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ABSTRACT. Two operational ways to define the electrical resistance of a homogeneous, isotropic
solid body is presented. In the first one the incoming and the outgoing stationary current densities
through part of the surface of the body are supposed to be given. In the second one, it is the value of
the electrostatic potential that is assumed to be fixed on part of the surface of the body. It is shown
that a piece of material, of the same conductivity, added in “parallel” produces, in both cases, a
decreasing of the electrical resistance of the body. Finally an application to a two-dimensional
body with a non-conventional shape is presented.

RESUMEN. Se presentan dos formas operacionales de definir la resistencia eléctrica de un cuerpo
sélido homogéneo e isotrépico. En la primera, se da la densidad de corriente estacionaria que
ingresa y que sale del cuerpo a través de su superficie. En la segunda, se especifica el potencial
electrostatico sobre regiones de la superficie del cuerpo. Se muestra ademds que si un trozo de
material de la misma conductividad es agregado “en paralelo” al cuerpo, su resistencia eléctrica
disminuye. Finalmente, se presenta una aplicacién a un sélido bidimensional con una geometria no
convencional.

PACS: 41.20.Cv; 01.55.+b

1. INTRODUCTION

The concept of electrical resistance is usually defined for cylindrical bodies in which the
current density is assumed to be uniform and along the axis of the cylinder; bodies with
different shapes are very seldom considered [1-3]. In this note we present two operational
ways to define the electrical resistance of a homogeneous, isotropic solid body:
i) the current density is specified on the surfaces Si and S, (they are the regions of
the boundary of the body through which the electrical current comes in and goes
out respectively), see Fig. 1;
ii) the electrostatic potential is fixed on the surfaces S; and S,.

These two cases do not exhaust all the possibilities, there are situations where the
current density is given in a region and the potential in another one. Such boundary
conditions are found in stationary problems of heat conduction, where the role of the
potential is played by the temperature of the conducting body.

To obtain the electrical resistance R of the body one has to solve the Laplace equation
with given boundary conditions. The value of R depends on the shape of the body, the
intrinsic conductivity o of the material, the location of the surfaces S; and S, and, on the
form of the incoming and outgoing currents in case i), and on the functional form of the
fixed potential in case ii).
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FIGURE 1. Solid body with incoming J; and outgoing J, current densities.

It is also shown here that the resistance of the body decreases when a piece of material,
with the same conductivity, is added in “parallel” to the original body. The proof of this
fact, so obvious for a conventional electric circuit, has not been found in the examined
literature for a body of arbitrary shape. In these proofs we assume, in case ii), that the
electrostatic potential is not modified when we add the piece in “parallel”, this is equivalent
to assume that a tension source, as the one used in circuit theory, is connected to the body.
For the case i) one assumes that the current densities on S; and S, are fixed, that means
that we have, in this case, a current source connected to the body. Certainly ideal tension
and current sources do not exist but from a practical point of view it is known that it is
possible to construct devices whose behavior, under certain conditions, are very close to
the ideal ones.

Finally we present a numerical calculation of the resistance of a two-dimensional body
with a non-conventional form with fixed current density. We add then a piece of material
of the same resistivity in “paralle]” and compare the resistance with the one already
calculated. In this case one is faced with a Neumann type of problem. These calculations
are performed using a numerical procedure developed by W. Lamberti and the author to
solve the Laplace equation with given boundary conditions [4].

2. BOUNDARY CONDITIONS

2.1. Fized current densily

Figure 1 shows a homogeneous and isotropic solid body of conductivity ¢ and whose
electrical resistance we want to find. Let us assume that a steady current I enters through
the surface S; and the same current comes out through S,. Considering that the material
satisfies Ohm’s law and neglecting magnetic effects we have

J(F) = cE(F), 7€ Q, (1)

where f(F) is the current density, E(7) the electrostatic field and © is the volume of the
body.
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Due to the stationary character of the problem we have
V- J=V-(0E)=-0V-Vé=-0A¢(f) =0, 7€, (2)

with ¢(7) as the electrostatic potential, with the following boundary conditions:

n-Vls =0,
oit-Vls, = —n-J, (3)
an V¢|S = _ﬁ‘ -:)1
with the constraint
—[ji-da=/fo-da=1, 4)
S; So

where da is the surface element in the direction of the outward normal 7 to the volume
Q.
The Joule power dissipated in the body is

fE-fd3r=a/ v¢-v¢d3r=aj{ OV di
Q Q an
=—f ¢L-da—f ¢J. - di = RI”. (5)
Sa S;

Here we have used the boundary conditions given in Eq. (3). From Eq. (5) we obtain the
electrical resistance R:

1 5 -
R=——U ¢Jo-dd‘+f¢Ji-d&‘]. (6)
12 | /s, S,
In the particular case that j; -7 and J; - 1 are constant on the surfaces S, and S; we have
1. = L =
R=——[n-JD[ qﬁda—}—n-.]ifqﬁdaJ
T2 Se 5

[ o fosd =

V' is the difference between the averaged electrostatic potential over the surfaces S; and S,,.
Equation (6) provides us with an expression for the resistance of a homogeneous isotropic
solid body of any shape as a function of the incoming fl(i’) and outgoing j:,(f") current
densities,

We prove now that the electrical resistance of the body decreases if we add a piece of
material IT, with the same conductivity o, in parallel to the original body. Figure 2 shows

Il
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FIGURE 2. The solid body of Fig. 1 with a piece of material IT added in “parallel”.

the original body of volume Q with the piece II added. We will calculate the electrical

resistance of the original and of the enlarged bodies and we will compare them.

Let ¢(7) and ¢, (7) be the electrostatic potentials of the original body and of the enlarged
one, assuming that the incoming J; and the outgoing J, current densities are the same in

both cases. The potentials ¢ and ¢, satisfy
Ag(r) =0, 7€
Agi(F) =0, 7€ (Q+II).

The Joule power dissipated in both cases are

W=f}3“-fd3r, wi= [ B Jidr
Q Q411

We consider now the integral

[(E“—E‘n-(hi)d%:]Q(E“—él)-(f- ) dr
Q
with
Q=2 [ Ji-(E- By
(9]

Equation (10) can also be written in the form

j(E—El)-(f+.ﬂ)d3r=L(E~fdﬁl-ﬂ)d3r
Q

Il

Q411

W — El-£43r+[ﬁl-£d3r.
I

(8)

(10)

(11)

(12)
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We have then
W-wi=A+Q- [ (B J)dr (13)
II
Consider now
Q= 2[QaV¢1 V(¢ — 1) dr = 2a}gg¢1w¢~ 1) - da
= 2 ]S $19(¢ — ¢1) - di = ‘2"[5, 61V¢1 - da, (14)

where S is the common boundary of 2 and II.
Since the normal derivative of ¢;vanishes on the surface Sp we can write Q in the form

Q= —20’] 01V -dd‘+20/ Vo -da
S Sy
- zaj{ $1Vy - it = 2](1_’«;‘1 L Jy) dbr. (15)
an n
Equations (13) and (15) give
W——W1=(R—R1)12=A+fEl-ﬂd3r'20=$R2R1, (16)
1
as we wanted to prove.

2.2. Fized electrostatic potential

Consider now the solid body where the potential has been fixed on the surfaces S; and S,.
The boundary conditions in this case are

Vel =0 g = 6] =g (17)

S

The Joule power dissipated in the body is

fE‘-j'di‘r:af V- di
0 an
V2
=afs¢\7¢-da+af5 #Vg-di=— (18)

where we have defined V' by

1 1
VEI/S_MQ— }i‘f dida, (19)
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i.e. the difference between the averaged potential on the surfaces S; and S,. With this
definition we have the following expression for the resistance R

R=V2[a[Si¢V¢-d&+JLO¢V¢-dE]_1. (20)

In particular when the potential is constant on the surfaces Sj and S,, with values V}
and V, respectively, we get for R%:

Vi’_vo

R=-22"2,

(21)

with I given in Eq. (4). We pass now to prove that the clectrical resistance decreases when
we add a piece II, of the same conductivity o, in “parallel” to the original solid body. Let
W and W; be the power dissipated in the original body and in the enlarged one. Since
the potential are kept fixed the value of V' is the same for the two bodies. Consider now
the difference

Wy —W = E1-£r131-—/ B.Jd
Q411 0

— — i

= f(El.Jl—E-J)d3r+/ B+ Jilt. (22)
Q In

The second term of the right hand side of Eq. (22) is greater than or equal to zero. The
first term can be written in the form

[(Bi-qi-B-Dar = [[(B = B)-(h = J)+2E- (i = D]dr

Q Q
5F+2fé-(i—f)d3r (23)

9]
with F > 0. The last term of Eq. (23) is
2/913;‘*-@ _J)dr = 2oan¢-V(¢>1 —¢)d3r=2aﬁn(¢1 — )V da
=20[(¢1—¢)V¢-d6+20] (61— $)Vo-da=0 (24)

S; Se

since V¢ -dd vanishes on S and ¢, and ¢ are equal on S; and on S,. We are then left with
the inequality

WI—W=V2(RL4%)20=>RISR (25)
1

as we wanted to prove.
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FIGURE 3. A two-dimensional body with uniform incoming and outgoing current densities. The
dimensions are given in arbitrary units and the resistivity is assumed to be equal to one.
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FIGURE 4. To the body shown in Fig. 3 a piece of the same material is added in “parallel”.

Finally we present the calculation of the electrical resistance of the two-dimensional
homogeneous body shown in Fig. 3. We assume that the incoming and outgoing current
densities are uniform. Using the numerical procedure described in Ref. [4] we calculate
its electrical resistance taking the value of the conductivity o as unit and the dimension
of the body shown in Fig. 3 in arbitrary units. The procedure requires a discretization
of the frontier of the body on the y-axis, the conditions imposed on these points give
raise to a set of algebraic equations whose number is equal to the number of points in the
discretization. Taking 9 points the value of the resistance is R = 1.732. Figure 4 shows
the body already considered with the added picce in “parallel”. A series expansion can be
written for the electrical resistance in this case

oC
Ry =1+ ) (K,)*sin?(K,) coth(2K,), (26)
n=1

with K, = &F. Taking only up to n = 11 in this expansion we get the approximate value:
Ry =1.2719 < R as it should be.
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3. CONCLUSIONS

To conclude, we have given two operational ways to define the electrical resistance of a
homogeneous isotropic solid body. In the first one the current density is fixed on part of the
surface of the body and in the second one it is the electrostatic potential that is assumed
to be fixed, also, on part of the surface of the body. It is shown, in both cases, that the
electrical resistance decreases if a piece of material, with the same conductivity o, is added
in “parallel” to the body. Finally an application has been done to a two-dimensional body
with a non-conventional shape.
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