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ABSTRACT.By considering the gravitational field in the linearized Einstein theory, the scattering
of a weak gravitational plane wave by a sphere is studied. The spherical components of the field and
the differential scattering cross section are given in terms of the spin-weighted spherical harmonics
and the effect on the polarization of the waves is analyzed.

RESUMEN.Considerando el campo gravitacional en la teoría de Einstein linealizada, se estudia
la dispersión de una onda plana gravitacional débil por una esfera. Las componentes esféricas del
campo y la sección de dispersión diferencial se dan en términos de los armónicos esféricos con peso
de espín y se analiza el efecto sobre la polarización de las ondas.

PACS: 04.30.Nk; 03.50.De

1. INTRODUCTION

As is wel! known, the Einstein field equations predict the existence of gravitational waves.
In fact, the equations for weak gravitational fields, obtained by linearizing the Einstein
field equations about the Minkowski metric, imply that the space-time curvature satisfies
equations analogous to the Maxwel! equations and that the weak gravitational waves share
several properties with the elcctromagnetic wavcs.

In this paper we study the scattering of aplane weak gravitational wave by a sphere,
neglecting the gravitational field produced by the sphere, i.e., we assume that the mass
of the scatterer is so smal! that the space-time is approximately flato We make use of the
gauge-independent description of the gravitational field given by the curvature tensor and
of the fact that the solutions of the spin-2 Helmholtz equation can be expressed in terms
of two scalar potentials that satisfy the Helmholtz equation [1,21. A further simplification
is obtained by making use of the spin-weightcd components of the curvature (which are,
essential!y, the spinor components of the conformal curvature, denoted by 'Vo, ... , 'V4
in the Newman-Penrose notation) and of the spin-weighted spherical harmonics [31. In
Sect. 2, the curvature perturbations are expressed in terms of two scalar potentials and
using the expansion of a spin-2 plane wave in spherical wavcs, the scattering of a weak
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gravitational wave by a sphere is analyzed. The seattered field is obtained by assuming
that the gravitational waves do not penetrate the seatterer, which means that the seatterer
is rigid. We find that, in the long wavelength limit, the differential eross seetion is strongly
peaked in the baekward direetion (9 = 11"), but is finite at 9 = 11" (¡.e., there is no "glory
effeet" (see, e.g., Refs. [4,51 and the referenees cited therein)).

2. SCATTERING OF WEAK GRAVITATIONAL WAVES

The Einstein vaeuum field equations linearized about the Minkowski metric lead to the
equations

where

BiEij = O,

1
-BtE;j = £,kIBkBlj,
e

BiBij = O,

1
-BtB,j = -£,kIBkElj,
e

(1)

(2)

and K",¡J,ó is the eurvature tensor to first order in the metrie perturbation (Latin indices
run from 1 to 3 and Greek indiees run form Oto 3) (see, e.g., Refs. [1,6]). Equations (1),
whieh are analogous to the souree-free Maxwell equations, imply that if the traeeless
symmetrie tensor fields (2) have a harmonie time dependenee with frequeney w, then they
satisfy the Helmholtz equation; therefore, there exist solutions to the sealar Helmholtz
equation, ..pI and ..p2, sueh that [1,2]

(3)

where k = w/e,

with

1
L == -,r x \7,

1

Then, from Eqs. (1) it follows that

x == i\7 x L - \7.

(4)

(5)

whenee the complex traeeless syrnrnetric tensor field

(6)

(7)
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is given by

(8)

where

(9)

satisfy the scalar wave equation.
The components of any traceless symmetric tensor field tij with respect to the basis

{ee, e"" er} induced by the spherical coordinates can be combined into the five quantities

t,,2 = tee - t",,,, :l: 2ite""
t,,1 = :¡:tre - itr""

to == trr1

in such a way that t, has spin-weight s [3,7], i.e., under the rotation

ee + ie", -+ ei"(ee + ie",)

the components t, transform as

t ¡so: ts -+ e S'

(10)

(11)

(12)

From Eqs. (8) and (10) it follows that the spin-weighted components of the field Fij are
given by [21

(13)



(14)
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where

tJr¡ == - sin' 0(80 + icsc08",)(r¡sin-' O),

tir¡ == - sin-' 0(80 - icscO8",)(r¡ sin' O),

if r¡ has spin-weight s; then tJ r¡ and ti r¡ have spin-weight s + 1 and s - 1, respectively.
Owing to the definitions (7) and (10), the components F, amount to

F~2 = Eoo - E",,,, :¡: 2Bo", + i(Boo - B",,,, :!: 2Eo",),

F~l = :¡:Er8 + Br", + i(:¡:Bro - Er",),

Fa = Err + iBrr.

The energy flux for a wave with frequency w is given by the vector field [6]

c7
Si = S"Gw2 éijkEjmBkm

hence, from Eqs. (15) it follows that the radial component of this vector field is
5

Sr = 64:Gk2 (1F_212 -1F+212 + 21F_112 - 21F+112).

(15 )

(16)

( 17)

2.1. Asymptotic behavior o/ the so/utions

The scalar Helmholtz equation, (\72 + k2)1/Jn = O, admits separable solutions in spherical
coordinates of the form

where h)l) and h)2) are spherical Hankel functions, An, Bn are constants and the factors ij
are introduced for convenience. Making use of the asymptotic form of the spherical Hankel
functions:

h(l)(kr) ~ (-i)j+! e
ikr

(1 .!(j + 1)!2- _ 1 (j + 2)!_1_ ... )
) kr + 2 (j - 1)! kr 222! (j - 2)! (krJ2 + ,

one finds that

(19)
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therefore, if Eq. (18) contains terms with h?) only, i.e.,
<Pn= Anijh?)(kr)Y¡mUi,'P)e-iwt (21)

[see Eq. (9)]' substituting Eqs. (21) into Eqs. (13) and making use of Eqs. (20) one finds
that

(22)

Therefore, for outgoing waves, F_2 is the dominant component. (Relations similar to
Eq. (22) apply to the massless fields of any spin in an asymptotically simple space-time
and this result is known as the "peeling theorem" (see, e.g., Ref. [8]).) From Eqs. (17)
and (22) it follows that the outgoing energy flux per unit time and unit so lid angle is

(23)

Similarly, one finds that for ingoing waves, F+2 is the dominant component,

and the ingoing energy flux per unit time and unit solid angle is

d2 Ein . c5 2 2
dt dfl = r~~ 647l'Gk2 r fF+21 .

(24)

(25)

Thus, in the radiation zone F_2 represents the outgoing field and F+2 represents the
ingoing field.

2.2. Po/arization

The polarization of the radiation can be also determined very easily from the spin-weighted
components Ft2. In fact, if F, has a time dependence of the form

iwtF,(t) = F,(O) e , (26)

where F,(O) is the value of F, at t = O, comparison with Eq. (12) shows that the time
evolution of F, amounts to rotate the vectors Éo and É<p, about É" with an angular velocity
-w/s or, equivalent1y, to rotate Fij about Ér with an angular velocity w/s. Therefore, if F"
with s "" O, is proportional to eiwt or to e-iwt, the field has circular polarization; while the
presence of both factors, eiwt and e-iwt, means that the radiation has elliptic polarization.
If in the radiation zone F_2 is proportional to eiwt, the outgoing radiation has right

circular polarization (negative helicity) if w > O or left circular polarization (positive
helicity) if w < O. Since F+2 has spin-weight opposite to that of F-2 and corresponds to
waves propagating in the direction -É" the foregoing conc1usions are equally valid for
F+2; that is, if F+2 is proportional to eiwt, the ingoing radiation has right or left circular
polarization according to whether w be positive or negative, respectively.



SCATTERING OF WEAK GRAVITATIONAL WAVES BY A SPHERE 555

2.3. Expansion of aplane wave

For a cireularly polarized plan e wave propagating in the e, direetion, the "eleetrie part"
of the eurvature is proportional to the real part of the eomplex tensor field with eartesian
eomponents

(27)

By expressing this tensor field in the form

(28)

(eJ. Eq. (3)), one finds that xixjEfj = 7i7iélél</>2and from Eq. (27), XiXjEfj = (rsinOe~i'i')2
x ei(h-wt). Using now the well known expansion

00 00

eih =L ¡j(2j + l)jj(kr) Pj(eos O) =L ¡j J41r(2j + 1) iJ(kr) Yjo(O, '1'), (29)
j~O j~O

and the relations

. O ~i'"y :f: [(j 'f m)(j 'f m - 1)] 1/2SIn e 'P' . -)m - (2j _ 1)(2j + 1) Yj-l,m~1

[
(j:f: m + 1)(j :f:m + 2)] 1/2

'f (2j + 1)(2j + 3) Yj+l,m~l,

. () . () 2j + 1 ()Jj-I X + Ji+l x = --jj x
x

(see, e.9., Re£. [9]) and

él, Yjm = [(j - s)(j + s + 1)]1/2,+lYjm,

7i, Yjm = -[(j + s)(j - s + lW/2 ,-IYjm,

(30)

(31 )

(32)

where the ,Yjm are spin-weighted spherieal harmonies, with OYjm= Yjm, one finds that

=_2- 00 [41r(2j+l)(j-2),]'/2-j.. -iwt
</>2 k2.r; (j + 2)! I 1)(kr) Yj,ot2 e .

On thc othcr hand, calculating £ikI8kE& from Eqs. (27) and (28), it turns out that

(33)

(34)
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Comparing the expressions (28) and (34) one concludes that <PI= :1::<P2,i.e.,

_ 2- 00 [47[(2j + I)(j - 2)!]1/2 -j', ,-iwt
<PI-:¡: k2 :; (j + 2)! 1 1J(kr) Yí,"2e . (35)

By substituting Eqs. (33) and (35) into Eqs. (8) or (13) one obtains the multipole expansion
of aplane wave.

2.4. Scattering of aplane wave by a sphere

Now we can consider the scattering of aplane wave by a sphere. As in the case of the
field of the incoming wave, the scattered field and the total field can be expressed in the
form (8) in terms of appropriate solutions of the scalar wave equation. For instance, the
scattered field has the form

where <P3and <P4are solutions of the scalar wave equation of the form

A. _ _1_ ~ [47[(2j + I)(j - 2)!] 1/2 (.).j h(l)(k ) Y. -iwt
'1'3 - :¡:2k2 ~ (j + 2)! 0" JI J r J,,,2e ,

A. = __I_~ [47[(2j+ l)(j-2)!]1/213 (')ijh(I)(kr)Y. e-iwt
'1'4 2k2 ~ (j + 2)! " J J J,,,2 ,

(37)

and the coefficients o,,(j), 13",(j) are determined from the boundary conditions at the
surface of the sphere. From Eqs. (13), (20c), (32) and (37) it follows that in the radiation
zone the scattered field is given by

. 00

F:~~ - :r LJ 47[(2j + 1) [(13" (j) :1::o,,(j)) ei(kr-wt) -2 Yí,"2
F2

- (13,,(j):¡: o,,(j))Ci(kr-wt) 2Yí,,,2], (38)

and from Eq. (23) it follows that the time-averaged energy flux of the scattered field is
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Since the incident energy flux is e5¡41fGk2 [see Eq. (16)]' the scattering differential cross
section is

(40)

and by virtue of the orthonormality of the spin-weighted spherieal harmonics the total
scattering eross section is

00

17 = 2:2 2::(2j + 1) [laz(jW + l,az(j)12] .
]=2

(41)

From Eq. (38) it follows that the seattered field has, in general, elliptic polarization
and that it has circular polarization if and only if az(j) = ,az(j) or az(j) = -,az(jl, for
all j; in fact, if az(j) = ,az(j), the scattered field has the same helicity as the incident
wave, while if az(j) = -,az(jl, the scattered field has the opposite helieity to that of the
incident wave (eJ. Re£. [4)). (The same result is obtained in the case of the scattering of
electromagnetic waves [10,11); note that in Re£. [11]' p. 771, the case az(j) = -,az(j) is
missing.)
Similarly, one finds that the total time-averaged outgoing power is

(42)

hence, for each multipole, the total outgoing power is equal to the incoming power if and
only if 1+ az(j) and 1 + ,az(j) have modulus 1. (The total incoming power is infinite,
since we are dealing with aplane wave; nevertheless, the power in each multipole is finite.)
Assuming that the origin of the system of coordinates is placed at the center of the

sphere, the coefficients az(j) and ,az(j) in Eqs. (37) are determined by the boundary
conditions on the curvature perturbations at r = a, where a is the radius of the sphere.
We shall assume that the sphere is rigid, in such a wa) that the curvature perturbations
vanish inside the scatterer. Making use of the Stokes theorem and the equation

where Ta¡J is the energy-momentum tensor, T = Toa and Eij, Bij are the components
of the traceless part of Ka¡J,6, which follows from the Bianchi identities and the Einstein
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field equations, one finds that Eoo = E",,,, and Eo", = O at r = a. Owing to Eqs. (15), these
boundary conditions amount to

(43)

which, in view of Eqs. (13), are equivalent to

(44)

Substituting Eqs. (33), (35) and (37) into Eqs. (44) one obtains

d r2h(2)(kr)
1 (') ;¡;: }+U,,) = - d 2 (1) ,

;¡;:r hj (kr) r=a
I+fh(j)=- (45)

which have modulus equal to 1, and therefore there is no absorption of energy by the
sphere.
In the long wavelength limit, ka « 1, Eqs. (45) yield

. 2(j + 2)i(ka)2i+1

u,,()::e (j -1)(2j + 1)1(2j -1)!!J2'
. 2(j + l)(j + 2)i(ka)2i+I

fh() ::e - j(j _ 1)(2j + 1)[(2j _ 1)!!J2 (46)

therefore, the dominant terms in Eqs. (38)-(41) correspond to j = 2. Then, from Eqs. (40),
(41) and (46) one obtains

(47)

and

(48)

Equation (47) shows that, in this limit, the scattered field is mainly concentrated in
the backward direction (11= 1r); the differential cross section for electromagnetic waves
scattered by a perfectly conducting sphere gives a similar pattern, though less asymmetric
and less narrow [10,11]. (In the case of the electromagnetic waves, 80% of the energy of
the scattered field gets out through the hemisphere 1r/2 :'S11:'S1r; while Eq. (47) implies
that more than 93% of the energy of the scattered field is reflected in the hemisphere
1r/2 :'S 11 :'S 1r.) The cross section for the gravitational waves is much less than that
for electromagnetic waves [10,111 owing to the presence of an extra factor (ka)4. These
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differenees follow from the faet that the lowest order multipole present in the scattered
field corresponds to j = 1 in the case of spin 1 and to j = 2 in the case of spin 2.
On the other hand, considering the scattering of a spin-O field by a sphere, with the

boundary eondition that the field be equal to zero at the surface of the sphere, one finds
that in the long wavelength limit

da a2 (49)---dO - 4

and

(J :::::::7ra2. (50)

Thus, by contrast with the result (47) and that corresponding to electromagnetic waves,
in the case of a spin-O field, the scattering is approximately isotropic and the cross seetion
is mueh greater than those for the spin-l and -2 cases.
A rigid material, in the sense defined aboye, is the analogue of a perfect conductor in the

electromagnetic case and it would behave as a mirror for the gravitational waves. However,
Eq. (48) shows that, in the long wavelength limit, the total scattering cross section of a
rigid sphere is a very small fraction of its geometric area; therefore, the effect of rigid, or
nearly rigid, celestial bodies on the gravitational waves is negligibly small.

3. CONCLUDING REMARKS

The differential cross sections obtained here differ considerably from those given in Ref. [4],
which correspond to the scattering by the gravitational field of a mass m in the weak-field
approximation. In particular, the differential scattering eross sections for scalar, electro-
magnetic, and gravitational waves given in Ref. [41 do coincide for small angles O.
From Eqs. (13) it can be readily seen that the gravitational perturbations can be ex-

pressed in terms of a single complex sealar potential. Making use of Eqs. (9), one finds
that Eqs. (13) ean be rewritten as

1 (1 ,2 20 oF+2 ="2 -a, +ar, r X,
r e
1 1 -

F+1 = -"2(-at+ar)rooox,
r e
1--

Fo = "20000X,
r
1 1 --

F_1 = -"2(-a,-ar)rooox,
r e
1 1 --

F_2 = "2(-a,-ar)2r200x,
r e

where X == (<PI + <P2 - <PI + <p2)/2 is a solution of the wave equation.



560 G.F. TORRES DEL CASTILLO AND L.C. CORTÉS CUAUTLI

ACKNOWLEDGMENT

The authors are grateful to the referee for helpful comments. This work was supported in
part by CONACYT.

REFERENCES

1. \V.B. Campbell and T. Morgan, Physica 53 (1971) 264.
2. G.F. Torres del Castillo and E. Rojas Marcial, Rev. Mex. Fís. 39 (1993) 32.
3. E.T. Newman and R. Penrose, J. Math. Phys. 7 (1966) 863.
4. P.C. Peters, Phys. Rev. D 13 (1976) 775.
5. J.A.H. Futterman, F.A. Handler and R.A. Matzner, Scattering from black holes, Cambridge

University Press, Cambridge (1988).
6. G.F. Torres del Castillo, Rev. Mex. Fís. 37 (1991) 443.
7. G.F. Torres del Castillo, Rev. Mex. Fís. 37 (1991) 147. (In Spanish.)
8. J. Stewart, Advanced Geneml Relativity, Cambridge University Press, Cambridge (1990).
9. G. Arfken, Mathematical Methods for Physicists, 3rd ed., Acadernic Press, San Diego (1985).
lO. L.C. Cortés Cuautli,. Tesis de Licenciatura, UAP, 1996.
11. J.D. Jackson, Classical Electrodynamics, 2nd ed., Wiley, New York (1975), Chapo 16.


