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ADSTRACT.Two operational ways to define the electrical resistan ce of a homogeneous, isotropic
solid body is presented. In the first one the incoming and the outgoing stationary current densities
through part of the surface of the hody are snpposed to he given. In the second one, it is the value of
the electrostatic potential that is assumed to be fixed on part of the surface of the body. It is shown
that a piece oC material, oí the same conductivity, added in "parallel" produces, in both cases, a
decreasing of the electrical resistance of the body. Finally an application to a two-dimensional
body with a non-conventional shape is presented.

RESUMEN.Se presentan dos formas operacionales de definir la resistencia eléctrica de un cuerpo
sólido homogéneo e isotrópico. En la primera, se da la densidad de corriente estacionaria que
ingresa y que sale del cuerpo a través de su superficie. En la segunda, se especifica el potencial
electrostático sohre regiones de la superficie del cuerpo. Se muestra además que si un trozo de
materia! de la misma conductividad es agregado "en paralelo" al cuerpo, su resistencia eléctrica
disminuye. Finalmente, se presenta una aplicación a un sólido bidimensional con una geometría no
convencional.

PACS: 41.20.Cv; 01.55.+h

I. INTRODUCTION

The concept of electrica! resistance is usually defined for cylindrical bodies in which the
current density is assumed to be uniform and along the axis of the cylinder; bodies with
different shapes are very seldom considered iJ-3). In this note we present two operational
ways to define the electrical resistan ce of a homogeneous, isotropic salid body:

i) the current density is specified on the surfaces S; and So (they are the regions of
the boundary of the body through which the electrical current comes in and goes
out respectively), see Fig. 1;

ii) the electrostatic potential is fixed on the surfaces S; and So.
These two cases do not exhaust aH the possibilities, there are situations where the

current density is given in a regíon and the potential in another one. Such boundary
conditions are found in stationary problems of heat conduction, where the role of the
potential is p!ayed by the temperature of the conducting body.
To obtain the electrical resistance R of the body one has to solve the Laplace equatíon

with given boundary conditions. The value of R depends on the shape of the body, the
intrinsic conductivity (j of the material, the location of the surfaces Si and So and, on the
form of the incoming and outgoing currents in case i), and on the functiona! form of the
fixed potential in case ii).
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FIGURE1. Solid body with incoming1; and outgoing lo current densities.

It is also shown here that the resistance of the body decreases when a piece of material,
with the same conductivity, is added in "parallel" to the original body. The proof of this
fact, so obvious for a conventional e!ectric circuit, has not been found in the examined
¡¡terature for a body of arbitrary shape. In these proofs we assume, in case ii), that the
electrostatic potential is not modified when we add the piece in "parallel", this is equivalent
to assume that a tension source, as the one used in circuit theory, is connected to the body.
For the case i) one assumes that the current densities on Si and So are fixed, that means
that we have, in this case, a current source connected to the body. Certainly ideal tension
and current sources do not exist but from a practical point of view it is known that it is
possible to construct devices whose behavior, under certain conditions, are very close to
the ideal ones.

Finally we present a numerical calculation of the resistance of a two-dimensional body
with a non-conventional form with fixed current density. \Ve add then a piece of material
of the same resistivity in "parallel" and compare the resistance with the one already
calculated. In this case one is faced with a Neumann type of problem. These calculations
are performed using a numerical procedure developed by \V. Lamberti and the author to
solve the Laplace equation with given boundary conditions [41.

2. BOUNDARYCONDITIONS

2.1. Fixed current density

Figure 1 shows a homogeneous and isotropic solid body of conductivity a and whose
electrical resistance we want to find. Let us assume that a steady current 1 enters through
the surface Si and the same current comes out through So' Considering that the material
satisfies Ohm's law and neglecting magnctic effects we have

l(f) = a tU,), f E 11, (1)

where lUí is the current deusity, t( T) the c1ectrostatic field and 11 is the volume of the
body.
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Due to the stationary character of the problem we have

with 4>( T) as the electrostatic potential, with the following boundary conditions:

f¡. "'4>ls = O,

(Jf¡. "'4>1 s; = -f¡.';;,
(Jf¡. '" 4>ls. = -f¡. J:,

with the constraint

(2)

(3)

(4)

where dii is the surface element in the direction of the outward normal ñ to the volume
n.
The Joule power dissipated in the body is

(5)

Here we have used the bOllndary conditions given in Eq. (3). From Eq. (5) we obtain the
electrical resistance R:

(6)

In the particular case that J: . il and 1, . f¡ are constant on the surfaces So and Si we have

R = - /2 [ñ. J:! 4> da + ñ. 1, /4>da]
So Js.

= ~ [~ r 4> da __ 1 r 4>da] == V.
1 A; JSi Ao Js• 1 (7)

V is the difference between the averaged electrostatic potential over the surfaces S; and So'
Equation (6) provides us with an expression for the resistance of a homogeneous isotropic
solid body of any shape as a function of the incoming 1,(T) and outgoing J:(T) current
densi tieso

\Ve prove now that the electrical resistance of the body decreases if we add a piece of
material TI, with the same condllctivity a, in parallel to the original body. Figure 2 shows
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FIGURE2. The solid body of Fig. I with a pieee ót material rr added in "parallel".

the original body of volume f1 with the piece I1 added. \Ve will calculate the e¡ectrical
resistance of the original and of the enlarged bodies and we will compare them.

Let </>(f) and </>1 (f) be the c!ectrostatic potentials of the original body and of the enlarged
one, assuming that the incoming Ji and the outgoing J: current densities are the same in
both cases. The potentials </> and </>1 satisfy

é.</>(f) = 0, f E f1;

é.</>I(f) = 0, fE (f1+ I1).

The Joule power dissipated in both cases are

(8)

r ~ ~ 3
IV = Jo E ' J d r,

\Ve eonsider now the integral

i ~~3
IVI = El . JI d r.

o+n
(9)

with

A = fnU!- E¡). (J- .Í¡)d3r? 0,

Q = 2 lo .Í¡ , (E - Etl él'

Equation (10) can also be written in the form

fn(E - E¡), (J +J~)d3r = in(E, J - El' Jtl,¡3r

i ~-3lr~~3= IV - E, ' JI d r + E, ' JI d r.
o+n n

(10)

(11)

(12)
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\Ve have then

Consider now

1- - 3lV-lVI=A+Q- (EI.J¡)dr.
11

Q = 2 ( ,,\lePI' \l(eP - eP¡)d3r = 2" 1 ePI\l(eP - eP¡) . dáJn Jan
= 2" ( ePI\l(eP - eP¡). dá = -2" { ePI\lePI . dá,is, ls,

(13)

(14)

where S[ is the common boundary of n and n.
Since the normal derivative of ePIvanishes on the surface Sb we can write Q in the form

Q = -2" { ePI\lePI . dá + 2" { ePI\lePI' dáls, JSb

In 1- - 3= 2" ePI\lePI . dá = 2 (El' J¡) d r.an n
Equations (13) and (15) give

as we wanted to proveo

(15 )

(16)

2.2. Fixed electrostatic potential

Consider now the solid body where the potential has been fixed on the surfaces Si and So'
The boundary conditions in this case are

ePI = ePo(T).s. (17)

The Joule power dissipated in the body is

1- -3 InE.Jd,.=" eP\leP.da
n an

= " { <p \1eP. da +" { eP\1eP. da = v2k ko R

where we have defined V by

r 11 11\ '" - q, da - - q, da,
A¡ Si Aa So

(18)

(19)
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i. e. the difference between the averaged potential on the surfaces Si and So' With this
definition we have the following expression for the resistance R

(20)

In particular when the potential is constant on the surfaces Si and So, with values V¡
and 1'0 respectively, we get for R:

v¡-vo
R= 1 ' (21 )

with 1 given in Eq. (4). \Ve pass now to prove that the clectrical resistance decreases when
we add a piece rr, of the same conductivity o, in "parallel" to the original solid body. Let
IV and IV1 be the power dissipated in the original body and in the enlarged one. Since
the potential are kept fixed the value of ¡r is the same for the two bodies. Consider now
the difference

(22)

The second term of the right hand side of Eq. (22) is greater than or equal to zero. The
first term can be written in the fonn

!nU~l' J~- É. j)d3,. = !n [(Él - E). (J~- j) + 2É. (.Í¡ - j)]d3,.

== F+2 !nÉ.(J~ _j)d3,. (23)

with F ~ O. The last term of Eq. (23) is

2 r É. (J~- j)IPc = 20 r \19' \1(91 - </»d3,. = 20 1 (91 -- 9)\19.düJn Jn Jon
= 20¡(</>1- 9)\19' dá + 20¡(91 - 9)\19' dá = O (24)

Si So

since \1 tI>. dü vanishes on S and </>1and 9 are equal on Si and on So' \Ve are then leCt with
the inequality

(25)

as we wantcd to ¡lfOve.
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FIGURE 3. A two-dimensional uody w¡th uniform incoming aud outgoing current densities. The
dimensions are given in arbitrary units and the resistivity is assumed lo be equal to ooc .
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FIGURE 4. Tú the hody shown in Fig. 3 a picec of the same material is added in "parallel".

Finally we present the calculalion of the c1ectrica! resistance of the two-dimensional
homogeneous body shown in Fig. 3. \Ve assllme that the incoming and outgoing current
densities are uniformo Using the numerical pl'Ocedul'e described in Ref. [4) we calculate
its electrical resistance taking the mlue of the conductivity a as unit and the dimension
of the body shown in Fig. 3 in arbitrary units. The procednre reqllil'es a discretization
of the frontier of the body on the y-axis, the conditions imposed on these points give
raise to a set of algebraic eqnations whose nnmber is equal to the number of points in the
discretization. Taking 9 points the valne of the resistance is R = 1.732. Figure 4 shows
the body already considered with the added piece in "parallel". A series expansion can be
written for the electrica! resistance in this case

00

RI = 1 + ¿(I{,,)-3sin2(K,,)coth(2K,,),
n=1

(26)

with K" = ~'. Taking only np lo n = 11 in this expansion we gel lhe approximale vallle:
RI = 1.2719 < JI as it should be.
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3. CONCLUSIONS

To conclude, we have given two operational ways to define the electrical resistance of a
homogeneous isotropic solid body. In the first one the current density is fixed on part of the
surface of the body and in the second one it is the electrostatic potential that is assumed
to be fixed, also, on part of the surface of the body. It is shown, in both cases, that the
electrical resistan ce decreases if a piece of material, with the same conductivity a, is added
in "parallel" to the body. Finally an application has been done to a two-dimensional body
with a non-conventional shape.
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