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Anisotropic charge density waves in the electron gas
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ABSTRACT.The analysis of the formation of anisotropic charge density waves for an electron gas
system embedded in a deformablejellium model at finite temperature is presented. The formulation
of the problem is based on unrestricted temperature-dependent Hartree-Fock equations. In the
present work we focus our discussion in studying the instability condition against the formatioll
of 3D anisotropic charge density waves. The phase diagram for ditrerent values of the anisotropy
parameter is constructed and zones of stability are shown.

RESUMEN.En el presente trabajo se hace un análisis sobre la formación de ondas de densidad de
carga anisotrópica en el modelo de gas de electrones deformables a temperaturas cero y finita. El
problema se resuelve dentro de la aproximación de Hartree-Fock dependiente de la temperatura.
Se discute en particular el estudio de ondas de densidad de carga anisotrópica en 3 dimensiones. Se
construye el diagrama de fases para los diferentes valores del parámetro de anisotropía, mostrando
las zonas de estabilidad para la onda de densidad de carga.

PACS: 71.45.Lr, 65.40.-f, 71.10.+x

1. INTRODUCTION

The study of the electron gas system has played a fundamental role in the understanding
of several physical properties in condensed matter. During the last decades this model has
been widely used for the description of important applications. Among those phenomena
that have attracted a lot of attention in recent years the problem on the formation of a
charge density wave [1-31 deserves a special and careful analysis. Evidence of this collec-
tive elfect has been found through optical and dielectric measurements in some organic
materials and in the pseudo-organic compound potassium platinocyanide (KCP) [41. Var-
ious inorganic compounus have been also found that exhibit CDW with nonlinear trans-
port phenomena, beil1g perhaps the potassium-molybdel111lll-bronzes KO.3Mo03 (the blue
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bronze) one of the best examples [5]. There have been also sorne researches concerning a
possible infinence a CDW might have on high Te superconductors. Experiments of positron
annihilation on polycrystalline samples of Y¡BaZCu307-x suggested that the redistribu-
tion in momentum space of valence electrons in the superconducting state is consistent
with the formation of a static CDW in the Cu-O chains [6,7].
The existence of a spatially modulated electron density implies that its period might

be incommensurated with the spacing of the underlying lattice, loosing in that case truly
periodicity in the crystal. Most of the discussions concerning the origin of the phase transi-
tion to a state in which the electron density presents periodic modulation have been made
for low dimensional systems [8]. It has been shown however that the existence of CDW
is not restricted to those sytems [9-131. In fact, within the Hartree-Fock (HF) theory or
density functional formalism [14]' the study of the jellium model predicts the existence,
for certain values of the electro n density, of a state with a non uniform density with lower
binding energy than the plane wave. At low electron densities, \Vigner predicted the for-
mation of a state where the electrons arrange in a crystalline phase. In such a phase the
electrons do not move freely but they are confined to the sites of a lattice with small
oscillations about their mean positions corresponding to quantum mechanical zero point
motions [15,16]. The existence of the \Vigner crystal has been found experimentally on
the electro n gas formed at the interface of GaAs and AlGaAs layers of a modulated-doped
heterojunction subjected to strong magnetic fields [17,18]. Although CD\V instabilities
have been widely discussed at zero [19-221and finite [23,24] temperatures there are still
many interesting questions to be answered concerning their behavior at finite tempera-
ture.
In this work we present the results of studying the instability condition for a tbree

dimensional electron gas witbin a deformable jellium model for tbe formation of an
anisotropic CDW as a function of density and temperature. The analysis is based on com-
paring the stability condition of the plane wave solution against the correlated charged
density wave within the temperature-dependent Hartree-Fock model. The use of the HF
approximation is then justified since we are using a trial wave function that already con-
tains the collective effects [25].\Ve formulate our model in Sect. 2 and discuss the instability
condition against the formation of an anisotropic charge density wave. Here it is shown
how given the anisotropy parameter, the present model may be used in a systematic way
to calculate the temperature and density dependence of the HF solution. In Sect. 3 we
present our results and show the phase diagrams for a three dimensional electron gas sys-
tem for different values of the anisotropy parameter. Bere we show the zones in an energy,
temperature and density diagram where a 3D charge density waves is stable. Sect. 4 gives
a brief summary of our results.

2. DESCRlPTION OF TIIE MODEL

We study the ground state of a many electron system by considering the stability condition
of a deformable jellillm model. In this model the electrons move against a deformable
positive background allowing the background density 1)(R) to adjust in order to have
local neutrality.
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The stability condition is analyzed by comparing the energy of the system with uniform
electron density with that corresponding to a spatial!y modulated one. Al! this analysis is
made within a temperature dependent Hartree-Fock model (TDHF).
The hamiltonian for the jel!ium model is given by

(1)

where

Hbb = ~J r¡(R) V(R - R') r¡(R') dRdR',

(2)

(3)

corresponding to the electronic and background hamiltonians in second quantization for-
malism respectively, where at, ak are the creation and anhilation electron operators and
k is the 3 dimensional wave vector. The electron-background hamiltonian is

Heb = -¿J Vkk(R) r¡(R) dRat ak'
k

(4)

The matrix elements for the electro n kinetic energy, the electron-electron interaction
and the electron-background interaction Tkk, Vklmn and Vkkrespectively, are expressed in
terms of the single partide electron wave function 1>k(r) through the usual relations:

Tkk = J 1>i.(r) T1>k(r) dr,

Vklmn = J 1>i.(r)1>j(r')V(r-r')1>m(r)1>n(r')dr'dr,

Vkk'(R) = J 1>i.(r)V(r - R) 1>dr) dr.

(5)

(6)

(7)

In order to perform the HF calculation we take for the electron-electron iuteraction the
screened coulomb potential

(8)

where the screening para meter 1'0 = 0.815/..¡r, is determined by the Thomas-Fermi mode!.
It can be shown that for the aboye hamiltonian, the energy per partide in the thermo-

dynamic limit [261 is given by

(9)
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As it is well known, within the jellium model the only contribution to the energy of
the system comes from the electron kinetic energy and the exchange term of the electron-
electron interaction. This is due to the fact that the direct term of the electro n-electro n
interaction, the electron-background and the background-background interaction add up
to zero. The temperature average of the occupation number (nk)T has the general expres-
sion

(10)

(ll)

where {3= 1/ k.T. This last expresion in the low temperature regime can be expressed by
the Sommerfeld approximation

71'2 d
(nk)T "" O(óF - ók) - (32-d b(óF - ók),6 Ók

where O(ó) is the Heavyside function and b(ó) is the Dirac function, ÓF is the energy of
the Fermi level and ók' is the energy of the k level which in our case corresponds to a free
particle. Equation (ll) is valid for T, values as high as 60 and temperatures up to the
order of 60 K.
The variation of the energy given by Eq. (9) with respect to the orbitals with the usual

orthonormalization condition, gives us the reduced Hartree-Fock equations:

T4>k(r) - L Vkk'(r) (nkh 4>k(r) = Ek4>k(r),
k'

(12)

where Vkk,(r) is delined by Eq. (7).
In order to study the stability condition for the electron gas we perform in this work

an analysis of the HF solutions with a moch type function

NI
'" ( ) _ 1 -ik-r" iq.r
\f'k r - .,fü e L- en e ,

n:;::.-Nl

(13)

where q = (nxqox, nyqOy, n,qo,) with nx, ny, n, integers, qOj > 2kF is the wave vector in
the j direction, kF is the Fermi radius and v is the electro n gas volume. With this trial
wave function, the HF Eq. (12) leads to an equation for the coefficients Cn, given by

L L Cn2 Vk¡+n¡,k2+n2,k2+1l4,kl+n3 Cn4 {nkl)T (Hk2}T] en3 = €Cnl, (14)
0204ktk2

where the eigenvalue matrix equation for the coefficients has to be solved self-consistently,
taking into account normal spin occupancy. lIence the geometrical properties of the clec-
tron gas, ¡.e. the instability against the formation of a CDW will be allalyzed through the
behavior of the vector q whose components are found from the solution of Eq. (14).
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3. INSTABILITY CONDITION

The instability condition for an electron gas against the formation of a charge density
wave is studied from the knowledge of the phase diagram constructed from the solution
of the temperature dependent HF equations as a function of the electron density and for
specific values of the anisotropy parameter u = qox/qO,. \Ve have chosen for the present
discussion a model with tetragonal symmetry i. e. qox = qOy # qo,. The phase diagram is
constructed by plotting the binding energy difference between plane wave and the most
stable solution for the HF equation versus density and temperature. Hence those points on
the plane which correspond to zero energy difference determine the regio n for which the
plane wave is stable, and bumps in the difference energy surface correspond to the regions
of plane wave instability, that is when the CDW is presento In Fig. 1 we show the phase
diagram for different u values. For the sake of comparison we also present the homogenous
case (u = 1). As can be seen from Fig. 1, as we increase the anisotropy parameter, the
regio n where the CDW exists decreases. This means that in order to ha,'e a CDW for large
anisotropy, we must go to lower temperatures and larger T, values (smaller densities). It
should be noted that the lowest T, value for which we found aplane wave instability is
T, = 26 and correspond to the isotropic case u = 1. \Ve should note also how the maximum
temperature for which we can have a CDW decreases as u increases. In particular we can
see how for u = 1.10 a CDW does not exist for T 2': 28 K
Another feature coming out from our calculation and that can be seen from Fig. 1 is

that whereas at T = Owe can have a CDW for all Ts values aboye the threshold, at T i O
this is not longer true. This is more evident at higher temperatures where the region
of instability for a given temperature is well localized in T,. This is connected with the
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FIGURE 1. Phase diagram for thc 3 dimensional elcctron gas system for several anisotropy pa-
rameters 0:. The vertical axis is defined as the energy differencc per particlc betwecn the planc
wave and the most stable HF solution D.E(T, r.) = Epw - ECDW. The bumps eorrespond to the
instability region for the PW solution leading to the formation of a CDW. Graphs (a), (b) and (e)
eorrespond to o = 1.0, 1.05 and 1.1, respeetively.
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existence of a Wigner crystal. At T = Oas we decrease the density (increase Ts) we go
from plane wave to CDW which eventually becomes at sufficiently low densities a Wigner
crystal. As we go to TolO moving along the Ts axis we have basically the same situation,
that is we go from PW to CDW, the difference is now that thermal motion might upset
the formation of a Wigner crystal, getting back aplane wave solution for the electron
gas.
In Fig. 2 we show the behavior of the specific heat as a function of T and Ts for the

three dimensional system discussed aboye. As can be seen on the region of plane wave
stability, the specific heat corresponds to the free electron gas (i.e. Cv ~ T). What is
worth discussing is its behavior on the instability region. Fig. 3 shows the projection of
the Cv on a Ts constant plane (i.e. Cv = ev(T)), for different values of the anisotropy
parameter n. It is clear from these figures that Cv presents a discontinuous jump, showing
a characteristic behavior of a second order phase transition. In Fig. 4 we show a more
detailed calculation of ev around the transition temperature. It is clear from this figure
how in fact Cv presents a discontinuity at the transition temperature.

4. CONCLUSIONS

We have presented the use of a ternperature dependent Hartree-Fock rnodel for studying
the stability condition of the three-dimensional electron gas. In particular we have focussed
thc prcscnt discussion to thc stability condition against a CD\V formation as a function of
the anisotropy parameter. It is found, for a given anisotropy parameter n, that the smallest
Ts value for sueh instability to oceur increases with temperature and also increases as n
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FIGURE 2. Specific heat uehavior for the 3 dimensional elcctron gas system as a functioll oC T and
T. for several values oí the anisotropy parameter Q. The bumps ayer the surface correspolld to the
CDW state. Graphs (a), (b) and (e) eorrespond to Q = 1.0, 1.05 and 1.1, respeetively.
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FIGURE 3. cv(T) for three different values of the anisotropy parameter. These curves correspond
to the projection of cv(T, r,) of Fig. 2 on the r, = 40 plane for the same er values.

increases. In general it is found that as we increase er, the region on the rs-T plane where
a CDW exists gets smaller. At T = O, the HF solution shows al; instability threshold at
rs = 26 and remains unstable for larger rs values. At T # O the behavior is completely
different and there is a well defined range of rs values for which the instability of plane
wave solution against a CDW exists. Hence whereas at T = O, we have the formation of
a Wigner crystal, at T # O the existence of such a phase is limited by thermal effects.
The change of phase from plane wave to CDW was analyzed through the behavior of

the specific heaL The theoretical calculation shows the characteristic gap of a second order
phase transition.

Finally, we would like to mention that a typical copper-oxide supercond uctor like YBCO
has an anisotropy parameter of the order of 3 (a "" 3) which according to our model
calculation should not show the existence of a 3D COW, ruling out the possibility of
having a 3D CDW state connected with high Te superconductivity in a broad range of
dcnsities.
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FIGURE 4. A detalled calculation for c.(T) around the transition temperature for o = 1.05 and
r. = 40.

Although we have presented the analysis for the anisotropic 3D COW, the formalism
here discussed can be applied to systems that show COW in ID and 20.
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