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Gravitomagnetic mas s in the linearized Einstein theory
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ABSTRACT.The gravitational ficld produced by a "gravitomagnetic monopole" in the linearized
Einstein theory is found and a quantization condition for the ordinary mass is obtained by con-
sidering the motion of a partide in the field of a gravitomagnetic monopole.

RESUMEN. Se halla el campo gravitacional producido por un "mono polo gravitomagnético" en la
teoría de Einstein !inealizada y se obtiene una condición de cuantización para la masa ordinaria
considerando el movimiento de una: partícula en el campo de un monopolo gravitomagnético.

PAes: 04.20.-q; 04.25.-g

l. INTIlODUCTION

As is well known, assuming the existence of magnetic char"es, Maxwell's equations can
be modified in such a way that these equations show more symmetry between the electric
and magnetic fields. Even though it is a straightforward matter to propose the equations

by analogy with

V'. B = 411'pm,

V' . E = 411'pe.

1DB 411'
V' x E= --- --Jc Dt c m,

1 DE 411'
V' X B = --- +-Je Dt e e,

(1)

(2)

where Pe. Pm are the electric aud magnetie charge densities and Je. Jm are the clectric
and magnetic current densitics, respectively, in arder lo maintain the rclation belween the
electric and magnetic ficlds with the usual potentials,

B = V' x A,
1DA

E = -V'q, - -;, Dt ' (3)
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it is necessary to assume that the potentials have singularities. (Alternatively, it can be
assumed that the potentials correspond to a connection in a non-trivial principal bundle.)
By demanding that the singularities be unobservable in any quantum process, Dirac [1,2]
arrived at the conclusion that the existence of a magnetic monopole implies the quantiza-
tion of the electric charge (see, e.9., Ref. [3) and the references cited therein).
The equations of general relativity allow us to consider sources of the gravitational

field analogous to the magnetic charges; in fact, there exist known exact solutions of the
Einstein field equations characterized by a "magnetic mass" para meter (also called "dual
mass", "gravitomagnetic mass", and "NUT para meter" ) in addition to the ordinary mass
parameter (see, e.9., Refs. [4,5]). However, in order to study sorne of the features of
the gravitational field produced by a gravitomagnetic mass, it is convenient to consider
the linearized Einstein theory, where the analysis is simpler. (A detailed analysis of the
geodesic equations for the Taub-NUT metric, which represents the gravitational field of a
spherically symmetric source with ordinary and gravitomagnetic mass, is given in Ref. [6].)
In this paper we obtain a solution of the linearized Einstein ficld equations that repo

resents the gravitational field of a gravitomagnetic monopole, making use of the gauge-
invariant description of the gravitational field given by the curvature tensor. \Ve show
that, in the limit of small velocities, the motion of a particle in the field of a gravito-
magnetic monopole is identical to that of a charged particle in the field of a magnetic
monopole (see also Ref. [6]) and, therefore, we obtain a quantization condition analogous
to Dirac's relation (see also Refs. [7-9]). In Sect. 2 we summarize the basic equations of the
linearized Einstein theory and we find, in this approximation, the metric corresponding
to the gravitational field of a gravitomagnetic monopole. In Sect. 3 we show that in the
limit of small velocities the geodesic equation for this metric is identical to the equation of
motion of a charged particle in the field of a magnetic monopole and we obtain a quanti-
zation condition relating the ordinary and the gravitomagnetic masses. Greek indices run
from O to 3 and Latin indices ¡,j, ... , from 1 to 3. IJJ<licesare raised and lowered by means
of the Minkowski metric.

2. TIIE FIELD OF A GRAVITOMAGNETIC MONOPOLE IN TIIE L1NEARIZED EINSTEIN
TIIEORY

The Einstein field eqllations linearized about the Minkowski metric show several analogies
with the eqllations for the electromagnetic field. By expressing the metric of the space-time
in the form

(4)

where (I/o¡J l = diag (-1, 1, 1, 1, l, one finds that the Cllrvature tensor to first order in ho¡J
is

(5)
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with 80 == 8/8xo, and frorn thc linearizcd Einstein vacuurn field eqnations 1(0. = O it1 ¡JO,,! 1

follows that the tensor ficlds

are syrnrnetric and trace-free and satisfy (sce, e.g., Refs. [10,11])

(6)

8iBij = O, (7)

(8)

which are analogolls to the sOllrcc-free l\1axwell eqllations. The curvature tensor (5) is
invariant under the gauge transforrnations

(9)

where ~o is an arbitrary fOllr-vcctor ficld. By combining Eqs. (5) and (6) one obtains the
expressions

which are analogolls to Eqs. (3).
The Schwarzschild rnetric

which corresponds to the gravitational ficld of a point mass m, to first ordcr in the mass
pararneter m can be reprcsentcd in thc form (4) with

hOi = O. (11)

Then, according to Eqs. (10) thc "clectric" and "rnagnctic" parts of thc curvaturc arc

(12)

By analogy with Eq. (12), thc gravitational ficld of a gravitornagnctic monopolc is
dcterrnincd by

B. _ Gn (3.TiXj _ bij)
IJ - c2 1'5 r3 1

( 13)
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where n is the "gravitomagnetic mass" of the monopole. It can be readily seen that the
metric perturbation

h . _ 2Gn (-y,x,O)
01 - ,

c2 r(:l:r-z)
(14)

is a solution of the linearizcd Einstein vacuum ficld cquations (i.e., oa8oh{3~ - 8{3oaho~-
8~oaho{3 + 8{38~hoo = O), for l' # O,and that thc indcpendent components of the curva-
ture (5) are given by Eqs. (13). Thus, in the lincarized Einstein theory, the gravitational
ficld of a gravitomagnetic monopole is given by

ds2 = _c2 dt2 + dx2 + dy2 + dz2 + 4Gn (xdy - ydx) dt
e 1'(:1:1' - z)

= -e2dt2+dr2 +r2(d(}2 +sin20d,/) + 4Gn(:l:l+cos(})depdt, (15)
e

modulo the gauge transformations (9). (Note that the two metric perturbations given by
Eqs. (14) are rclatcd by a gauge transformation with (o = -4Gn/e2 aretan(y/x), (i = O.)
It may be notieed that thc vcctor ficld

.=/ ._2Gn(-y,x,0)
'"Y, - 'o, - 2 (:1: ) ,e r T-Z

( 16)

is the vcctor potcntial for thc field of a magnctic monopolc of magnetic charge -2Gn/ e2,
I.e.,

(17)

As in the casc of thc vector potcntial (16), thc mctric perturbation (14) is singular on
the positive or ncgativc z-axis, according to whcthcr onc takcs the plus or minus sign in
Eq. (14).
It can be rcadily sccn that the mctric (15) is cquivalcnt, up to thc gauge transforma-

tions (9), to thc Taub-NUT solution (sce, e.g., Rcf. [12])

where

U _ 2(mr+12)
=-1+ 2 [2 ,

T +

to first ordcr in 1, whcn m = O,making thc idcntifications e dt = 21dl/J and 1= -Gn/ e2.
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3. A QUANTIZATION CONDITION

In general relativity, any test partide subject only to the gravitational force moves along a
geodesic of the space-time. The spatial components of the geodesic equation for apartide
with non-zero rest mass are

(18)

where T is the proper time of the partide and the fli are the Christoffel symbols corre-
sponding to the space-time metric ga~. In the limit ~ « c, where v is the speed of the
partide, Eq. (18) reduces to

(19)

Using the express ion for the Christoffel symbols to first order in ha~ and taking into
account Eqs. (14), one finds that fho = O and fhj = (DjhOi - aihoj)/2; therefore, under the
present assumptions, the equation of motion for apartide of mass m in the gravitational
field of a gravitomagnetic monopole is

dv
m- = mcv x (V' x 'Y)

dt
v r

= -2Gmn- x-
c r3

(20)

[see Eqs. (16) and (17)1. This last eqHation coincidcs with the equation of motion of a
partide with electric charge e in the field of a Illagnetic monopole of lllagHetic charge 9 if
we make the identification

- 2Gmn = eg (21 )

(see also Re£. [6]). Hence, following the same steps as in Refs. [13,3], by considering the
deflection at large impact parameters of apartide of mass m by the gravitational field
of a gravitolllagnetic monopole, and assuming that the change of the component of the
angular mOlllentum along the incident direction must be a Illultiple of rt, one obtains the
Dirac quantization condition with -2Gmn in place of eg, that is

2Gmn N
=t,C 2'

(N = O, :1:1, :1:2, ... ). (22)

A similar resHlt was obtained in Re£. [8] by a different procedure, making use of the
analogy of the Maxwell e<¡Hations with

V'. H = O,

4"GV'. g = --2-¡"
C

V' x g = O,

4 (Dg 4"G )V' x H = - - - --¡'V ,
c at c2

(23)



G RAVITOMAGNETIC MASS IN TIIE L1NEARIZED EINSTEIN TIIEORY 503

where H; == f;jkOjhok, g; == -o;hoo/2 and Jl and vare the mass density and the veloc-
ity of the matter, respectively, which follow from the linearized Einstein field equations,
provided that v « c (see, e.g., Ref. [14]). However, the derivations based on the anal-
ogy of Eqs. (23) with Maxwell's equations are not very reliable since, even in the case of
vacuum, the invoked analogy is not complete and the fields g and H are not invariant
under the gauge transformations (9). (It may be noticed that the "gravitoelectric" and
"gravitomagnetíc" fields g and H corresponding to the metric perturbations (11) and (14)
are g = (Gm/e2)r/r3 and H = (-2Gn/e2)r/r3, respectively, which are not simply related
by the replacement of m by n. Compare with Eqs. (12) and (13).)
As is well known, an equation of motion of the form

dv r
m- =kvx 3'dt r

where k is a constant, implíes that

r
1\1 == r x (mv) - k-

r

(24)

(25)

is a constant of motíon (see, e.g., Ref. [151 and the references cited therein). In the case
of a charged partide in the ficld of a magnetic monopo!e, where k = eg/e, 1\1 represents
the total angular momentum (-(eg/c)r/r is the angular momentum of the corresponding
electromagnetic field) (see, e.g., Ref. [3]); however, in the case of the interaction with a
gravitomagnetic monopole, the meaning of the term (2Gmn/e)r/r is not dear.
Choosing the z-axis along the direction of 1\1, from Eq. (25) one finds that 1\1.r = -kr;

on the other hand, 1\1. r = MrcosO, where Mis the magnitude of 1\1, therefore,

k
cos0= - M = const., (26)

which means that the trajectory of apartide governed by Eq. (24) líes on a cone with
its vertex at the origino Furthermore, Eq. (24) implíes that v is a constant and that the
acceleration is normal to the cone (26). Hence, using the fact that a curve on a surface
is a geodesic (with respect to the intrinsic geometry of the surface) if the acceleration
of the curve is normal to the surface, one condudes that the trajectory is such that it
becomes a straight line when the cone is unfolded. The same condusion can be obtained
by expressing Eq. (24) in spherical coordinates. Then, making use of Eq. (26), one finds
that

2d<P,. di = const. (== 1),
(27)

Hence, d/dt = (l/,.2)d/d<p, and from the sccond equation in (27) ;t follows that d2u/d<p2 =
-(sin20)u, where U == 1/,.. Thus, 1/,. = A sin(<psinO)+ B cos(<psinO), where A and B are
arbitrary constants, which rcpresents a straight line when the cone is unfolded.
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4. CONCLUDING REMARKS

According to Eq. (22), mass is quantized in units of he/4Gn. Since there is no experimental
evidenee of such a quantization, he/4Gn would have to be very small, which yields a lower
bound for the gravitomagnetic mass of a gravitomagnetic monopole (see also Ref. [9]).
If one assumes that the gravitational interaction satisfies Newton's third law, then the
force on a gravitomagnetic monopole in the gravitational field of a mass m would be
minus the right-hand side of Eq. (20), which is different from the force on apartide with
ordinary mass in the same gravitational field, which would mean that the gravitomagnetic
monopoles do not obey the equivalence principIe.
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