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ABSTRACT.In this paper we present an analysis oftwo Carnot-like endoreversible thermal engines
coupled through a thermal bypass. By means of the definition of a coupling parameter (a) we study
sorne optimization criteria for this array of engines. We show that a works as a driving parameter
of the global power output and efliciency of the array. There exist a-values that maximize those
quantities and we demonstrate that the coupled engines have performance advantages over the
uncoupled case.

RESUMEN. En este trabajo presentamos un análisis de dos máquinas endorreversibles tipo Carnot
acopladas mediante un puente térmico. Mediante la definición de un parámetro de acoplamiento
a, estudiamos algunos criterios de optimización para este arreglo de máquinas. Mostramos que
(t funciona como un parámetro que maneja la potencia y eficiencia globales del arreglo. Existen
valores de (t que maximizan esas cantidades y demostramos que las máquinas acopladas tienen
ventajas de operación sobre el caso desacoplado.

PACS: 44.60.+K;44.90.+C

1. INTRODUCTION

Classical equilibrium thermodynamics (CET) imposes limits over diverse process variables
as efliciency, work, heat and others. Generally, the CET-limits (which are only achievable in
the reversible regime) are far away from real values for the corresponding process variables.
A typical example is given by the Carnot's theorem, which establishes the Carnot efliciency
('1C= 1 - R) as the upper limit far the efliciency of any engine working between two heat
reservoirs with temperatures TI and T2 (TI> T2)' The great departure between '1Cand real
efliciencies is not the only trouble concerning this reversible limito Moreover, the Carnot
reversible engine has not power output. In 1975, Curzon and Ahlborn (CA) [1] proposed
a Carnot-like engine which produces power output and entropy in a finite time. The CA
model reached a remarkable agreement between calculated and observed efliciencies for
several power sources (see Table I of Ref. [1]) and marked the beginning of a branch
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FIGURE1. Diagram of an endoreversibleCurzon-Ahlbornengine.

of thermodynamics known as finite-time thermodynamics (FTT) [2-4]. In the CA.model
there is not thermal equilibrium between heat reservoirs and the working fluid along the
isothermal branches of the cycle. The heat transfer in these processes is given by the
so-cal!ed Newton's law of cooling, which is

(1)

(2)

with Qj a heat flux per unit time, /3j a thermal conductance, Tj the absolute temperatures
of the heat reservoirs, and 8j the absolute temperatures of the working fluid as it is depicted
in Fig. 1.
In the CA-model, the so-cal!ed endoreversibility hypothesis plays a very important role

and this consists in assuming that the working fluid undergoes only reversible transforma-
tions and al! the entropy sources are located at the couplings between the heat reservoirs
and the working substance [51. By means of Eq. (1) and the endoreversibility hypothesis,
Curzon and Ahlborn [1] found that an engine as that of Fig. 1, working in a maximum
power regime has an efficiency given by

r¡CA= 1- (~:)1/2,
which only depends on the temperatures of the heat reservoirs (as in the Carnot case), and
provides an excel!ent approximation to efficiencies of certain power sources [1]. Since the
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FIGURE2. De Mey-DeVosarray oí two endoreversibleCA-enl';ines.

CA paper, many other authors have obtained Eq. (2) by means of different approaches
[6-81. Equation (2) has not the same universality that Carnot's efficiency. In fact, the
efficiency in a maximum power regime strongly depends on the heat transfer law used [9]
and Eq. (2) is only valid for the Newton's cooling law case. Recently, De Mey and De
Vos [10) have proposed an array of CA engines that in the maximum power regime has
an efficiency given by

(3)

In the following section we briefly present the De May-De Vos engine and in Sect. 3
we discuss this engine under a new approach consisting in the introduction of a coupling
parameter, which gives new insights over parallel arrays of CA-engines.

2. TIIE DE MEV-DE VOS ENGINE

In Ref. [lOj, De Mey and De Vos (MV) show how the famous Curzon-Ahlborn formula
[Eq. (2)1 for the efficiency at maximum power regime is maintained for series arrays of
finite-time Carnot-like engines. Nevertheless, these authors found that there exist other
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arrays where the maximum power efficiency is given by Eq. (3). \Ve call De Mey-De Vos
engine the system depicted in Fig. 2, which consists in two Camot engines and three equal
conductances put in a kind of parallel array. De Mey and De Vos reach their result by
means of the following procedure: First, they express the powers W1 and W2 (work per
unit time) as (see Fig. 2)

and

W2 = {3(T1 + ()2 - 2()¡) (1 - ~~) ,

(4)

(5)

where the Newlon 's cooling law and lhe endoreversibilily hypolhesis have been used. The
second slep is the application of an extremal condition

(6)

and

(7)

Thus, lhey get

(8)

and

(9)

which permit to oblain the oplimum power output

(10)

From Fig. 2, MV calculale lhe oplimum supplied heat flux, which is

Finally, lhey find the oplimum efficiency as,

( )
1/3

_ _ Wopt _ (T2)1/33 R +2
'lMv - 'lopt - -Q - 1 - T (1/3'

opt 1 2R-) +3

(11)

(12)
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Thus, their assertion that some endoreversible systems of linear thermal conductors have
other efliciencies than the CA-formula (Eq. (2)) is proved. 770pt is always smaller than
unity. Equation (12) is the maximum efliciency of the overall engine at maximum power
regime. Under the same circumstances, the efliciencies of the separate engines are [10],

and

(h (T2) 1/3
77l,opt = 1- T¡ = 1- TI ( 13)

( 14)T2 (T2) 1/3
772,opt = 1 - O; = 1 - TI

(see Fig. 2). In this way, De Mey and De Vos show how the array of Fig. 2 has an optimum

efliciency where the term (R-) 1/3 plays in fact the role of the ter m (R) 1/2 in CA engines.

3. TIIE COUPLING PARAMETER

In Re£. [10], De Mey and De Vos only remark the appearance of the cubic root term in the
efliciency at maximum power regime for the array of CA- engines in Fig. 2. In this paper
we show that a coupling parameter (a) between both CA-engines can be defined, which
may be used for driving some engine's optimum regimes of operation, as the maximum
efliciency and tbe maximum power output regimes. We also pro pose that the so called
ecological regime [111 is a relevant tool for the optimization of the array of Fig. 2. The
ecological function E was defined in Re£. [11] as

(15 )

where W is the work per unit time (power output), a the entropy production rate and T2
the temperature of the cold reservoir. The E function has for endoreversible heat engines
the property that the power of the maximum E regime is around eighty percent that of the
maximum power output regime, while the entropy production is reduced down to thirty
percent [111.
By means of Eqs. (4) and (5) we have the total power output of the MV-regime

The global entropy production (working fluid plus surroundings) is given by (see Fig. 2),

Qc Q¡ Qlf + Q2C Q¡¡ + Q2i
a=---=-----

T2 T¡ T2 TI
(17)

where QC.i are the heat f1uxes between the working fluid and the heat reservoirs. In the
obtaining of Eq. (17) we assume the validity of the endoreversibility hypothesis. Thus, by
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using Newton's cooling law in Eq. (17) and Eqs. (16) and (15) we obtain an expression
for the ecological function,

E(li¡, 112)= ,B [(3TI + 9T2) - (~: + 1) 111- 2112- (TI + T2) :~ - 2T2::

_ T2(T1 + T2) _ 2TIT2] (18)
112 111'

thus, by means of an extremal condition, we obtain lilE and 112E which maximize Eq. (18):

[ ]

1/3
2

lilE = 1 1
T1T; + rlT2

and

[
2 2]1/3112E= TI T2; TIT2

Thus, the efficiency in the maximum E regime is

( 19)

(20)

P(I1IE,112E)
'lE = QIi + Q2i

(7')2/3 [ [17'[ 7']]1/3][1[ 7']]1/3
1_(T2)1/3-3 ~ + 2+ 2"~ l+~ 2" 1+~

TI [] 1/3 1/3

3-2 ~ - [*+4+2]

(21 )

( )
1/3

'lE is also smaller than one, and depends on the factor R ' as in the MV-case. Equa-
tion (21) is between 'le and '1MV [Eq. (12)1, as can be seen in Fig. 3. The general form
of the functions E(I1¡, 112)and P( 111,112)are given by Eqs. (18) and (16), respectively. The
function '1(111,112)is immediately obtained by means of

P(I1I, 112) 3T1 + 3T2 -111 -112 - TI ~ - T2~ - T~T,- Tf'
'1(11 11) - --- - , 1 1 , (22)

¡, 2 - QIi + Q2i - 3T1 - 111_ TI ~ _ T~;,
where Qli + Q2i are calculated as we said, by using the Newton's law of cooling, that is

Qli = ,B(T1 -11¡),
TI

Q2i = ,B112(2112- 111- T2).

(23)

(24)

As it can be seen through Eqs. (16), (18) and (22), for TI and T2 fixed, P, E and '1
only depend on 111and 112,that is, the temperatures that form a bypass between the two
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1

FIGURE3. Comparison belween 'IC, 'lMv and 'lE.

CA-engines (see Fig. 2). Evidently, that bypass constitutes a coupling element between
the two engines. lf 01 = O2, then the two engines are uncoupled, since the heat flux is
interrupted due to the Newton's cooling law. Thus, we define a coupling parameter o, as

(25)

When o = 1, the two CA-engines of the MV array remain uncoupled. lf we substitute the
para meter o in Eqs. (16), (18) and (22), then we obtain

and

(26)

(27)

[3(TI +T2) - O¡ - ¥] - 0(T2 +O¡) - 0-1 (TI +¥)
3TI - 01 - 0-1 (TI + Tb;,)

(28)

A typical behavior of these functions is depicted in Figs. 4, 5 and 6, respectively, for
arbitrary values of T¡, T2, j3 and 02. As it is observed in those graphs, in the three cases
there exists a particular value of the coupling para meter o where P, E and " reach their
maximum values, and these three values are different from one (the uncoupled case). Thus,
when two CA-engines are coupled by a thermal resistance, as in Fig. 2, the global power
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FIGURE 4. Power output versus coupling parameter curve for arbitrary values of TI, T2, {3and 8,.
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FIGURE 5. Ecological function versus coupling parameter curve for arbitrary values of TI, T" {3
and 8,.

output and efliciency are evidently improved. That is, the coupling of two CA-engines is an
advantageous mechanism and Q results to be a driver parameter of the efliciency and the
power output of the MV-array. This same behavior was observed for a wide data coIlection
for TI, T2, {3and 82. A very interesting case is that of Figs. 7 and 8, (for TI = 700 K,
T2 = 300 K, 82 = 343.6 K and {3= 1 W /K), where is observed that the values of Q~ which
maximizes the efliciency is smaller than one and the Qp that rnaxirnizes the power output
is greater than one. That is, an inversion in the heat flux through the bypass is necessary
for the rnaxirnizations of r¡ and P, respectively.
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FIGURE 6. Efficiency versus coupling parameler curve for arbilrary values of TI, T" f3 and 8,.
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FIGURE 7. Efficiency versus a curve for TI = 700 K, T, = 300 K, 8, = 343.6 K and f3= 1 W /K.

4. CONCLUSIONS

As it has been discussed by several authors, lhe CA-formula for lhe efficiency of an endore-
versible Carnot-like engine is nol universal and lhe efficiency for maximum power oulput
condilions strongly depends on the heat transfer law used for modeling the heat /luxes
between heat reservoirs and working /luid. In fact, for CA-engines with a Newton's cooling
law other expressions than thc CA-formula can be obtained. In the array of CA-engines
proposed by De Mey and Dc Vos a dependcnce on (T2/T¡)1/3 is found. In our work we
show that a coupling parameter between the two CA-engines forming the MV-array can
be defined. This para meter has relevance as a driving quantity of optimization criteria.
\Ve show that for a # 1 (a = 1 is the uncoupled case) thc efficiency and the powcr output
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FIGURE8. Power output versus o curve for TI = 700 K, T2 = 300 K, 82 = 343.6 K, and 13 = 1WjK.

of the MV -array are remarkably improved. That is, in terms of P and 7J maximizations,
the coupling situation is better than the uncoupled case.
\Ve also find that in sorne cases the P and 7J maximizations demand an inversion of

the heat flux through the bypass of the MV-array. In Ref. [3]' De Vos treats chemical
reactions as modeled by chemical engines and discuss the photosynthesis as two coupled
engines: One photovoltaic engine and a chemical engine. \Ve believe that our results may to
have implications for these models. However, a study of those problems will be published
elsewhere.
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