
Re.;.l. Mexicana de Fúica 42, No. 4 (1996) 545-549

Solution of the Klein-Gordon equation in the Carter A
solution

G. SILVA-ORTIGOZA
Facultad de Ciencias Físico Matemáticas

Universidad A ut6noma de Puebla
Apartado postal 1152, 72001 Puebla, Pue., México

and
Departamento de Física, Centro de Investigaci6n y de Estudios Avanzados del IPN

Apartado postal 14-740, 07000 México, D.F., México
Recibido el 11 de enero de 1996; aceptado el 21 de febrero de 1996

ABSTRACT. It is shown that the separation constant not related to isometries, which appears
in the solution of the Klein-Gordon equation in the Carter A background, can be defined in an
invariant way as the eigenvalue of a second-order differentia! operator made out of a two-index
Killing spinor, with the eigenfunctions being the separable ""lutions.

RESUMEN.Se muestra que la constante de separación no relacionada con isometrías, la cual aparece
en la solución de la ecuación de Klein-Gordon en la métrica A de Carter, se puede definir en forma
invariante como el eigenva!or de un operador diferencia! de segundo orden construido de un espinar
de Killing de dos índices, con las soluciones separables como las eigenfunciones.

PACS: 04.20.Jb; 04.40.-b

l. INTRODUCTION

The Klein-Gordon equation and its separability properties on black hale metries have
been the subject of intense study and detailed investigations [1,2]. Carter [3] pointed out
that the Klein-Gordon equation is separable in the Kerr-Newman metric, among others
(see also Ref. [4)). Furthermore, he has shown that the separability properties are very
closely related to symmetry operators [51; which are linear differential operators that map
the space of solutions into itself. The comrnuting operators with the differential operator
appearing in the field equations are the more familiar examples of symmetry operators.
They are called constants of motion.
In the work by Carter [5) it is shown that, when the background space-time is a solution

of the Einstein or the Einstein-Maxwell field equations, one can construct a first or second-
arder commuting operator (for the Klein-Gordon operator) if the space-time admits a
Killing vector or a two-index Killing tensor, respectively.
On the other hand, Dudley and Finley [6) have shown that, when the background is

the Plebanski-Demianski metric, the decoupled perturbation equations for the radiative
components corresponding to spin s = 0, 1/2, 1 and 2 admit R-separable solutions. But
they did not explain the R-separability properties by means of symmetry operators.
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The generalization of Carter's results, on a general curved background for the confor-
mally invariant Klein-Gordon operator, was given by Kamran and McLenaghan [7). They
showed that the most general second-order symmetry operator for the conformally invari-
ant Klein-Gordon operator can be constructed from a two-index conforma! Killing tensor
and that this operator admits the R-separable solutions as eigenfunctions, where the eigen-
value is the separation constant (not related to isometries) arising from the separation of
variables. Symmetry operators for the Dirac and Weyl neutrino equations have also been
considered, important examples of which [8,9] arise from the separability of these equa-
tions in the Kerr-Newman solution. For the Maxwell equations, Torres del Castillo [101
has shown that the separable solutions of the source-free Maxwell equations, on a type-D
vacuum space-time with cosmological constant, can be characterized by means of a differ-
ential operator constructed from a two-index Killing spinor. This operator provides, at the
same time, a covariant definition of the Starobinsky constant, which arises from the differ-
ential relations that connect the separated functions (the so-called Teukolsky-Starobinsky
identities). Furthermore, he found analogous results to the separation constant not re-
lated to isometries [11] (see also ReL [12]). For the Rarita-Schwinger equation in a type-D
vacuum background see ReL [13].
The aim of the present work is to show that when the background space-time is the

Carter A metrie, which is a solution of the Einstein-Maxwell field equations, the charged
Klein-Gordon equation can be solved by the separation-of-variables method and that the
separation constant not related to the Killing vectors, can be defined in a covariant way
as the eigenvalue of a certain second-order differential operator made out of the two-
index Killing spinor admitted by the Carter A solution, with the eigenfunctions being the
separable solutions of the Klein-Gordon equation.
The spinor formalism and the Newman-Penrose notation are used throughout [14,15).

2. KILLING SPINORS

The concept of a two-index Killing spinor has its origin in the work of Walker and Pen-
rose [16]' who demonstrated the existence in any type-D vacuum space-time of a second-
order symmetric two-spinor satisfying the twistor equation

(1)

where the parenthesis denote symmetrization on the indices enclosed. If LAB is a two-
index Killing spinor, it is equivalent to saying that there exists a (complex) vector field
K AH such that

(2)

Nowadays, we know that ifthe Weyl spinor, W ABCD, does not vanish, then the integrability
conditions of Eq. (1) imply that WABCD has to be of type D or N, depending on whether
LAB is algebraically general or special, respectively. In a f1at space-time the integrability
conditions on Eq. (1) are trivially satisfied. (For a proof of these results, see ReL [17).)
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If the space-time is a type-D solution of the Einstein vacuum ¡¡eld equations with
cosmological constant or oC the Einstein-Maxwell ¡¡eld equations with an algebraically
general electromagnetic ¡¡eld whose principal null directions are geodesic and shear-free,
then the solution of Eq. (1) is given by

(3)

up to a complex constant factor [17]' where oA and tA are principal spinors oC lIt ABCD,
and <P is such that [18]

OB\J ACoB = °A oB 8BC In <P,

tB \J ACtB = tA tB 8BC In</>.

3. THE KLEIN-GORDON EQUATION AND TIIE CARTER A METRIC

(4)

In the two-component spinor formalism, the Klein-Gordon equation in a general space-
time with a background electromagnetic fieid is given by

(5)

where lIt is the complex scalar field with mass parameter M and electric charge e, while
epAH is the four-potential oC the electromagnetic field. Making use of the notation of
Newman-Penrose, Eq. (5) is equivalent to

[(D +, + f - P - p + ieepoó)(~ + ieepli)

-(6 + (3 - a + if - T + ieepoi)(6 + ieep¡ó)

+(~ - "(- 'Y+ TI + /l + ieep¡j)(D + ieepoó)

-(6 - (> +.8- T + 11'+ ieepló)(6 + ieepO¡)] lIt = M21It, (6)

where the components oC epAH are taken with respect to a spin-Crame {oA, tA} with
oAtA = 1, such that the only nonvanishing components of WABCD and 'PAB are W2 and
'PI, respectively.

The Carter A background space-time [19] is a soiution oC the Einstein-Maxwell field
equations with an aiigned electromagnetic fieid, that possesses two commuting Killing
vectors. \Vith respect to a (local) coordinate system {p, q, u, v} such that 8u and 8v are
the two commuting Killing vectors; this metric is given by
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where

P = b - Q~+ 2np - fOp2 - (>'0/3)p4,

Q = b +Q; - 2mq + fOq2 - (>'0/3)q4.
(8)

The parameters m, n, Q•• Qg, and >'0 correspond to mass, NUT parameter, electric and
magnetic charge, and cosmological constant, respectively; while fa and b are two additional
parameters. The Kerr-Newman metric is obtained if one takes b = a2, 9 = O = n and
fa = 1. In terms of the Boyer-Linquist coordinates q = r, p = -a cos 11,u = -t + a<p and
v = <p/a.
Equivalently, the Cartel' A solution can be specified by the null tetrad

where

1
</>=--..

q + lp

With respect to this tetrad the unly nonvanishing spin coefficients are

(9)

(10)

_ pl/4 Ql/2
a = -61n .,

q + lp
p = Dln</>, T = 61n </>,

p1/4 Ql/2
.,.= -L'l.ln .,

q + lp
tr = -61n 4>, JL = -L'l.ln </>,

(11)

and the curvature and electrorr,agnetic field components different from zero are

>'0
A=6"' (12)

The four-potential associated with (12), is given by [ZOI

'Poó = - Q;/, (13)

where the bar denotes complex conjugation. This four-potential satisfies the Lorenz gauge
condition (i.e., V'AB<t> AB = O, and therefore, <PAB = V'AAq,~).
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4. CHARACTERIZATION OF THE SEPARATION CONSTANTS

As we can see, the spin-coeflicients and four-potential of the electromagnetic field are
independent of the variables u and v. Therefore, this means that Eq. (5) admits solutions
with a dependence in the variables u and v of the form

e,(ku+lv) , (14)

where k and 1 are separation constants. Acting on functions with a dependence of the
form (14), the tetrad vectors can be replaced according to

D --+ Va,
(15)

where

t i 2 QV = a - -(1- kq ) +n-
n - q Q Q'

et =V15(a _.!.(I+kp2)+~P)
n p P 2P .

Using Eqs. (8)-(16), one finds that the solution of Eq. (5) is given by

>V = e,(ku+lv) Ro(q) So(p),

where the one-variable functions 14J(q) and So(p) satisfy

(16)

(17)

(18)

In these equations A is another separation constant.
We see that the separable solutions oC the Klein-Gordon equation involve three separa-

tion constants, denoted as k, 1 and A. It is clear that the two first constants are related
to the two-dimensional Abelian isometry graup admitted by the Carter A solution and,
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apart from a factor (-i), they can be defined in a covariant way as the eigenvalues of
the Lie derivatives with respect to the Killing vectors 0u and ov, respectively. The sepa-
ration constant A, which is analogous to Carter's "fourth-constant" found in the case of
tha Hamilton.Jacobi equation in the Kerr background, is not related to the space-time
symmetries; it turns out that A is the eigenvalue of a certain second-order differential
operator made out from the two-index Killing spinor admitted by the Carter A solution.
In fact: if>Ir is a separable solution of Eq. (5) then

[(4)4i)-1 \7AB4>4i LAc LB o \7co + 2ieif>EP LE s LF f¡ \7sf¡

- e2if>TBLT c LB o if>co - ~M2(r2 + 4>-2)]>Ir= A >Ir. (19)

In the Newman-Penrose notation Eq. (19) is given by

(4)4i)-1 [(D + f +, - p - p + 2ieif>oó)~+ (8 + (3- a + 1f - 7 + 2ieif>oi)8

+ (~- "1 - '? + ¡¡+ /l + 2ieif>¡j)D + (8 - a + 73 - r + 7l' + 2ieif>ló)8

2 M2
-1- ---=- ]-2e (if>oóif>li+if>oiif>ló)-T(4) 4>+4> 14» >Ir= A>Ir. (20)

Using the expresions for the nul! tetrad, spin-coeflicients, four-potential of the electromag-
netic field and Eqs. (18), one can readily verify that Eq. (19) holds.

5. CONCLUDlNG REMARKS

According to the previously expounded, we see that the validity of Eq. (19) implies that
the operator acting on >Ir,on the left.hand side of Eq. (19), maps a solution of the Klein-
Gordon equation into another solution (i.e., is a symmetry operator). This fact, can be
expressed by saying that the differential operator in Eq. (19) commutes with the Klein-
Gordon operator modulo the Klein-Gordon operator itself. Furthermore, we see that the
existence of a two-index Killing spinor is very closely related to the separability properties.
Since al! the type-D electrovac metrics admit a two-index Kil!ing spinor, it seems that

a procedure similar to the one given aboye can be applied to al! of them, or at least to
those without acceleration.
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