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Gravitomagnetic mass in the linearized Einstein theory
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ABSTRACT. The gravitational field produced by a “gravitomagnetic monopole” in the linearized
Einstein theory is found and a quantization condition for the ordinary mass is obtained by con-
sidering the motion of a particle in the field of a gravitomagnetic monopole.

RESUMEN. Se halla el campo gravitacional producido por un “monopolo gravitomagnético” en la
teoria de Einstein linealizada y se obtiene una condicién de cuantizacién para la masa ordinaria
considerando el movimiento de una particula en el campo de un monopolo gravitomagnético.

PACS: 04.20.—q; 04.25.—¢g

1. INTRODUCTION

As is well known, assuming the existence of magnetic charges, Maxwell’s equations can
be modified in such a way that these equations show more symmetry between the electric
and magnetic fields. Even though it is a straightforward matter to propose the equations

10B 4n

B = SR W o | 1
V-B=dmpm, VxE=--—r——Jn, (1)
by analogy with
10E 4w
V-E=41ps, VXB=—-——F1+—d¢ 2
E TP x .y + p (2)

where pe, pm are the electric and magnetic charge densities and Je, Jn, are the electric
and magnetic current densities, respectively, in order to maintain the relation between the
electric and magnetic fields with the usual potentials,

1
B=VxA, E=—V¢—E%—?, (3)
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it is necessary to assume that the potentials have singularities. (Alternatively, it can be
assumed that the potentials correspond to a connection in a non-trivial principal bundle.)
By demanding that the singularities be unobservable in any quantum process, Dirac [1,2]
arrived at the conclusion that the existence of a magnetic monopole implies the quantiza-
tion of the electric charge (see, e.g., Ref. [3] and the references cited therein).

The equations of general relativity allow us to consider sources of the gravitational
field analogous to the magnetic charges; in fact, there exist known exact solutions of the
Einstein field equations characterized by a “magnetic mass” parameter (also called “dual
mass”, “gravitomagnetic mass”, and “NUT parameter”) in addition to the ordinary mass
parameter (see, e.g., Refs. [4, 5]). However, in order to study some of the features of
the gravitational field produced by a gravitomagnetic mass, it is convenient to consider
the linearized Einstein theory, where the analysis is simpler. (A detailed analysis of the
geodesic equations for the Taub-NUT metric, which represents the gravitational field of a
spherically symmetric source with ordinary and gravitomagnetic mass, is given in Ref. [6].)

In this paper we obtain a solution of the linearized Einstein field equations that rep-
resents the gravitational field of a gravitomagnetic monopole, making use of the gauge-
invariant description of the gravitational field given by the curvature tensor. We show
that, in the limit of small velocities, the motion of a particle in the field of a gravito-
magnetic monopole is identical to that of a charged particle in the field of a magnetic
monopole (see also Ref. [6]) and, therefore, we obtain a quantization condition analogous
to Dirac’s relation (see also Refs. [7-9]). In Sect. 2 we summarize the basic equations of the
linearized Einstein theory and we find, in this approximation, the metric corresponding
to the gravitational field of a gravitomagnetic monopole. In Sect. 3 we show that in the
limit of small velocities the geodesic equation for this metric is identical to the equation of
motion of a charged particle in the field of a magnetic monopole and we obtain a quanti-
zation condition relating the ordinary and the gravitomagnetic masses. Greek indices run
from 0 to 3 and Latin indices i +Js--+, from 1 to 3. Indices are raised and lowered by means
of the Minkowski metric.

2. THE FIELD OF A GRAVITOMAGNETIC MONOPOLE IN THE LINEARIZED EINSTEIN
THEORY

The Einstein field equations linearized about the Minkowski metric show several analogies
with the equations for the electromagnetic field. By expressing the metric of the space-time
in the form

Jap = Nap + ha,@: (4)

where (7q5) = diag (-1, 1,1, 1,), one finds that the curvature tensor to first order in hap
is

I\"Qﬁ.,.é = %{aaayhgé = (’)g&,hms + 8;;85!:4(,7 = Baaghg.y}, (5)
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with 8, = 0/9z, and from the linearized Einstein vacuum field equations, K%, = 0, it
follows that the tensor fields

Ei; = Koinj, Bij = —3eimo; (6)

are symmetric and trace-free and satisfy (see, e.g., Refs. [10,11])

10
9;Bij =0, ¢€jx0En = _EEB“’ (7)
10
By =0, expdiBr= =B,
%] €ijk0; Dkl oot il (8)

which are analogous to the source-free Maxwell equations. The curvature tensor (5) is
invariant under the gauge transformations

haﬁ' —=* ha,ﬂ = aa{,@ = 8[360, (9)

where £, is an arbitrary four-vector field. By combining Egs. (5) and (6) one obtains the
expressions

Bij = eaxdiy(8jhox — Bohij),  Eij = —8i3(dohoj — djhoo) — Qo3(5hoi — Bohsj), (10)

which are analogous to Egs. (3).
The Schwarzschild metric

3G -4
de? = — (1 = 2m) et dt? + (1 = @-) dr? + r2(d6® + sin? 0 dp?),
c*T Bor

which corresponds to the gravitational field of a point mass m, to first order in the mass
parameter m can be represented in the form (4) with

2G'm 2Gm
o hij= g, ke =0 (11)

hoo =
cir

Then, according to Egs. (10) the “electric” and “magnetic” parts of the curvature are

Gm 3:12,'.1" 61"
Eij:_cz_( raj—-j), B;; = 0. (12)

By analogy with Eq. (12), the gravitational field of a gravitomagnetic monopole is
determined by

Gn (3ziz; &5
E;=0, Bij=— ( ;5] —;133*), (13)
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where n is the “gravitomagnetic mass” of the monopole. It can be readily seen that the
metric perturbation

_ 2Gn (-y,z,0)

hoo = 0 = hyj, hoi = & rldr—z) (14)

is a solution of the linearized Einstein vacuum field equations (i.e., 0%0ahpgy — 030%hay —
0y0%hap + 930,h, = 0), for 7 # 0, and that the independent components of the curva-
ture (5) are given by Eqs. (13). Thus, in the linearized Einstein theory, the gravitational
field of a gravitomagnetic monopole is given by

4Gn (xdy — ydx) dt

2 2 142 2 2 2
ds c“dt® +dz* + dy* +d2* + B =7

= —cdt? + dr® + r*(d6? + sin? 0 dyp?) + f;l%(:hl + cos ) dpdt, (15)

modulo the gauge transformations (9). (Note that the two metric perturbations given by
Egs. (14) are related by a gauge transformation with £, = —4Gn/c? arctan(y/z), & = 0.)
It may be noticed that the vector field

2Gn (-
ot i e 20 (=i )

2 r(xr-2)’ 48)

is the vector potential for the field of a magnetic monopole of magnetic charge —2Gn/c?,
t.e.,

As in the case of the vector potential (16), the metric perturbation (14) is singular on
the positive or negative z-axis, according to whether one takes the plus or minus sign in
Eq. (14).

It can be readily seen that the metric (15) is equivalent, up to the gauge transforma-
tions (9), to the Taub-NUT solution (see, e.g., Ref. (12])

ds® = —U~1dr? + (212U (dy) + cos 8 d)? + (r2 + 1?) (d6? + sin® 8 dy?),
where

2(mr + 12)

=i—=1
* r2 42

bl

to first order in [, when m = 0, making the identifications ¢ dt = 21 dy and | = —Gn/c?.
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3. A QUANTIZATION CONDITION

In general relativity, any test particle subject only to the gravitational force moves along a
geodesic of the space-time. The spatial components of the geodesic equation for a particle
with non-zero rest mass are

d%z . dr® dP

1)

Pr= R e (18)

where 7 is the proper time of the particle and the I'g, are the Christoffel symbols corre-
sponding to the space-time metric gog. In the limit v < ¢, where v is the speed of the
particle, Eq. (18) reduces to

d? .‘L‘i
dt?

. - dd
= —c'Thy — 2cI‘5j—dIT.

(19)
Using the expression for the Christoffel symbols to first order in h,s and taking into
account Eqgs. (14), one finds that Iy, = 0 and I'y; = (0jhoi — B;hoj)/2; therefore, under the
present assumptions, the equation of motion for a particle of mass m in the gravitational
field of a gravitomagnetic monopole is

mi—‘tr:mcvx(Ver)

= —2Gmn% % 'r% (20)

[see Egs. (16) and (17)]. This last equation coincides with the equation of motion of a
particle with electric charge e in the field of a magnetic monopole of magnetic charge g if
we make the identification

—2Gmn = eg (21)

(see also Ref. [6]). Hence, following the same steps as in Refs. [13,3], by considering the
deflection at large impact parameters of a particle of mass m by the gravitational field
of a gravitomagnetic monopole, and assuming that the change of the component of the
angular momentum along the incident direction must be a multiple of h, one obtains the
Dirac quantization condition with —2Gmn in place of eg, that is

2Gmn N

= — N = 021,42, ) 22
L (N=0ELE2 ) (22

A similar result was obtained in Ref. [8] by a different procedure, making use of the
analogy of the Maxwell equations with

V-H=0, Vxg=0,
4nG 4 (ag 4nG v) (23)

Vog=-—gu VxH=-
c c

ot c?
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where H; = €;;40;hok, gi = —0ihoo/2 and p and v are the mass density and the veloc-
ity of the matter, respectively, which follow from the linearized Einstein field equations,
provided that v < c (see, e.g., Ref. [14]). However, the derivations based on the anal-
ogy of Egs. (23) with Maxwell's equations are not very reliable since, even in the case of
vacuum, the invoked analogy is not complete and the fields g and H are not invariant
under the gauge transformations (9). (It may be noticed that the “gravitoelectric” and
“gravitomagnetic” fields g and H corresponding to the metric perturbations (11) and (14)
are g = (Gm/c?)r/r3 and H = (—2Gn/c?)r/r®, respectively, which are not simply related
by the replacement of m by n. Compare with Egs. (12) and (13).)
As is well known, an equation of motion of the form

dv r
mE = kv X r—a, (24)
where k is a constant, implies that
r
M=rx (mv)—k; (25)

is a constant of motion (see, e.g., Ref. [15] and the references cited therein). In the case
of a charged particle in the field of a magnetic monopole, where k = eg/c, M represents
the total angular momentum (—(eg/c)r/r is the angular momentum of the corresponding
electromagnetic field) (see, e.g., Ref. [3]); however, in the case of the interaction with a
gravitomagnetic monopole, the meaning of the term (2Gmn/ c)r/r is not clear.

Choosing the z-axis along the direction of M, from Eq. (25) one finds that M-r = —kr;
on the other hand, M - r = Mrcos 6, where M is the magnitude of M, therefore,

k
o= o = const., (26)

which means that the trajectory of a particle governed by Eq. (24) lies on a cone with
its vertex at the origin. Furthermore, Eq. (24) implies that v is a constant and that the
acceleration is normal to the cone (26). Hence, using the fact that a curve on a surface
is a geodesic (with respect to the intrinsic geometry of the surface) if the acceleration
of the curve is normal to the surface, one concludes that the trajectory is such that it
becomes a straight line when the cone is unfolded. The same conclusion can be obtained
by expressing Eq. (24) in spherical coordinates. Then, making use of Eq. (26), one finds
that

2l

57 = const. (=1,

27
d?r_..‘zg(d_‘p)Z ( )
dt2 = rsin dt .

Hence, d/dt = (I/r?)d/dyp, and from the second equation in (27) it follows that d?u/dp? =
—(sin? #)u, where u = 1/r. Thus, 1/r = Asin(psin ) + B cos(ypsin 0), where A and B are
arbitrary constants, which represents a straight line when the cone is unfolded.
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4. CONCLUDING REMARKS

According to Eq. (22), mass is quantized in units of he/4Gn. Since there is no experimental
evidence of such a quantization, he/4Gn would have to be very small, which yields a lower
bound for the gravitomagnetic mass of a gravitomagnetic monopole (see also Ref. [9]).
If one assumes that the gravitational interaction satisfies Newton’s third law, then the
force on a gravitomagnetic monopole in the gravitational field of a mass m would be
minus the right-hand side of Eq. (20), which is different from the force on a particle with
ordinary mass in the same gravitational field, which would mean that the gravitomagnetic
monopoles do not obey the equivalence principle.
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