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ABSTRACT.Using linear elasticity and the soft and hard region theory for internal stress we show
that a mobile dislocation system may evolve from a disordered to a more organized structure by
means of a highly dissipative process. This situation is in full agreement with the theory of self-
organization in non-equilibrium irreversible systems. For the case of Cu-16 at. % Al at T = 723 K
and (1 = 39.2 MPa, our theory gives a quantitative explanation for the time evolution of the mobile
dislocation density before the subgrain formation starts. It also provides such explanation for the
evolution of the total dislocation density after the subgrain formation starts but annihilation events
have not appeared yet in the dipolar structure of the subgrain walls.

RESUMEN.El uso de la teoría de las regiones blandas y duras para el esfuerzo interno junto
con algunos elementos de teoría de elasticidad lineal permiten mostrar la capacidad que tiene el
sistema de dislocaciones móviles (bajo la acción de un esfuerzo aplicado externo a la muestra)
para evolucionar de una estructura desordenada a otra más organizada a través de procesos muy
disipativos. Esto está en completo acuerdo con la teoría sobre la autoorganización que exhiben
los sistemas irreversibles fuera de equilibrio. Para el caso de Cu-16 % ato Al a T = 723 K Y
(1 = 39.2 MPa, nuestra teoría aporta una explicación cuantitativa para la evolución temporal
de la densidad de dislocaciones móviles antes de que dé comienzo la formación de subgranos de
dislocaciones. Además, nuestra teoría describe la evolución de la densidad total de dislocaciones
para el período que va desde el comienzo de la formación de los subgranos hasta antes de que
ocurran eventos de aniquilación en la estructura d¡polar de las paredes de subgrano.

PACS: 62.20.Hg; 81.40.Lm

l. 1NTRODUCTION

From a theoretical point of view, the process of subgrain formation during plastic deforma-
tion in metals has been a subject of interest from a long time ago. (See the pioneer works
due to Kuhlmann-Wilsdorf[l] and Holt [21.) Recently, this problem has received increasing
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attention [3-11]. The analysis of experimental past research leads to the conclusion that
dislocation subgrain formation in work-hardened crystalline material occurs when disloca-
tions assemble into low energy configurations (see Kuhlmann-Wilsdorf et al. [12]). Most of
the theoretical analyses about the process of dislocation subgrain formation have been per-
formed within a reversible thermodynamical scheme (see for instance Kuhlmann- Wilsdorf
and Van Oer Merwe [13]); however the plastic deformation of crystals is an irreversible
process [14).
According to the most developed reversible thermodynamical model, the mesh length

theory, due to Kuhlmann- Wilsdorf [15], low energy dislocation structure, LEOS, must be
stress screened, i.e., presumably the range of the stress field of the average dislocation in
a LEOS extends more or less only to the nearest neighbor dislocation. By contrast, the
central result of an X-ray study on Copper single crystals, due to Mughrabi et al. [16,17), is
that substantiallong-range internal stresses prevail in deformed crystals containing a wel!
developed subgrain structure. According to Mughrabi this finding is somewhat unusual,
since there exists a wide belief that long-range internal stresses should be insignificant in
dislocation cel! structures or subgrain structures, both being considered to be low energy
dislocation arrays [15).
According to Nabarro [18] a model for internal stress, O'i, developed initial!y by Nix

and Ilschner [19] and later on developed with considerable detail by Mughrabi [20,211,
provides an adequate description of the internal stress distribution revealed by the X-ray
analysis [16] on f.c.c. crystals undergoing plastic deformation.
The soft and hard region theory, SHRT, due to Mughrabi [20,21), has been shown to

be very useful for interpreting numerous phenomena in the plastic behavior of metals
and solid solution al!oys [11,22-33). In particular, a simplified version of SHRT [11] has
been used in the microscopic theory of the Bailey-Orowan equation; the corresponding
irreversible thermodynamical analysis yields the fol!owing two main results: 1) It gives a
qualitative answer to the question of what are the basic mechanisms which lead to the
formation of dislocation subgrains. AIso, they establish that at steady state the dissipative
subgrain wal! structure remains statistical!y invariant because there is a constant Row of
external mechanical energy given by ¡i¿;Üloop, which restores in a dynamical way the power
¡i;;;ü¡oop dissipated by annihilation events. (Here, ¡i¿; and ¡i;;; are respectively the creation
rate of mobile dislocation density and the annihilation rate of dislocation density at the
center of the dipolar structure of subgrain wal!s, and final!y Ü!oop is the mean value of the
total energy of dislocation loops per unit length.) 2) This analysis leads to a quantitative
expression which relates the subgrain diameter, d,g, with the applied stress 0', for steady
state power law creep. d,g = Kj1,b/O', where j1, and b have their usual meanings. For the
first time the value of the phenomenological constant J( is obtained here as a function of
basic parameters of plastic deformation and can be predicted. The percentage difference
between theoretical and experimental values for typical metals is 10%. Neither of these
two problems have been answered unambiguously by the mesh length theory [34]. Also
the same simplified version of the SHRT gives a ful! description of the time evolution of
the internal stress during sigmoidal transient creep in Cu-16 ato% Al; including the creep
stage where no subgrain structures have formed yct [33].
In this work, a study about the subgrain formation process will be made by looking

its origin in terms of a free energy. Our analysis starts from the simplified version of the
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soft and hard region theory mentioned before [11,331 and leads to an expression for the
mean value of the total energy, UT, of dislocation per unit length. Fol!owing a Seeger [35]
suggestion, and with the use of our expression, we are able to show the capability of
the mobile dislocation system to evolve from a disordered (no subgrain exists) to a more
organized structure (subgrain formation under the action of an external!y applied stress,
(7) by means of a highly dissipative processes. According to our model, for the case of
Cu-16 ato% Al samples [36) at T = 723 K and <7 = 39.2 MPa during the time where
the subgrain structures begin to appear, twenty five percent of the total stored energy by
mobile dislocations is dissipated by a sudden decrease of the mean energy of dislocations
per unit length without any annihilation events of dislocations at the first stage of subgrain
formation. This last situation is in ful! agreement with the theory of self organization in
non-equilibrium irreversible systems (see Prigogine and coworkers [37,38]). In other words,
starting from a long-range internal stress theory and using sorne elements of irreversible
thermodynamics, we are able to provide a description of the subgrain formation which is
in agreement with the low energy dislocation structure hypothesis.

2. TIIE TOTAL ENERGY OF DISLOCATIONS DUHING CREEP

When a crystal is deformed plastical!y, the sto red energy by dislocations is composed
of two parts [13). The first one is the dislocation line energy of al! the dislocations per
unit volume. The second part is the energy of overal! dislocations cel! stresses. In other
words, one could say that the first part is the self energy of al! dislocations sto red in the
crystal and the second part is the average interaction energy between al! dislocations. For
simplicity, we have explicitly avoided the consideration of closed dislocations of the Frank
type which are due to the confinement of vacant sites. Therefore, before we engage in the
theoretical development, a brief word on the self energy of dislocations is cal!ed fOL

The energy u per unit length of a straight dislocation line is, to a first approximation [39),

_ Gb2f(v) 1 (Xt)u----n ,
4rr ro

where G is the shear modulus, b is the magnitude of the Burgers vector, f(v) is a function
of Poisson's ratio V. f(v) is (l~V) and unity for an edge dislocation and a screw dislocation
respectively. And for an average dislocation population it equals about (1 - vJ2)J(1 - v).
x, is a correlation distance characterizing the more distant dislocation interaction in the
linear elastic approximation (see Kocks, Argon and Ashby [14]) and ro = 5b [33,40). Then
the mean self energy of dislocations, U, per unit volume, may be expressed as

U. = p' [1.15 (2 - v) Gb21n (Xt)]
) ) 8rr (1 - v) ro

;: PjUmean(X,),

(2)

(3)

where Pj is the mobile dislocation density for j = m, and it is the subgrain dislocation
density Pw for j = w. The factor (1.15) appears due to the contribution of the dislocation
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core [41]. We make note that in the present state of knowledge of the stored energy of
dislocations in plastically deformed materials, expressions very similar to Eqs. (2) and (3)
have been used to describe experimental [42-45] and theoretical aspects [13,15,21,40,46)
of the problem.
According to Hansen and Kuhlmann-Wilsdorf [39]' in their excellent review on a subject

related to the self energy of dislocations, usually the value of x, in Eq. (1) has been taken
to be the average dislocation spacing, ¡.e.,

(4)

where p is the local dislocation density. This choice of x, is valid provided that the dislo-
cation structure is "stress screened", meaning that the dislocations are arranged so as to
screen each other's stress field mutually. This assumption, [Eq. (4)], which is in agreement
with the mesh length theory [15] is in contradiction with the X-ray study on Copper due
to Mughrabi el al. [16,17], where it was shown that substantiallong-range interna! stresses
prevail in deformed crystals containing a well developed subgrain structure.
How, then, can one choose x, so that it is on the one hand consistent with the experi-

mental evidence provided by Mughrabi el al. [16,17) and also accounts for the fact that x,
is a correlation distance characterizing the more distant dislocation interaction (see Kocks
el al. [14])?
A possible route to answer this question has been given in the previously mentioned

review paper [41). They point out that "measurements of stored energy by calorimetry have
been made in large numbers and with increasing accuracy. These are helpful in supplying
additional data which must be explained through theory. However, in this, moderate
variations in R (R = X, in our notation), cannot be derived to account for discrepancies
between measured and calculated values, for the reason that the logarithmic term in
Eq. (1) is lowly varying function". Another possibility, however, is to look for Sources
of data different from calorimetry that could shed sorne light on a criterion to specify
x,. Here we will follow this second approach. According to Kocks, Argon and Ashby [14]
x, is a correlation distance characterizing the more distant dislocation interaction in the
linear elastic approximation. In other words, x, is the maximum distance within which a
discontinuous (non linear) change in the crystalline lattice orientation takes place. With
this consideration, x, equals the grain size for samples in which subgrains are not formed
yet by plastic deformation, in agreement with previous results [47,48]. For the case where
subgrain have been formed by plastic deformation x, will be equal to the subgrain or cell
size [24,40].
Once we have digressed on the self-energy of dislocations, we now turn to the second

contribution to the dislocation sto red energy during creep. The interaction energy of all
dislocations existing in a sample deformed in a creep test will be calculated by using the
simplified version of the soft and hard region theory [11,33]. According to this model, the
long-range internal stress a¡ can be written as

a¡ = a:MGb(,¡p;;; +~) (5)

(6)
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where M is the Taylor factor relating the macroscopic tensile stress to the shear stress in
active slip systems, and a is a quantity which characterizes the interaction of dislocations
and depends on the geometrical arrangement of the dislocation struct me and on the
character of dislocations as a whole [49]; as a first approximation it remains constant
dming deformation [50). O"im and O";w are used respectively for the internal stress due to
mobile dislocations and for the internal stress due to subgrain wall dislocations. It should
be noted that Most engineering structmes are influenced by complex multiaxial stresses
that arise from loading, geometry, and/or material inhomogeneity. However, laboratory
testing in the creep regime predominantly uses simple specimens that are subjected to
uniaxial states of stress [51).
The stored strain energy U"i per unit volume due to an axial stress O"¡ [41] is given by

U"' = (0";)2/(2E), where the Young modulus E is related with the shear modulus G by
the standard relation G = EI[2(1 + v)). Then by using Eq. (5) in the previous expression
for U"i leads to

(aM)2 2
U"i = 4(1 + v) Gb (Pm+ Pw+ 2.¡p;;.'¡¡Q, (7)

where the first and second terms are respectively the stored strain energy per unit volume
due to elastic deformation arising from the stress field of Pm and Pw. The third ter m is an
interaction energy between mobile and subgrain wall dislocation densities. In this equation
it is clear that for a constant value of the total dislocation density, U"' is bigger if the
material has subgrains than if all dislocations remain mobile.
Finally, the total sto red energy, UT•.g., per unit volume due to dislocations is equal

to the sum of the volumetric density, Um, of the self energy of mobile dislocations, the
corresponding density, Uw due to subgrain wall dislocations and the stored strain energy
U"' per unit volume due to the internal stress O"¡. That is,

UT•.g. = Um + Uw + U"" (8)

where Um and Uw are given by Eq. (1) and U"' by Eq. (7).
With the use of the definition of the total dislocation density PT = Pm + pw, and

substituting Eqs. (1) and (7) into Eq. (8), an expression for the mean value of the total
energy of dislocations, ÜT, per unit length during deformation in power-law creep can be
obtained, namely,

_ _ UT•.g. _ [(aM)2 Gb2 ( 2.¡p;;..¡¡¡;)]
UT•.g. = ----¡;:;- - umean(x,) 1+ 4(1 + v) "mean(x,) 1+ PT . (9)

The mean value for the energy of dislocation, umean(x,), per unit length can be experi-
mentally determined [24,33,45) or calculated by using sorne models [52,531. Equation (9)
is the main result of this section.
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3. NUMERICAL CALCULATIONS ANO COMPARISON WITH EXPERIMENTAL DATA

The merits of Eq. (9) will now be assessed on two different fronts. On the one hand, by
considering typical numerical values of the physical parameters involved, we will perform
sorne calculations to examine the evolution of a system originally formed by mobile dis-
locations into a more organized one in which mobile dislocations as well as dislocations
forming subgrain walls occur. On the other hand, we will use an approximate form of
Eq. (9) together with a time evolution equation for ¡;;l; in which ÜT is involved 140]' to
make a comparison with experimental data of Pm and PT us. t for Cu-16 ato% Al [361.

3.1. Generol ealculations and the low energy dislocation structure hypothesis

Concerning the first aspect, if no subgrain walls have formed, x, is equal to the crystal
size for single crystals or to the grain size for polycrystalline materials. Then for this case
Eq. (9) appears like,

(10)

where Umh(X,) is the mean energy for dislocations when an homogeneous distribution
exists. On the other hand, when dislocation subgrains have been formed Pm/ PT S!!
0.10 [36,54], and then by using Eq. (9), an expression to evaluate the fraction of elastic
energy stored during the early process of subgrain formation (where no annihilation events
occur) can be obtained, namely

U:;~g. = (::,~g) (11)

where A == (uM)2/[4(1 + v)l.
By considering typical numerical values of the physical parameters involved, a calcllla-

tion of the ratio UT.s.g.lUlh is presented in Fig. 1. In order to make such calclllations the
following values were used, UTh = 2Gb2. M = 3.1 for polycrystals [55], a typical value
for the Poisson's ratio v = 0.32, and u values ranging from 0.017 to 2.5 were taken [56].
AIl the curves displayed in Fig. 1, show that a mobile dislocation system may evolve
from a disordered to a more organized strllcture by means of a highly dissipative process.
This situation is in full agreement with the theory of self organization in non-equilibrium
irreversible systems.
In particular, from these curves it is clear that sllbgrain structures are energetically

more stable for small u (u < 0.65) than subgrain structures formed for materials with
bigger interaction constant between dislocations (1.5 < u < 2.5). We make note that
our theoretical analysis is also in agreement with the low energy dislocation structure hy-
pothesis. This hypothesis states that dislocations and subgrains are expected to approach
the configuration of lowest possible stored strain energy at constant total dislocation line
length. Therefore, according with our model the values of u which ensure the fulfilment
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FIGURE 1. The ratio UT.,• .IuTh as a function of the parameter A = (aM)2 /14(1+v)]. This fraction
of stored energy when subgrains appear is presented as different curves labeled by the value of the
ratio Tilo = Uilo •. g./Uiloh, where UiIOI.g. is the mean energy for isolated dislocations when subgrains
begins to appear and Ui.oh is the mean energy per unit length for isolated dislocation when an
homogeneous dislocation distribution already existo

of the LEDS hypothesis are the lowest values compatibles with theoretical values or ex-
perimental data.

3.2. Stored energy by dislocations in eu
In the following paragraphs, an specific calculation for Copper will be done. If no subgrain
walls have formed, Xi is equal to the crystal size for single crystals or to the grain size
for polycrystalline materials. In the former case X, ~ 5 x 10-3 m [57]. On the other
hand, when dislocations cells or subgrains are present, our assumption implies that X, is
the cell or subgrain size, typically X, ~ 4 X 10-5 m [58]. Further, for polycrystals with
v = 0.32, b = 2.5 X 10-10 m, and M = 3.1 [591. The case of a in the frame of our
model it is solved as follows. According to Lavrantev [561, an analysis of the available data
and a comparison of Cl values obtained by different authors on single crystals of the same
materials shows marked differences. For instance, Cl values for copper range between 0.15 to
0.65. Also, Lavrantev indicates that the experimental estimates of Cl do not give preference
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to any of the review models for work-hardening mechanisms. Since, nevertheless, the Taylor
model [60]or Taylor lattice [611consisting of parallel rows of like edge dislocations whose
sign changes from row to row, has been used to develop more sophisticated work-hardening
models (and is considered to be a low energy dislocation structure [15]). Here, based on our
theoretical analysis previously presented, we take the lowest values of a compatibles with
the theoretical and experimental data previously mentioned (a = 0.16). The condition
that during plastic deformation no subgrains have yet been formed, the mean energy for
an isolated dislocation Uisoh(Xtc.s. = 5 X 10-3 m) = 1.72Gb2 and from Eq. (9), one has
UTCS = 1.78Gb2, i.e., the total energy of mobile dislocations per unit length remains
constant. On the other hand, when dislocation subgrains have been formed, with a typical
initial diameter around 4x 10-5 m (~ Xt), the mean energy of an isolated dislocation is then
u;sos.g.(Xts.g. = 4 x 10-5 m) = 1.17Gb2, and it follows from Eq. (9) that UTs.g. = 1.25Gb2,
where we have taken ~ ~ 0.10 as determined from experimental data once subgrains may
be detected 136,541.A comparison between UTCS and UTs.g. indicates that even without
dislocation annihilation events occurring in this process of subgrain formation, a great
deai of stored elastic energy is dissipated (29.8%).
In order to be in a position to indicate how such dissipation could be detected through

calorimeter measurements, wewill now present a quantitative estimate of this energy which
rests on a theoretical result [62]according to which Pm = 3 X 109 cm-2 when the subgrains
structure begins to develop. In the case of Copper, G = 46 X 103 MPa, so that the energy
dissipated through the initial process of subgrain formation wouid be 4.6 x 10-5 J/mm3,
i.e., about a 3% of the greatest value of the sto red energy reported by Riinnpagel and
Schwink [44) for Cu in tensile deformation at room temperature and constant speed of
deformation. Such a value of the dissipated energy may possibly be measured by using the
same methodology. Moreover, this dissipative energy must also show as a sudden increase
in temperature, very well localized in time, followed by a progressive cooling until the
system reaches the temperature it had before the formation of subgrains started. This
temperature behavior, which incidentally is not predicted by the mesh length theory [15]'
should of course be easier to measure than the dissipated energy profile due to experimental
limitations [44].

3.3. Stored energy by dislocations in Cu-16 ato% Al

Concerning the second aspect, a comparison between predictions of our model for the
total dislocation energy and experimental data for Pm and PT vs. t for Cu-16 ato% Al [36)
will be made. To our knowledge, this is the only set of experimental data in which all
parameters involved in the model are available. lIere we follow the validation criterion
suggested by Schoeck [631:"Any physical model for '!ft can be checked independently at
least in principIe, since an integration should give the total dislocation density if no mlltllal
annihilation takes place". Our analysis about the experimental data of Pm and PT on Cu-
16 ato% Al is restricted to the deformation stage where we consider that annihilation
events of dislocations have not occllrred yet.
Before we start our analysis, let liS a briefly review the pertinent data on Cu-16 ato%

Al. It should be noted that the alloy CII-16 al. % Al at 723 K is aboye 0.5Tm (with Tm
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the melting temperature), so recrystallization processes might be expected. However as
!irst pointed out by Hardwick, Sellers and Tegart [64]' any process that lowers lattice
strain energy as subgrain formation inhibits recrystallization. In the case of Hasegawa el
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FIGURE2. (e)

FIGURE 2. Various parameters as a funetion of ereep time (Cu-16 at. % Al, 723 K, 29.2 MPa
taken from Re£. [36)): (a) ereep strain , and ereep rate i; (b) tota! disloeation density PT and ratio
Leeu/ LToTALof length of disloeations within eells to totallength of disloeations; (e) interna! stress
level.

al. [36) data, no experimental evidenee of reerystallization can be ascertained. In Fig. 2 the
experimental creep data on Cu-16 al. % Al, due to Hasegawa el al. [361for the strain rate,
e:, dislocation density and internal stress level ~ are shown at 723 K and (J = 39.2 MPa.
Here cell dislocations are taken as being mobile, and the total dislocation density PT
minus mobile dislocation density Pm yields the subgrain dislocation density Pw. In a recent
work [331 by using a soft and hard region theory for (Ji, it has been shown that the
experimental value of (Ji for a sigmoidal ereep curve in Cu-16 al. % Al, can only be
explained by considering the contribution to (Ji arising from subgrain wall dislocations,
as well as from dislocations that do not belong to the subgrain walls. In this same work
by using theoretical calculations on (Ji the authors arrive at the following conclusion: the
determination of (Ji based on the stress dip test may be too perturbative for the sample
when it such a procedure is applied at the stage of deformation for which subgrain wall of
dislocations have not formed yet. The authors were able to explain this perturbation in a
quantitative way. Their theoretical prediction for (Ji before this perturbation is shown in
Fig. 3 by starred points. The solid line represents the experimental data for O'i as obtained
by Hasegawa el al. with the use of a dip test technique [36]. The expression for (Ji used
in their analysis [33), was (Ji = o:'Gb('¡¡;;;;+ ,¡p;;), which is not the standard way used to
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FIGURE3. Comparison between prediction for 0", befare perturbation during the dip test procedure
and the experimental creep data on Cu-16 at. % Al as presented by Hasegawa et al. [361. The
difference between salid line and starred points has been quantitatively explained elsewere [33J.

express axial internal stresses (see for instance Eq. (5) or the review due to Orlová [49]).
If we take into account that a' = o.M, where M = 3.1 for a polycrystalline material as
mentioned befare, then o. = 0.145 for this alloy; this value is very close to the value for
o. given by the Taylor model (o. = 0.16) [60]. By using a' = o.M in the semi-empirical
expressions due to Montemayor-Aldrete et al. [33], it is easy to show that the mean value
of the total energy, UTCS, of dislocations per unit length (for the case were subgrains have
not formed yet) has a corrected empirical value given by

UTCS(Xt = 3 x 10-4 m) = 3.95 Gb2 (12)

"h.h the rest of predictions for Cu-16 at. % Al as the same as before.
in what follows, by using Eqs. (1), (9) and (11) a semiempirical determination of the

total ehergy of dislocations, UT•.g., per unit length for the case when subgrains aIread y exist
will be made. In order to do that we require to calculate the self energy per unit length
of isolated dislocation loops Ui.oh(Xte.•.) for the case where subgrains have not formed
yet (Pw = O). For this case, Eq. (9) with v = 0.326 133], M = 3.1 for polycrystalline
material [59], grain diameter de .•. = X, = 3 X 10-4 m for Cu-16 ato% Al [361, o. = 0.145
as mentioned before, then

(13)
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On the other hand, for the case when dislocation subgrain have been formed by plastic
deformation in Cu-16 ato% Al, we take a mean diameter d•.g. = 1.3 X 10-5 m, where
X, = d was calculated by using the phenomenological expression d•.g. = KGb/a. WithS.g. S.g. 4
K as 39 for copper (see Raj and Pharr [65]), a = 39.2 MPa [36]' G = 5.16 x 10 MPa
and b = 2.56 X 10-10 m [33]. Then according to Eq. (1), it is clear that the following
relationship must be fulfilled:

Uiso•.g.(X, •.g. = 1.3 x 1~4-5m) = 0.746,
Uisoh(X,c .•. = 3 x 10 m)

(14)

where Ui.o •.g.(x, •.g. = 1.3 x 10-5 m) is the mean self-energy per unit length of isolated
dislocation when subgrains, with an average diameter d•.g. = 1.3X 10-5 m existo Therefore,
in this case Ui.o is given by

Uiso•.g.(X' •.g. = 1.3 x 10-5 m) = 2.92Gb2• (15)

With this value, using Eq. (9) and considering, as before that in an approximate way
Pm/PT ~ 0.10 [36,54], we finally obtain a mean value for the total energy UT •.g. for the
case when subgrains have been formed in Cu-16 ato% Al,

UT •.g.(X, = 1.3 x 10-5 m) = 2.98Gb2• (16)

In Fig. 4 we display the behavior of the mean total energy of dislocations per unit length
as a function of creep time, according to Eqs. (11) and (16).
From a comparison between Eq. (16) and Eq. (15) it is clear that the stored elastic

strain energy due to the long-range internal stress, ai, represents only a small fraction,
about 2%, of the mean self-energy of the dislocations. Similar results has been obtained
previously on Copper by using the soft and hard region theory [24].

3.4. Evo/u/ion on disloca/ion densi/y on Cu-16 ato% Al

At this point, with the knowledge of the values of the total dislocation energy per unit
length for Cu-16 ato% Al, we can proceed to calculate the evolution on dislocation density
over a period of time about 270 minutes after the starting of the creep test. Our calculations
will be assessed on two parts: On the one hand, by calculating the mobile dislocation
density versus time for times lower than the corresponding to the inflection point in the
sigmoidal creep curve (where annihilation events of dislocation have not occurred yet [33]).
On the other hand, for times larger than the one associated to the inflection point, we
will evaluate the total dislocation density for a period of time where we consider that
annihilation events of dislocations have not occurred yet. In both cases a comparison with
experimental data will be made.
In order to do that we need a mechanistic model to describe the creation rate of mobile

dislocations.
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FIGURE 4. The mean value of the total energy, UT, of dislocations per unit length as a function
of creep time for Cu-16 at. % Al 723 K, 39.2 MPa (as calculated by using Eq. (9) and Pm and
Pw from Fig. 2b). The value of UTu. is constant for the case of isolated dislocations, and for the
case where suhgrains exist lhe value of UT •.•. , which decreases monolonically wilh lime does nol
change wilh lime in more lhan 0.1% from ils inilial value.

According to Montemayor-Aldrete et al. IU, 33, 40, 661, the creation rate p;i, of mobile
dislocations is given by

.+ 4>M(Jf;
Pm=---,

UT
(17)

where UT is the mean value of the total energy of dislocations per unit length and 4>M ==
l/M.

Now we can calculate Pm vS. t, for the stage of deformation previous to the inflection
point in the sigmoidal creep curve. If annihilation events of dislocations do not occur in a
certain period of time (t - to) then in such period of time ~ = p;i" and then

Pm(t) = Pm(tO) + [' p;i, dt,
1'0

(18)

where Pm(tO) is the density of mobile dislocations at lhe heginning of the creep lest.
By using Eq. (12) and the data for strain rale f; (see Fig. 1), Pm versus t is easily calcu-

lated. The theoretical curve and lhe experimental one are indistinguishable. To illustrale
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this point, the value of Pm at the inflection point will be calculated. The total plastic
deformation at the inflection point according to Fig. 2 is (Ep)i.p. = 7.8 x 10-3 [33,601.
u = 39.2 MPa, M, G, and b are taken as before, and by using Eq. (11) the total disloca-
tion energy UTC.S. = 1.34 X lO-lO MPacm2. Here Pm(tO) = 5 X 106 cm-2 (see Hasegawa
et al. [36]). Therefore by using Eq. (18) we obtain

(19)

with (7.6:f:0.4) x 108 cm-2 as the experimental value reported by Hasegawa et al. (Fig. 1).
On the other hand, during the lapse of time between the associated time to the inflection

point in the creep curve and 270 minutes, the sample plastically deforms 4.5 x 10-3 (see
Fig. 2), the total dislocation energy when subgrains already exist is UT •.g. = 1.01 X

lO-lO MPA cm2 [see Eq. (16)1. Then if we consider that no annihilation events take place
between 164 minutes and 270 minutes, the following equation could be used to describe
the value of PT at 270 minutes:

. u x 4.5 X 10-3
PT(t = 270 mm) = (Pm theo), p. + _

3.1 UT. g.

Using the corresponding values on this equation a value for PT it is obtained,

PTtheo(t = 270 min) = 1.30 x 109 cm-2, (20)

with (1.32 :f: 0.8) x 109 cm-2 as the experimental value for PT reported by Hasegawa et
al. (see Fig. 2).
The comparison between theoretical and experimental results for Pm and PT clearly

indicates a good agreement. Then according to our model, based on the soft and hard
region theory, during the lapse of time where subgrain begins to form in Cu-16 ato% Al at
723 K and u = 39.2 MPa twenty five percent of the sto red energy of mobile dislocations is
dissipated in the sample by highly cooperative process without annihilation of dislocations.

4. DISCUSSION

Here we discuss sorne fundamental aspects of the experimental work on the stored energy
in copper single crystals as reported by Ronnpagel and Schwink [44] and later analyzed
by Ungar, Mughrabi, Ronnpagel and Wilkens [24]. Also sorne new experimental work on
Cu-16 ato% Al or sorne Alkaline Halides is suggested in order that a prediction made by
our theory may be tested in a definitive way.
The soft and hard region theory, SHRT, has been used previously [24]to explain in sorne

way the elastic stored energy per unit volume, Usto" in deformed copper single crystals.
The value for x, used by Ungar et al. in order to explain the calorimetry results is the
cell size, but the U'tOI experimental results are consistently larger than the ones that can
be accounted for by dislocation line energy aJone, by a factor of 2 to 2.5. Also, because
the sto red elastic strain energy due to the long-range internal stresses is about 2% of the
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measured stored energy values, they consider that this discrepancy can be slightly reduced
but cannot be resolved by including such contribution. Vngar el al. [24]consider that the
main reason for the high values of U.tor appears to be the storage of sorne kind of lattice
defects which are produced during the course of plastic deformation but which are neither
visible in a normal, bright-field TEM micrograph. Weak-beam TEM observations due to
Vngar el al. indicate the presence of smal! defect clusters (presumably dislocation loops,
estimated diameter: 3 nm) in a mean volume density larger that 1022 m-3. According to
Vngar el al. to clarify these questions further investigation is necessary.
Here an analysis on the Vngar el al. [24] and Riinnpagel el al. data [44] will be made

in order to show that SHRT solves the problem mentioned aboye when it is used together
with an analysis which takes into account the creation of vacancies and other point defects
during plastic deformation.
According to Riinnpagel el al. [44] for al! hardening theories in spite of the different

models used, the sto red energy by dislocations is proportional to the squared of shear
stress, T2, and also the stored energy by creation of point defects is proportional to T3 (see
Saada 167]). In Fig. 11 of the Riinnpagel paper it is clear that for T = 60 MPa, the fraction
of U.tor due to dislocations is 4.69 J/mol, and the fraction due to storage of point defects
is 5.97 J/mo!. If we take [24] the value of total dislocation density PT for T = 60 MPa,
PT = 2.48 x 1010 cm-2, and the mean cel! size x, = 1.19 Jlm, from Fig. 3 on the Vngar
el al. paper [24], by using Eq. (1) a value u = 0.85 Gb2 it is obtained, and with Eq. (9),
UT = 0.87 Gb2. So the stored energy by dislocations is PTUT = 0.65 x 10-3 J/mm3,
with a percentage difference with the previously determined value (4.69 J/mol) lower
than 2%.
On the other hand, a supersaturation of vacancies can be created in a metal byenergetic

particle irradiation, quenching or mechanical deformation. At temperatures where the
vacancy is mobile (general!y 2: 0.3Tm), these vacancies can migrate and coalesce to form
microscopic clusters [68].According to a theoretical study about stability vacancy clusters
in metals due to Zinkle el al. [68]the stacking fault tetrahedron, SFT, is the vacancy cluster
energetical!y more stable than any other vacancy-cluster morphology (for a number of
vacancies lower than 103, here we have 79 vacancies in each SFT). By using this theoretical
analysis it is easy to show that for the Riinnpagel el al. data [44] the energy sto red USFT
by SFT per unit volume is USFT = 4.5 x 10-5 J/mm3 which is 6.9% of the experimental
stored energy by point defects. Then SFT are not capable alone to explain the main
fraction of this energy and we need to search in other direction. Another possibility is
that the "missing" stored energy arises from the stored energy due to vacancies created by
plastic deformation (this stored energy depends on T3) and a fraction ofwhich could remain
¡nside the crystal under metastable experimental conditions. The creation rate of vacancies
according to Saada (as cited by Kovács el al. [53]) is given by ;,¿; = (0.3 -> 0.9)ai/(Gb3).
Then taking a mean value for the numerical constant equal to 0.6, and using experimental
data from Fig. 6 on the Riinnpagel el al. paper [44] al!ows us to obtain the total vacancy
density nvp created from the beginning of plastic deformation until the shear stress reaches
60 MPa. nvp = 5.26 x 1018 vac/cm3. 1fwe take into account that according to Friedel [69]
the creation energy per vacancy is Gb3/5, we have a maximllm possible stored energy by
vacancies equal to (6.82 :!: 3.41) J/mo!. This value is 14% higher than the determined-
vallle for the stored energy by point defects. With the results of this section we are able
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to give, for the Riinnpagel el al. data, a possible. explanation about the stored energy ~y
dislocations, according to the soft and hard reglOn model and also the stored energy m
defects different from dislocations by using Friedel and Saada models.
The soft and hard region theory, which is a long range internal stress theory, has been

able to explain:
a. The basic mechanisms which lead to the formation of dislocation subgrains, in
a qualitative way. Also the mechanisms which give rise to a dissipative subgrain
wall structure during steady state. The analysis leads to a quantitative expres-
sion which relates the subgrain diameter with the applied stress for steady state
power-law creep. For the first time the value of the well known phenomenolog-
ical "constant", K, which appears in such relation is obtained as a function of
basic parameters of plastic deformation, and it is established that the percent-
age difference between theoretical and experimental value for typical metals is
10% [11].

b. The time evolution on dislocation density in a sigmoidal creep curve for Cu-16
ato% Al at 723 K, (J = 39.2 MPa before and after the subgrain formation begins
(for times lower than 270 minutes). (See Sect. 3).

c. In a full way, fundamental aspects of the experimental work on the stored energy
in copper single crystals (See [24] and the first part of Sect. 4).

As far as we know, not one of these three problems already mentioned has been solved
unambiguously by the mesh length theory or similar models. However, at this stage, it
is clear for the authors of this paper that the controversy existing between the two big
theories of work-hardening (soft and hard region theory and mesh length theory) requires
a critical experimental test which unambiguously confirms the validity of only one of these
theories.
Our proposal for such a critical experimental test is the following:
To make temperature measurements on Cu-16 ato% Al samples which are deforming

in conditions where the dislocation structure evolves from a system composed of only
isolated dislocations to one formed by isolated dislocations plus subgrain formation. Ac-
cording to the long range internal stress theory (soft and hard region theory) the process
of subgrain formation is an irreversible dissipative process in which the mobile dislocation
system evolves from a disordered (no subgrains) to a more organized structure (subgrain
formation) under the action of an externally applied stress by means of a highly dissipative
process (without any annihilation events of dislocations at the first stage of the subgrain
formation process).
On the other hand, the mesh length theory is an equilibrium thermodynamical theory,

and the beginning of the subgrain formation for such type of theories is not associated to
an increment on the temperature of the sample.
According to the soft and hard region theory, the increase on the temperature of the

sample must be localized in time as compared with the time required by the sample to
exhibit the beginning of the subgrain formation process. The measurement of this increase
on samples temperature can be done by using a calorimeter system similar to the one used
by MlIghrabi el al. for the case of copper single crystals [24). The preparation of Cu-16
ato% Al samples and the observation of dislocations must be done following the procedure
described by Hasegawa el al. [36). Another possibility is to make observations on LiF
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where data about sigmoidal creep curves already exist [70]. For this case dislocations can
be decorated by using different techniques [71-73).

5. CONCLUSIONS

In this work, a study about the subgrain formation process has been made by searching
for its origin in terms of free energy. The analysis of the previous sections leads us to the
following considerations:
1. The 50ft and hard region theory for the internal stress used together with sorne el-

ements of linear elasticity allows to show the capability of the mobile dislocation system
to evolve from a disordered to a more organized structure, (subgrain formation) under
the action of an externally applied stress, by means of a highly dissipative process. This
situation is in full agreement with the theory of self-organization in non-equilibrium irre-
versible systems. On the other hand, it is quite different to the case of a microscopically
reversible and isolated. system of dislocations which tends to states of maximum entropy,
i. e., of maximum disorder; with a minimum of free energy as it is the case of the mesh
length theory.
2. For the case of sigmoidal transient creep in Cu-16 al. % Al at T = 723 K and

a = 39.2 MPa, our theory allows us to give a quantitative explanation of the time evolution
of the mobile dislocation density before the subgrain formation starts. And also on the
total dislocation density evolution after the subgrain formation starts but annihilation
events have not yet appeared. \Vhen the subgrains begin to appear, thirty five percent of
the total stored energy by mobile dislocations is dissipated by a sudden decrease of the
mean energy of dislocations per unit length. This process occurs without any annihilation
event of dislocations, which appear after the beginning of the subgrain formation.
3. Finally, in addition to the explanation of Ronnpagel et al. for the stored energy

by dislocation arrangements in copper single crystals (by using a Soft and Hard Region
Theory), we are able to explain the remaining fraction of the stored energy by considering
the creation of vacancies during the deformation at room temperature. In this way, the
total stored energy in copper single crystals deformed at room temperature has been
explained by using the soft and hard region theory for the internal stress.
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