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ABSTRACT.The problem of the radiative corrections to the thermodynamic potential in statistical
quantum electrodynamics in the ¡¡mit of temperatures of the order of the electron rest mass is
revisited. It is argued that only longitudinal modes can contri bute to the so-called correlation
term of the thermodynamic potential, in agreement with the pioneering calculations made by
Akhiezer-Peletminskii (Sov. Phys. JETP 11 (1960) 1316), and disagreement with the more recent
calculations made by Leermakers/van der Weert (Phys. Lett. 135 (1984) 118). Analogy with the
Bose-Einstein condensate and consequen ces for the effective potential which arises in the discussion
of the phase transitions which occur in the standard model are discussed.

RESUMEN. Se revisa el problema de las correcciones radiativas al potencial termodinámico en la
electrodinámica cuántica estadística, en el límite de temperaturas del orden de la masa del electrón
en reposo. Probamos que solamente los modos longitudinales pueden contribuir el así llamado
término de correlación del potencial termodinámico, en conformidad con los primeros cálculos,
hechos por Akhiezer-Peletminskii (Sov. Phys. JETP 11 (1960) 1316), Y en desacuerdo con los
cálculos más recientes, realizados por Leermakers-van der Weert (Phys. Lett. 135 (1984) 118).
Además se examina la analogía con el condensado de Bose-Einstein y las consecuencias para el
potencial efectivo que se obtiene en la discusión de la transición de fase que ocurre en el modelo
estándar.

PACS: 11.10; 14.80.Am

1. INTRODUCTION

The present paper is a continuation of a previons one [1J, where two of the present au-
thors investigated the problern of the photon rnass in statistical quanturn electrodynarnics
(QED). In the present paper, we want to continue that work by investigating sorne points
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related to the contribution of the photon mass to the radiative corrections to the thermo-
dynamic potential, as well as sorne specific features and anaJogies of the high temperature
photon spectrum.
According to statistical quantum electrodynamics, electromagnetic radiation field can

be in thermodynamic equilibrium with the electron-positron field at very high temperature
T ~ mc2, where m is the electro n mass (an scenario which may hold in a very hot star).
Such equilibrium between the photon gas and the electron-positron plasma is characterized
by the temperature T and the equation for the chemical potentials /lo.- + 1'.+ = /lo."
where /lo., = O and in consequence /lo.- = -/lo.+. In the case of electrical neutrality, as
in the blackbody radiation, also /lo.- = O,which means equal densities for electrons and
positrons. This equilibrium is preserved by a continuous balance in the processes of pair
creation and annihilation, and by scattering of electrons and positrons by photons. Usually
an ionic background is supposed to exist, which interacts also with the electromagnetic
field. This background provides a positive charge to balance the electron charge in the
case of /lo. f O.
These high temperature processes ¡ead, for the electromagnetic radiation propagating

inside the plasma, to a drastic departure from the light cane dispersion equation. That
behavior comes from the more complex structure of the photon self-energy in a medium,
as compared with that of vacuum. We refer especially to the appearance of the plasmon
mass and Debye screening [2,15,1]. We have also the effect of temperature radiative
corrections to the express ion for the thermodynamic potential !l, in other words, the
QED corrections to the Planck formula. This calculation was performed the first time by
Akhiezer-Peletminskii [4]. They used in their calclllations the one-loop approximation of
the polarization operator IT"v, (i.e., to order e2).
In recent years, the so-called correlation term in QED (and QCD) has been calculated

again by sorne authors, as Kapusta [5] and by Leermakers-van der Weert [6]. The im-
portance of clarifying the QED case lies precisely in the fact that it helps to understand
better the more involved cases of non-abelian theories. We mention especially the infrared
problem in high temperature QCD and the hot electroweak phase transition.
The authors of Re£. [6] argued that the results obtained by Re£. [4] in QED were

wrong concerning the correlation term, which must be corrected by sorne nonvanishing
contribution of the transverse modes. The initial arguments of Re£. [6] were motivated
by previous claims by Kislinger and Morley [8J, concerning the role of the plasmon mass
effect in connection to the symmetry restoration by temperature suggested by Kirzhnitz
and Linde (see Re£. [9]). But in calculations made afterwards by Toimela [71 in QCD it
was shown that the claims made in Re£. [6] were not justified (the arguments of Re£. [7)
are equally valid for QED), and that the tenns these authors considered as nonzero,
actually vanish. In a later review paper by Landsman and van Weert [10], the results of
Re£. [7] are only very briefly commented in connection with the QCD (but not QED)
problem.
The correlation term was calculated more recently by Pisarski [11] in QCD, leading to

conclusions in agreement with that of Re£. [7J. More recently, Parwani and Coriano [12]
calculated the thermodynamic potential in QED nI' to eS order. Their results correspond
to taking IT"v up to order e" and coincide (nI' to terms e2, él, with those of Akhiezer-
Peletminskii.
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In the present paper we give alternative arguments in favor of the calculations made by
Akhiezer-Peletminskii (the only correction to be made is the insertion of a factor of 3 due
probably to a misprint). We consider as essential to point out that the static (infrared) l¡mit
to be used in the temperature (sometimes named imaginary-time) formalism is k4 = O,
lim k ~ O, where k4 = 2n:n{3 is the Matsubara frequency. We shall start by recalling sorne
features of the photon spectrum in statistical QED and on the definition of the exchange
and correlation terms of the thermodynamic potentia1.
The point of view of the present authors is that the knowledge of the analytic properties

of the photon spectrum in the w, k plane must be taken essentially into account in the
investigation of the radiative corrections to the thermodynamic potentia1. To that end,
we consider a more simple model of a massive frequency-dependent boson field which
reproduces the infrarcd and ultraviolet properties of the transverse and longitudinal high
temperature QED modes at the points corresponding to the discrete Matsubara jrequencies.
Such model has different infrared (w = O) and high frequency masses and we show that
the "correlation" term M3T is due the infrared mass contribution. We apply that result
to the QED case. For the transverse modes, being infrared massless (but high frequency
massive) their correlation ter m vanishes, and for the longitudinal mode, having different
(nonvanishing) infrared and high frequenc)' masscs, it is the infrared Debye mass which
contributes to the M3T correlation termo Here /1.[2 is roughly equivalent to the exact
non-perturbativc mass, and can be taken as corresponding to a sum of loops Ln rrn(O) of
order e2n. \Ve also discuss sorne analogy existing bctween the spectrum of massive charged
boson gas at the tree level and the transverse photon spectrum for w 2: O. The infrared
behavior of the thermodynamic potential shows a remarkable analogy also. Finally we
discuss sorne consequences of the previous results.

2. PnoToN SPECTRUMANDMASSESIN STATISTICALQED

Starting from the properties of the spectrum of the high temperature gas [15) it is possible
to draw sorne insights about the contribution of the transverse and longitudinal modes to
the radiative corrections to blackbody thermodynamic potentia1.
Let us consider the zeros of the photon inverse Green function [2), in statistical QED,

which can be obtained from the temperature QED effcctive action functional as D-J =
2 -- - "ó r/óA"Av (where A~ means average fields), and is, in consequcnce, gauge-invariant. As
det D;~J is zero (det D"v is singular), we shall add sorne gauge fixing term to it. We shall
see that the spcctrum is indcpendent of this gaugc fixing term, as it must be. We have

wherc Q is the gauge fixing paramctcr,

2 (1 + 2m') (1 4m,)1/2
Q(k) = _e_(k2 + k2)2 roo dx ---x - ---x

12n:2 4 14m' x(x + k2 + k¡)

(1)

(2)
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and

(3)

(4)

where /1, v = 1,2,3 in the last equation. The explicit expressions for A and I1~4 at finite
ternperature and nonvanishing electron chernical potential in the one-Ioop approxirnation
can be found e.g. in Re£. [2]. It is irnportant to state here, however, sorne perturbative-
independent properties,

lirn A = O,
"'4=0.
k-O

AD being the Debye length.
To obtain the dispersion equation we rnust solve

detD;J(o) = O,
or explicitly

(5)

(6)

Qne obtains one rnassless rnode, two transverse and one longitudinal rnassive rnodes. It
can be shown that when calculating the therrnodynarnic potential corresponding to these
rnodes, the Faddeev-Popov deterrninant k4 not only cancels the terrn k2 in Eq. (6), but
also introduces a subtractive zero rnass rnode, to keep the adequate counting of degrees
of freedorn in the lirnit e -. O, since in the lirnit we have only the contribution of the two
transverse rnass less rnodes.
In this way we get two independent dispersion equations for the photon: k2 = A+Q, for

k2rr'the two transverse rnodes and k2 = =-¡¡;u + Q(k), for the longitudinal rnode [15), and we
observe (see below) that Eq. (6) contains, in addition to the unphysical zero rnass rnode,
the contribution of three rnassive rnodes, without violating the gauge invariance of the
QED Lagrangian.
\Ve will consider here the high ternperature infrared lirnit of A and I144. At the one-

loop level, the previous infrared lirnit (2) leads to A ~ Ikl -. O, and the solution to the
dispersion equation for the transverse rnodes is

e -O- ,

whereas in that lirnit, for the longitudinal rnode we have

k2 __ ,-2
- "D'

(7)

(8)

Thus, A¡;2 = I144(0) plays the role of an infrared rnass of the longitudinal rnodes. In the
high ternperature lirnit T » me it is A¡;2 = e2T2/3.
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FIGURE 1. Spectra of longitudinal (L) and transverse (T) l'!Odes after Weldon [15). The real k/eT
axis is continued to imaginary momenta ik/eT at the left. The infrared (longitudinal) mass, eT / J3,
is larger than the plasmo n mass Mp = eT /3.

In the limit which we will call ultraviolet (observe that we are dealing with frequencies
w ~ me), w # O, Ikl -> O, for both transverse and longitudinal modes we obtain as a
solution the plasmon mass

A(w, O) = -w~, (9)

where w~~ e2T2/9 for T » m.
The detailed study of the behavior of these modes was made on [15]. The approximate

picture is given In Fig. 1.
\Ve observe that transverse and longitudinal modes behave as massive at high frequen-

cies, bearing equal plasmon masses. But their behavior at low frequencies is quite different.
As indicated by Eq. (7) there is no magnetic screening due to absence of mono poI es in
QED, whereas (8) means just the existence of Debye screening in the infrared limito

3. EXCIIANGE AND CORRELATIONTEHMS

Here we reproduce sorne results of Re£. [41. The thermodynamic potential of our system
of elcctrons, positrons and photons can be written as

(10)
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where í!id is the thermodynamic potential of the ideal gas of electrons, positrons and
photons; the term ~í!,is proportional to e2 and is named the exchange term, and to
~í!c, the correlation termo It contains contributions of higher order, starting from e3. The
expression for í!, is

(11)

and for í!c is

~í!=-~"Jd3k[1 (l_rr~4) rr~4 21 ( _A(k4,k))_2A(k4,k)].
e 2(2,,)3 ~ n k2 + k2 + n 1 k2 k2'

k.
(12)

in the high temperature limit, the result obtained in Ref. [41 for the exchange ter m was

_ Ve2 [(8n)2 4T
2
8n]

~í!,- 32 8/l + 3 8/l '

where

1 J 3n = (2rr)3 d p(ne - np),

and the electron-positron distributions are

The expression for the correlation term was

(13)

(14)

Here e2S;; = - A¡;2, AD is the Debye length, which as pointed out previously, in the high

T limit is A¡;2= e't. Thus, in that limit we have

and

The express ion for the total thermodynamic potential of electrons, positrons and pho-
tons can be written as

í!= 11,,2T4 5e2T4 éT4

180 + 288 + 36v':írr'
(15)
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from which the energy can be found from U = TS + n, the entropy being S =
-(8n/8T)v=con,t. In this way we obtain an expression in which the radiative corree-
tions for the energy must be three times the value reported by Ref. [41 (due probably to
a misprint).

In Eq. (15), the coupling constant is to be considered as an implicit function of the
renormalization scale adopted, let us name it A. If we include the next order 100ps, terms
of order e4T4 and a(é InT/A) appear. We can choose A = T, eliminating thus any
logarithmic dependence on T [12]' or either use the perturbative renormalization group
invariant coupling constant approximately given by e2(T) = e2[1 + ~ In(T/A)J. Thus, at
the scale of temperatures we are working we may write n = n(e2 (T), T).

At lower temperatures as compared with the electron mass m •• we usually ignore such
dependence of the coupling constant on temperature. We must also subtract from the
ideal gas term in the thermodynamic potential sorne terms dependent on the electron
mass which are positive and tend to reduce the entropy, like m~T2/12.

4. THE ONE-LOOP THERMODYNAMIC POTENTIAL OF SCALAR PARTICLES

We now turn to writing alternative expressions for the thermodynamic potential n of a
massive scalar field, keeping in mind to use the results later for several purposes (i. e.,
Planck's formula can be obtained by taking the mass M = O, and multiplying by 2, the
number of transverse modes). By multiplying by 3 we get the thermodynamic potential
of a vector massive gas; by using sorne modified spectrum (see below), we may construct
an approximate model for the boson part of the very hot QED plasma.

The free-particle spectrum ek = (k2 + M2)I/2 is given by the poles of the propagator
C-l = O, i.e., 104 = :Hek.

The field near the massive scalar particles is screened, and this screening is described
by the pole 104= O, in other words, by k = :HM, giving the Yukawa force F _ e-M. /r
(the analog of the Debye screening in the QED case). It is important to stress here the
role of this k4 = O pole in determining this infrared behavior (see Fig. 2a).

The one-Ioop thermodynamic potential can be obtained from the propagator C(x, y) [2,
141 as n = trlng (here trA = (41T3¡J)-I Jd3pA), or

n = __ T_ "Jd3k ln(e + k2 +M2)
2(2Jr)3 ~ 4 ,

where k4 = 21TnT, and n E Z,
Usually Eq. (16) is evaluated by differentiating with respect to M2, summing over n,

and integrating back over Af2• The result is the well-known expression

ro - _T_Jd3k I (1 _ -<kiT) _1_Jd3kE
" - 2(2Jr)3 n e + (21T)3 k. (17)

\Ve can write Eq. (17) as n = Op + no where Op is a temperature dependent term,
which is finite, and 00 is a divergent term, which is independent froID the temperature



580 R.A. PÉREZ MARTÍNEZ ET AL.

w

w

M.•..-
/

k=iM /
ik k

\
\,,

....-
-M

FIGURE 2. a) Usual spectra of free Bose particles have equal infrared and ultraviolet masses for
particles and antiparticles.

and comeS from the infinite vacuum energy. By expanding the logarithm in series and
using the integral representation

_sl/'lfT 1 1000 dv -sv-I/4vT2e ---- --e
- 27f1/2T o v3/2 '

we can write IIp as

(18)

Prom (18) we can get the asymptotic high temperature expansion of IIp [141:

(19)
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FIGURE 2. b) In our modified scalar spectra, the infrared mass M' or MU, responsible for the
screening, differs from the ultraviolet masses M.

where c = 21n 411" + 3/2 - 2-y. By comparing Eqs. (16) and (18) we conclude that the
term M3T/I27r, comes just from the term n = O in Eq. (16). (This point can be better
understood if in Eq. (18) we use the integral representation

10
00 dlJIn A = - _ (e-Av _ e-V),
O lJ

and introduce adequate regularizing parameters in the integrals over d3k of the vacuum
terms. We omit these details here.)
It is convenient for later purposes to write also from Ref. [141 the corresponding expres-

sion for a gas of massive fermions plus antifermions:

(20)

where ¿ = 21n 11" + 3/2 - 2-y.
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5. TIIERMODYNAMIC POTENTIAL OF SCALAR PARTICLES WITII MODIFIED SPECTRUM

For the purpose of making a simpler and very approximate model for descrihing the
behavior of the transverse and longitudinal electromagnetic modes in our plasma, we will
consider in this section the evaluation of the thermodynamic potential of scalar particles
with the modified spectrum t:k = (k2 + M2(w))1/2, in which we have different infrared and
ultraviolet masses, defined by

M(w) = {Al,
17M,

for w ~ M,
for O ::; w < M,

(21)

that is, we have different analytical expressions for the spectrum in the regio n of positive
and negative k2. Here we keep in mind the correspondence k4 = iw, ¡.e., we are considering
at the same time the temperature problem with discrete Matsubara frequencies k4 = 2rrn,
and its analytic continuation to the quantum-kinetical case with real and continuous
Írequency w.
\Ve shall write the thermodynamic potential as the sum of three terms:

o = !l(0) + !lex + !leo"

where !l(0) is the M = O limit of !lp,

and

(22)

These integrals are finite and can be evaluated exactly and after doing it, we get finally
that lhe terms /'.13/12rr and -/'.13/12rr cancel and in lhe high temperature limit T» /'.1,
we get

(23)

\Ve will use lhis expression for the calculalioll of the correlalion energy of a massive
vector field which models lhe hlackbody radiation in lhe high lemperature limito
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6. TIIE CORRELATION ENERGY OF OUR APPROXIMATE MODEL

\Ve can now take the high temperature spectrum of the electromagnetic radiation as
represented approximately by a massive vector field with frequency-dependent mass as
described by Eq. (21) (see Fig. 2b), if we take, for the two transverse modes the plasmon
(ultraviolet) mass jVf2 = e2T2 /9, r¡ ~ O, which leads to an infrared mass r¡M = O, and
for the longitudinal mode also M2 = e2T2/9 and r¡ = 3, which gives and infrared mass
r¡M = eT /,,13, e being the electromagnetic coupling constant. (\Ve must remark at this
point that the Matsubara sum picks from just the value at k4 = O (w = O); the next value
being at k4 = 21rT » eT /3. Thus, what is essential for the correlation term is the value of
M (k4) at k4 = Oin calculating the pole at k4 = :!:i(k2 +M2(k4) )1/2. Any other functional
dependence we choose for M(w), for w '" O,le2.dingto the same value 2.tw = o. woule give
the same contribution to the correlation term.) \Ve have then as the unly contribution of
order e3, that coming from the longitudinal mode, i. e.,

(24)

This corresponds obviously to what is expected physically: the M37' term in the ex-
pansion of the thermodynamic potential comes just from the infrared mass. (The M2T2

term in the exchange part of n comes from the UV mass). If higher loops of II¡w \Vere
considered, we \Vouldhave to make the correspondence 1If2 = (CI e2 + c2e4 +... )T2, leading
to M3 = (cíe3 + C2é + ... )T2, all odd powers of e corresponding to corrections to the
correlation energy.
The behavior of the (vanishing) transverse infrarerl mass is consistent with the existence

of constant magnetic fields inside the plasma, which are just represented by massless
infrared transverse photons. (\Ve exduded monopoles or superconductive effects, which
would lead to screening of magnetic fields.)
As an additional argument, we want to point out that if we consider the plasmon as

apartide with three degrees of freedom and mass eT /3, according to the arguments of
Ref. [61, it would be more consistent to expeet a contribution to the correlation term of
order

3VT 3 3VT e3T3 éT4
ll.n = ---Af = --- -- = ---oe 127r P 121r 27 108",

But evcn this quantity is smal/er than the contribution of the longitudinal mode:

e3T4 e3T4
--<---'1081r 36,,13 1r'

(25)

(26)

as n = -PV, the longitudinal mude contributes to the pressure in an amount greater
than a gas of particlcs with mass J\J whose exact dispersion law were w2 = Af2 + k2.

\Ve \Vould like to point out in conduding this section that one can estimate also the
exchange contribution as coming from the temperature mass correction due to the three
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FIGURE 3. Ring diagram oC the thermodynamic potential corresponding to the e' approximation
oC the polarization operator Il"v'

electromagnetic modes of temperature mass Mp = eT /3, plus the two fermion modes,
of temperature mass M¡ = eT/../8 (according to Ref. [19]). This would lead to a term
7e2T4/288, which differs in an amount e2T4/144 from the value obtained in Ref. [4). That
difference obviously stems from the fact that when one consider the radiative corrections
to the gas of photons, electrons and positrons, the electron-positron and photon contri bu-
tions are not strictly additive, since the interaction is nonlinear; it can be represented (to
order e2) as a ring diagram (Fig. 3) containing both the photon and eleetron self-energy
contributions. The correlation term, which comes from the Matsubara zero frequeney, is,
however, due only to the photon contribution.

7. DISPERSION CURVE FOR CHARGED MASSIVE RELATIVISTIC BOSON GAS

Let us consider the spectrum of a relativistic charged sealar gas

k _{i(€p+JL)
4 - -i(€p - JL)

for the particles,
for the antiparticles, (27)

where JL is the ehemical potential.
The dispersion curve w - JL = :!:€p in the plan e w, ..;k2 has the form indicated in Fig. 4a.
The upper branch corresponds to the spectrum of particles w+ = €p + JL, and the lower,

to the antiparticles w- = -(€p - JL). We observe sorne analogous behavior of the dispersion
curve of the present case and that of transverse modes in statistical QED, in the region
w 2: O.
The transverse mode spectrum in the region Ikl2 ~ O closely resembles this pieture,

as coming from the contribution of the plasmonic branch, whose dispersion law in that
region correspond to "particles" of mass m = Mp/2 and chemical potential JL = m, and
the photonic branch, with speetrum close to (k2 +m2)1/2 - m, with k2 < Oin such region;
in other words, near w = O, k2 = Owe may interpret that there is a eondensate of static
transverse photons: this means that the equilibrium plasma is compatible with the arising
of small constant magnetic fields. The system is even compatible with strong magnetic
fields, as theory [18Jand astrophysical observations indieate, but the calculations must be
modified to include the field intensity from the very beginning.
Let us consider the thermodynamic potential oC the relativistic charged scalar gas

(28)
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FIGURE4. a) The effectivespectra for a charged scalar free gas indicates different ultraviolet and
infrared behavior.

This thermodynamic potentia! contains both branches of the spectrum.
The particle density is given by N = -8n/8Jl.

(29)

when Jl. -+ M, the ground state density of antiparticles tends to 00, that is, we have
Bose-Einstein condensation (see Fig. 4b). In the dispersion curve for antiparticles this
corresponds with the intersection with the axis w = Ofor Ikl -+ O.
In the asymptotically high temperature limit, the thermodynamic potential (28) has

been calculated in Refs. [161and [171as

(21n 4". + ~- 21')m4

32".2
na =

(30)
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FIGURE 4. b) In the case ol antiparticle condensation, their 'effective' inlrared mass M-I' vanishes,
leading tú a zero pressure contribution tú the correlation termo

\Ve observe that the third term corresponds precisely to the correlation term (-m3T /61r)
in the limit JL ---+ O. Here Jm2 - 1'2 = J(m + I')(m - JL) is the zero momentum limit
of the geometric average of the positive end negative frequencies limlkl~o( -w+w- )1/2. lf
l' ---+ m condensation limit of antiparticles, this infrared term tends to zero, and does
not contri bu te to the gas pressure. This is quite reasonable to understand if we interpret
fp :1: l' as sorne effective energy. At zero momentum the effective energy of particles and
antiparticles are limp~o(JL:I: fp) = 1':1:m, and for JL ---+ m, only the antiparticles condensate
in the ground state of zero effective energy. The fact that the "correlation" term here
tends to zero as JL ---+ m is obviously the physical manifestation of the Bose-Einstein
condensation: there is no contribution to pressure from the particles in the ground sta te.
It is not difficult to understand that the analog behavior must be physical!y expected
to occur for the transverse modes: its infrared behavior is compatible just with such
a condensate: smal! constant magnetic fields. It must be emphasized, however, that if
condensation occurs, both particles and antiparticles contribute to al! other terms in the
high temperature expansion of O, and changes the sign of the "exchange" term, once for
JL = m it results as 6.0 = (_m2T2 /12).
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8. CONCLUSIONS

We have discussed our reasons for agreement with the results obtained by Akhiezer-
Peletminskii [4), (and even recently by Parwani and Coriano [12)), and disagreement
with those given by Leermakers-van der Weert [61 for the correlation ter m in the high
temperature radiative corrections to the thermodynamic potential in statistical QED.
Our main argument is that such term comes essentially due to the infrared behavior of

the poles of the temperature boson Green function. In the case of the photons, as well as in
the case of charged scalar particles, the contribution to the correlation term (understood as
the ter m equivalent to M3T) is determined by the pole k4 = O, lim Ikl -+ O. In temperature
QED, this means the compatibility of the system with small constant magnetic fields,
which suggests the interpretation of a constant magnetic field as a sort of "condensate"
(but no! Bose-Einstein condensate) of transverse photons.
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