following change of
variable:

(ec,1) — (Y =c+r, 7).
The result is the set formed by
Y = —ks(Y — 1) (58)
and

T = —k11‘2 -+ kQT'(Y - T). (59)

In the time scale 6, the set of evolution Eqs. (58) and (59) is seen to be transformed into
the pair for the slow variable Y, and the fast one r, given next,

dY
&_9- = _(Y = T)k:r'r01 (60)
% = Xl-(-kﬂ‘? + kor(Y —1)). (61)

The substitution of the series
=0 4o 4 22O 4

into the fast variable equation (61) and the application, as before, of the well known
method (9], leads, to the first order in the smallness parameter A~1, to two solutions,

r(0) = fak and 7@ =0,
kl + }\"2
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which in their turn yield respectively the following equations:

dir+c)  kiks
dt h ki + ko

(r+c)

and

d(r + )

T, = k3(1‘ +C)

To the next order, A;, we find essentially the same results, that is the straight lines

d(r + c) kiks klkg
_ __kks 62
dt kl + kg (T' + C) (k1 + k2)2 ( )
dr+e) = 8 o Byl ). (63)

We immediately recognize this rate laws as the ones giving slopes we have already calcu-
lated. In fact, Eq. (62) has the inflection point slope, Eq. (44), that is consistent with the
slope (42); whereas Eq. (63) has the near equilibrium slope given in the Eq. (37) which
we have discarded on the grounds of no experimental evidence for it.

With respect to Eq. (62) an approximation similar to the one employed for (55) can
be devised if one insists in an equation of the form predicted by the pseudo steady state
hypothesis. In fact, expressing

kyks(r + c)
ky + ko

as common factor in Eq. (62) and looking upon the resulting expression as an approxima-
tion when in addition of (57) the more stringent requisite

k3
<1
(k1 + k2)(r +¢)
is still satisfied, it can be written as
kyka(r + C)2

P+ k) o)+ hs (64)

It might be argued that Eq. (62) does not correspond to a true rate law because it
contains the variable 7 + ¢ and c is a concentration that is not the one traditionally mea-
sured. However, in the case of gaseous decompositions, the intermediate species invoked
by the Lindemann’s mechanism is not a chemically different species from the reactant r
as is the case of the intermediate in the Michaelis-Menten mechanism for example. The
Lindemann’s mechanism postulates species ¢ to be the same as species 1, only that having
some of its internal degrees of freedom enriched in energy; thus when the concentration of
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r is thought to be the measured one, it could be the concentration corresponding to r + c.
If this is the experimental case, we may conclude that the real linear rate law found is the
one given by (62) and the linear experimental slope kexp must be equated with

kyks
k1+k2,

(65)
corresponding to Eq. (44), rather than with

klkg,?'
kor + k3

We must stress the fact that whether this is the case for a particular experiment or not, it
does not affect the validity of Eq. (42). In any case, we are in the physical situation that
the occurrence of a constant experimental slope comes from the fact that the experimental
measurement of the reactant concentration 7 has not been mad: when asymptothically
near the equilibrium.

Finally let us point out that it is inconsistent to apply the approximation

k3 > (kz + k1)(1‘ =+ C)

with the goal of obtaining the quadratic law form in expression (64) because it is the
opposite of the approximation that leads to Eq. (64) in the first place.

4. CONCLUDING REMARKS

Several properties of the non-linear Lindemann mechanism have been demonstrated. They
are embodied by the new results expressed among others in Eqs. (26) for the initial slope
in the experimental space (r,p), and particularly the Eqs. (32) and (33), for the near
equilibrium slope in the phase space (p,c). These two possible values, predicted by the
mechanism, exhibit the existence of two branches of results; one of them, has not, up to our
knowledge, being observed in experiments. It is the one given by the set of Eqs. (33), (35)
and (37). With respect to the other set of equations for the near equilibrium slopes, given
by (32), (34) and (36), and in view of the fact that there exists the maxima implied by
Eq. (27) for the spaces (r,p) and (r +¢,p) we conclude there must exist the corresponding
inflection points.

Since according to the mechanism the equilibrium slope in (r,p) is zero, the idea is
advanced that if a constant slope is experimentally found, it is because the experiment
has been taking place along the flat part of the curve where the inflection point is to be
found, that is, when still 7 # 0 and ¢ # 0 (see Fig. 3). It was next shown that the value
of the slope that traditionally has been ascribed to the experimental slope kexp namely
the one given by (43) corresponds to the slope of the tangent at the inflection point that
occurs, in the (r,p) curve predicted by the Lindemann’s mechanism, when kor > k3. This
last condition however, is not always realized; given a decomposition reaction, at fixed
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temperature, the k; are fixed and if it holds or not will depend on the chosen ry. In fact, in
Fig. 3 the case is exhibited where an approximately flat part is found near the inflection
point, whose slope is not the one given by (43) since in this case the approximation
kar > k3 is not applicable.

The question of finding the approximations that will lead to the linear and the quadratic
rate laws from the mechanism, was addressed with the singular perturbation method of
approximation known as fast variable elimination method in the second section.

We have shown first than when the nature of the reactant and its initial concentration
and temperature are such that the decomposition rate is the fastest process, that is when
kzro < k3, the rate law is the polynomial given by either of the Egs. (55) or (56), its
lowest order giving the quadratic law. The rate law predicted by the pseudo steady state
hypothesis, namely Eq. (45), is shown to be the cubic order in r approximation of (55),
when kyr < k3. In this way it is exhibited that it cannot be claimed to obtain the linear
law p(r) in a consistent fashion from Eq. (45) because that requires to ask for the opposite
approximation, ka7 > k3. Thus, the identification of the expression (43) with the keyp at
high concentration is open to objection. The question remains then of how to obtain a
linear rate law from the mechanism. This we addressed next.

We have shown that if a slope is found to be a constant, different from zero, it is
because the measurements are not yet near equilibrium, otherwise a zero slope would
be found (see (34) and (36)) and ¢ would be zero. According to this fact, we applied the
approximation method of elimination of fast variable. The result we found is the prediction
of a linear rate law for Y(Y), where Y = r + ¢ but not for 7(r). This result is obtained
when the nature of the reactant and the initial concentration are such that k3 < k,rg,
see (57), happens to be. But if such is the physical situation, then, ¢ cannot possibly act
as a fast variable. After transformation of the evolution equations to the variables r, and
7 + ¢, the predicted rate law is the one given in Eq. (62). Its slope being the same as
in (44), which is consistent with the result given by Eq. (42). Our comment on this is
that because species r and ¢ are chemically the same, their differences coming from the
excitation of internal degrees of freedom in ¢, it might well happen that the true linear
rate law experimentally obtained is the one given in Eq. (62) and the experimental slope
kexp should then be equated with (44) and not with (42).

Therefore, in opposition to the pseudo steady state hypothesis, Eq. (45), to which both
approximations kyr < k3 and kor 3> k3 have been traditionally applied, we have shown
here the following properties of the Lindemann’s mechanism. First, the application of
the approximation kyr > k3 to Eq. (45) is inconsistent because Eq. (45) is shown to
be obtained when kor < k3. As a consequence, the identification of the linear rate law
constant kexp with (43) cannot be justified from Eq. (45). Second, a linear rate law is
obtained for the sum of concentrations r + ¢ which leads to a different identification of
kexp, namely the one given in (65).

If, however, it is sure that the true experimental coordinates are (r,p), then the linear
rate law in coordinates (r,p) is an experimental approximation along the tangent at the
inflection point of the curve predicted by the mechanism. Whatever the case, Eq. (42)
remains true because it is a result derived directly from the mechanism itself without
having recourse to any particular method or interpretation; however it cannot come from
elimination of a fast variable with independent variables [rye):
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Summing up, we have found that for a given reaction, if one starts with an ro such
that k;ro < k3 is met and a linear rate law in (c,p) is found, kex, cannot possibly be
given by (43) but comes from the experiment being realized along the flat part of the
curve predicted by the Lindemann mechanism. But if one starts with an ry such that
kzro >> k3 is met and a linear rate law is found, then keyp is given by (44) provided it can
be shown that the measured concentration is 7 + ¢. The question of what is the correct
identification of the experimental, constant slope, (43) or (44) depends therefore on which
are the true experimental variables, but if Lindemann’s mechanism is to be applicable,
a constant different from zero slope will emerge because measurements have not been
taken up to the equilibrium but lie near the inflection point of (r,p). The identification of
kexp, has an impact on the evaluation of the k; from the mechanism, but this and further
consequences in connection with statistical mechanics theories will be pursued elsewhere.
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