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ABSTRACT.The electrostatic field and the capacitance of spherical capacitors with concentric
electrodes is studied in the introductory physics courses. The study of the same problem when
the electrodes are not concentric requires a higher level of electrical and mathematical knowledge.
Maxwell in his Treatise solved the problem by the method of images and by expansions in spherical
harmonics, but both solutions present slow convergence difliculties. In this paper the solution of
the problem is constructed by using bispherical coordinates and showing that the corresponding
expansions in bispherical harmonics have no convergence difficulties.

RESUMEN.El campo electrostático y la capacitancia de condensadores esféricos con electrodos
concéntricos se estudia en los cursos introductorios de física. El estudio del mismo problema cuando
los electrodos no son concéntricos requiere niveles más avanzados de conocimientos eléctricos y
matemáticos. Maxwell en su tratado resolvió el problema por el método de imágenes y por medio
de desarrollos en armónicos esféricos, pero ambas soluciones presentan dificultades de convergencia
lenta. En este artículo la solución del problema se construye usando coordenadas biesféricas y
mostrando que los desarrollos correspondientes en armónicos biesféricos no tienen dificultades de
convergencia.

PAes: 41.10.Dq

1. INTRODUCTION

The electrostatic field and the capacitance of a charged conducting sphere is a standard
topic in the beginning of the study of electricity [1-31. The corresponding properties for a
spherical capacitor with concentric electrodes follow immediately as an application of the
previous results and the superposition principie [1-31. The inquisitive readers may wonder
what happens to the field and the capacitance when the spherical electrodes are off center.
Their search for an answer in the above references and even in more advanced textbooks
will very likely prove frustrating. In this paper we provide a guide to the few references
on the problem and present our own quantitative solution.

Maxwell studied the problem of two nonintersecting spheres by the method of images
and by expansions in spherical harmonics centered in each sphere, obtaining infinite se-
ries representations for the capacity coefficients [4). However, both solutions present slow
convergence difficulties as their use in current research on the electrostatic response of
bidimensional arrangements of microspheres has shown 151. Moon and Spencer 16J studied
the problem of two equal spheres using bispherical coordinates, while Arfken [7] assigns the
problem of a sphere and a plan e as an exercise in the application of the same coordinates.
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In this work the general problem of bispherical capacitors is formulated and solved. In
Sect. 2 we introduce the bispherical coordinates as the natural coordinates to describe
such eapacitors and their eleetrostatie fields; the emphasis is in the geometry and it may
be assimilated by students in the intermediate leve!. Section 3 gives the formal analytic
treatment of the problem constructing the electrostatic potential function using the Green
function technique [8]' and obtaining from here the electric intensity field, the charge dis-
tribution and total charges on the electrodes, and finally the capacitance of the capacitors.
Special attention is paid to the analysis of the series representing the capacitance for the
different geometrical configurations, in order to exhibit that there are no convergence dif-
ficulties. The Green function and sorne relevant integrals are explieitly constructed in the
Appendix. Advanced level knowledge of electrostatics and mathematics are required to ap-
preciate the difficulties and fine points in this treatment. Section 4 contains a discussion
of sorne details of didactic interest.

2. BISPllERICAL COORDINATES TO DESCRIBE B1SPllERICAL CAPACITORS

The bispherical coordinates are related to the cartesian coordinates through the equa-
tions [81

a sin ~ cos '1'x=------
cosh 1) - cos ~

a sin ~ sin '1'y=
cosh 1) - cos ~

a sinh 1)z=------.
cosh 1) - cos ~

(1)

The surfaces with fixed values of ~ correspond to surfaces of revolution around the z-axis
with meridian cross sections that are circular arcs with a radius a csc ~ and centers on the
xy-plane a distance a cot ~ from the z-axis; all these surfaces meet at (x = O,Y = O, :1:a),
and include the external part of the z-axis (x = O,Y = O,Izl > a) corresponding to ~ = O,
the sphere of radills a centered at the origin correspouding to ~ = ;, and the central part
of the z-axis (x = O,Y = O,Izl < a) corresponding to ~ = 1[. The surfaces with fixed values
of 1) correspond to spheres centered at (x = O,Y = O,z = a coth 1)) and radius al esch 1)1; the
limiting positions 1) = :1:00 correspond to the points (x = O,Y = O,z = :1:a), respectively,
and 1) = Ocorresponds to the xy-plane. The surfaces with fixed values of '1' correspond to
the familiar meridiall half-planes meeting at the z-axis. These coordinates are illustrated
in Fig. 1.
Now we can point out how the bispherical coordinates can serve to describe the eapac-

itors under eonsideration. Any pair of spherical electrodes ean be defined through their
respective spherical coordinates '11 and 1)2. Figure 2 illllstrates three different possible sit-
uations: a) one sphere inside another 1)1 > 1)2 > O, b) sphere and plane 1)1 > O and 1)2 = O,
which is explicitly studied in [71; amI c) spheres outside each other '11 > O and 1)2 < O,
where the situation of two equal spheres corresponds to '12 = -1)1 [61. The intermediate
level student shollld not have any difficlllties in determining the values of a, 1)1 and TJ2 for
two spheres defined by their radii and the distance between their centers as in Ref. [4].
The orthogonality of the bispherical coordinates can be established by evaluating the

infinitesimal displacement from Eq. (1) and identifying the respective seale factors and
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FIGURE 1. Meridian cross section oí bispherical coordinates (~, '1, '1'): ~ = constant are circular
ares meeting at (x = O, Y = O, z = :f:aL 1] = constant are circ1es with centers 00 the z-axis, and
'1'= constant are half-planes meeting at the z-axis.

unit vectors:

h = h = u __
, " cosh '1 - cose I

u sin ~, -
'P - cosll1/ - COS ~

(2)

(3)

~=
(cosh '1cos ~ - 1)(i cos 'i' + j sin '1') - k sinh 1)sin ~

cosh 1)- cos ~

-sinh1)sin~(icos'l'+jsin'i') - k(coshIICOS~ -1)
cosh 11 - cos ~

(4)

- .
<j; = -i sen 'i' + j cos '1'.
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o

FIGURE 2. Meridian cross sections oC bispherical capacitors: a) one sphere inside another, b) sphere
and plane and c) spheres outside each other.

3. ANALYTICAL DESCRIPTION OF ELECTROSTATIC FIELD, SOURCES AND CAPACITANCE

The electrostatic potential function must satisfy the Laplace equation

{
(cosh 7]- cos03

a2 sin { [
8 sin { 8 8 sin { 8 ]
8{ cosh 7]- cos { 8{ + 87] cosh 7]- cos { 87]

(cosh 7]- COS0
2

8
2
} "'« ) = O+ 2'2< 82 'P,,7],<P ,

a sm , '1'
(5)

and also the boundary conditions at the respective electro des

</J({,7] =7]1,'1') = VI,

</J(C7]= 1]2,'1') = V2 = O.

Equation (5) is R-separable [9), having general solutions of the form

00 l

</J(C7],<p) = (coSh7]-COS01/2¿:: ¿:: [AlmPF'(CoSO+BlmQl'(cosO]
I=Om=O

(6)

(7)

The presence of the square-root of the binomial factor is the sign oC the R separability,
which makes the fulfillment of the boundary condition of Eq. (6) a nontrivial matter.
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For this reason we resort to the Green function technique to construct the electrostatic
potential function [8]:

with Dirichlet boundary conditions

Gn(f, f')ls = O,

1>(f) = -~ i da'1>(f,)8Gn(f,f'),
4" ls 8n'

(9)

(10)

(11)

where n' is the displacement perpendicular to the boundary surface S. The Green function
for the bispherical capacitors is constructed in the Appendix. Its normal derivative at the
sphere '11,Eq. (35), is substituted in Eq. (11) to obtain

_ VI 1/2~ .¿.... sinh[(l + ~)('1 - '12»)
1>(C'1,'1') - -(cosh'l - cosO ~ ~ Ylm(C '1') . h[(l + 1)( _ )1

a 1=0m=-I sm 2 '11 '12

l' 1h 1he d( h<p' drp'hYI:"((' '1")(cosh '11- cos()1/2
. o o '1'

( )1/2~ sinh[(l + ~)('1 - '12)1= VI cosh'l - cos( ~ ----,'I~- __
1=0sinh[(l + 2)('11 - '12»)

]\' n ( ) lo' d(' sin (' NIP£( coselx IFI cos( ------ __ ,
O (cosh'll - cos(')1/2 ( 12)

where the explicit forms of the scale factors, Eqs. (3), have becn used. Here the integration
over the azimuthal angle selects the terms with m = O only, reflecting the symmetry
of the system under rotations around the z-axis, and NI is the normalization factor of
the Legendrc polynomials. It is recognized that Eq. (12) is a special case of Eq. (8),
satisfying obviously the boundary condition of Eq. (7). The integral over (' is represented
as GI(cosh '1¡) and evaluated in the Appcndix. The fulfillment of the boundary condition
of Eq. (6) is not so imrnediately obvious, but it can be verified as follows:

lo, d(' sinh (' =
1>((,'1= 'lI,rp) = VI(cosh'l¡ -cosOI/2 (h )1/2 LNIPI(cosONIPt(cos()

. O COS'11- COS(' £=0

lo, d(' sinh ('
= VI(cosh'11 - cosOI/2 (h )1/2ó(cOS(' - cosO = VI' (13)o cos '11- COS('
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The summation over e can be identified as the representation of the Dirac-delta function
then the integration can be done immediately, and the cancellation of the square root of
the binomialleads to the potential of Eq. (6). The same result can be established by using
Eqs. (36) and (37) directly.

The electric intensity field is obtained by taking the negative gradient of Eq. (12):

E(~,TJ,cp) = - [~h:a{+iih:a, +'\:a,,] tI>(CTJ,cp)

= _ V¡ (cosh '1 _ COS03/2 f C/( cosh TJ¡)
a /=0 sinh[(e + t)(TJI - '12)]

{~[N/ dP/t;¡SO + 2(COShs~n~cosO' N/P/(cosO] sinh [(e + t)(TJ - '12)]

-[(e !) h[(e !)( _ )] sinhTJSinh[(e+t)(TJ-TJ2))]
+'1 +2 COS +2'1 '12 + 2( h <)cos '1 - cos,

x N/PI(COSO}. (14)

It is obvious that the direction of the electric field lines at the sphere 1/2 is that of vector
ii perpendicular to the electro de. It is not so obvious, but the same holds at the sphere '11
as the following examination of the ~ component of the electric intensity shows:

'1 00

- ~ '1 3/2 '"~.E(~,TJ=TJ1,CP) = --(coshTJ¡-cosO L..,C/(coshTJ¡)
a 1=0

[N
dP/(coshO sin~ "P ( <)]/----+ ------11(/ l cos~ .

~ 2(cosh '11- COSO

According to Eq. (37) the sum in the second term in this expression is

. ~ C/(cosTJI)N/P/(cosO sin~
SIn ~ L- ---'----'-------'--~ = --------,

/=0 2(cosh '11 - COSO 2(cosh '11- COS03/2

while the sum in the first term is

(15 )

(16)

00 dP/(cos{) d 1 sin( (17)"'c (coshTJ )N/-~~ - - ------- - --------L.., / 1 d~ - d~ (cosh '11- COS{) 1/2 - 2(cosh '11 - cos03/2 '
/=0

and the result is the mutual cancellation of both sums. Therefore the electric intensity at
the sphere '11 has only its ii component perpendicular to the electrode.
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The electric charge distribution on the electrodes is evaluated by using Gauss' law
applied to Eq. (14) at the respective spheres:

The total charges on the electrodes are obtaincd by integrating Eqs. (18)-(19) over the
respective spheres:

Q2 = r (h a(e '1,",) h{ d~ h'i' d",1Jo Jo '1;112

V¡27ra2 f: (l+ !)C/(coshr¡¡) r ~sin~N/P/(cosO
= - 41Ta /=osinh[(l+ !)(r¡¡ -'72)] Jo (COShr¡2- COSOI/2'

= _V¡a f: (l+ !)C/(cosh r¡¡)C/(cosh '12)
2 /=0 sinh[(l + !)(r¡l - '12)]

Q¡ = r (h a(~,r¡,,,,)h{ h'i'~d",1Jo Jo f7=TJ1

_ V1a ~ C/(cosh r¡¡)
- L ¡2 /=0 sinh[(l + 2)(1)1- '12)]

{(l+!)COSh[(l+!)(r¡l -'12)1 r d~sin~N/P/(cosO
2 2 Jo (coshr¡¡-cos01/2

. hl(l 1)( )] lo' d~ sinh ~N/P/( cosO sinh r¡¡}+ SIn + - r¡¡ - '12 ---------
2 o 2(cosh '11 - COS01/2

V¡a ~ C/(cosh r¡¡) {I 1
= -2 L . h[ l 1)( )J (l+ 2)cosh[(l+ 2)('11 -r¡2)]C/(coshr¡¡)

l=O SIn ( + 'i '11- '12

. h[(l 1)( )1 dC/(cosh r¡¡)}- SIn + 2 '11- '12 d .
'11

(20)

(21 )
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In the last line the integrals over ~ are identified with C/( cosh 1)¡) and its derivative by
using Eg. (36). Physically the magnitudes ofthe charges in Egs. (20) and (21) are expected
to be egua!. The advanced level students may prove that the expression inside the curly
brackets is in fact C/(cosh 1)2).

The capacitance of the bispherical capacitor follows from either Egs. (20), (21),

a 00

C = - ¿)e +!)C/( cosh 1)1)C/( cosh 1)2) csch[(l +!)(1)1 - 1/2)1.
2/=0

(22)

It is instructive to analyze the convergence of the series in Eg. (22) for sorne particular
cases.

a) 1£one of the spheres has a very small radius, say 1)1 - 00, Eg. (38) indicates that
the summation in Eg. (22) contains only the e = o term, and the capacitance is
reduced to

(23)

b) 1£the other sphere also has a small radius and eneloses the first one 1)2 - 00, with
1)2 :s: 1)1

2ae-ry,/2 e-'I2/2
e = ~ _ll..=.12.e 2 -e 2

2a
e711 - e'1J2

1
[ 1

acsch '71 - acsch rn

1
=---.!. _ .1. '

TI r2

(24)

reproducing the wcll-known result of concentric spheres [1-3].
c) 1£one of the spheres has a very large radius say 1)2 - 0+, Eg. (39) indicates that

the summation in Eg. (22) will have to inelude many terms,

but the series will converge fairly rapidly because the factor C/( cosh 1)[) has a value
smaller than that of Eg. (39), and the hyperbolic cosecant factor will decrease
exponentially as e increases. Obviously, the case of Fig. 2b with 1)2 = O is a
particular case of Eg. (25).

d) The parallel plate capacitor corresponds to the limit 1)1 = -1)2 - O,

00

C = aL csch[(2l + 1)1)1],
/=0

(26)

with an infinite capacity due to the infinitc area.
e) The case of spheres external to each othcr does not present any convcrgence
problem because the hyperbolic cosecant factor in Eg. (22) will exponentially
decrease with e more rapidly than in Eq. (25).
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4. DISCUSSION

The electrostatic field for bispherical capacitors has been described in bispherical coor-
dinates, through its electrostatic potential fllnetion, Eqs. (12) and (36), and its electrie
intensity field, Eq. (14). The eharge distributions and total eharges on the eleetrodes,
Eqs. (18)-(19), and (20)-(21), respectively, and the eapacitance, Eq. (22), were also oh-
tained. AH these quantities are given as sllperpositions of an infinite number of bispherieal
harmonie eontriblltions. The reason behind this infinite number is the R-separability of
the Laplaee equation, Eqs. (5) and (8). The eonvergenee of the series for the eapaci-
tanee, Eq. (22), was also explicitly analyzed and its numerieal implementation for speeific
spheres should not meet with any difficulties. This ean be eontrasted with the difficlllties
of MaxweH's solutions mentioned in the Introduetion [4,5]. Sorne readers may recognize
the similarity and differences of this problem and those of the toroidal and spherieal-eap
eleetrode eapaeitors [10, 11J; it is very instruetive to read these papers in suecession in
order to appreciate their relationships and peculiarities. From the didaetic point of view
the sllggested order for senior undergraduate or graduate students is to start with the
present paper and foHow with the other two, on aeeount of the closeness in form of the
bispherical harmonies to the familiar spherical harmonics, and the increasing remoteness
of the toroidal and spherieal eap harmonics.

ApPENDIX

The eonstruetion of the Green funetion requires the solution of Eq. (9) in bispherieal
eoordinates, for whieh the Laplacian has the explieit form of Eq. (5), and the Dirae-delta
funetion is written as

(27)

Here we use the eompleteness of the bi-spherieal harmonics in the angles ({, '{!) to represent
the eorresponding Dirae-delta functions.
The Dirichlet boundary eondition on the Green funetion, Eq. (10), takes the explieit

form

Co({,r¡ = r¡¡,<P;{',11',<P') = O, Co(Cr¡ = 112,<p;{', '1', <p') = O. (28)

The combined analysis of Eqs. (9) and (5) with the explicit forms of Eqs. (8) and (27)
suggests the harmonic expansion of the Green funetion,

Co(C '1, <p;(', '1', <p') = (cosh '1' - eos (') 1/2 (cosl171- eos01/2
00 t

X L L Yt:,,({', <p')Ytm({, <p)9t(11, '1'), (29)
(=-0 m:-t
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where we have also incorporated the symmetry under the exchange of the field-point and
the source-point, and

gt( r¡, r¡') = At sinh[( f + t)( r¡¡ - r¡»] sinh[( f + t)( r¡< - r¡z)J, (30)

guaranteeing that the boundary conditions of Eq. (28) are satisfied, and that the Green
function is continuous at r¡ = r¡'. There remains to determine the coefficients At. This is
accomplished by substitution of Eqs. (27) and (29)-(30) in the explicit form of Eq. (9),
making use of the R-separability of the Laplace equation, and of the linear independence
of the bispherical harmonics, to obtain

[
d2 1 2] , 411" ( ,- - (f+ -) gt(r¡,r¡) = --{) r¡ - r¡).dr¡2 2 a

(31)

The integration of this equation leads in tum to the discontinuity in the r¡-derivatives of
the Green function

411"
a

(32)

Use of the explicit form of Eq. (30) gives the value of the coefficients,

411"
At = a(f+ t)sinh[(f+ t)(r¡¡ -r¡2)]'

The explicit form of the Green function, Eqs. (29)-(30), becomes

GD((, '1, '1';(,r¡', '1") = 411"(coshr¡' - COS()1/2(coshr¡ - coS01/2
a

00 t
X L L Yt:"((, <p')Ytm((, '1')

l=Om=-l

(33)

x sinh[(f + t)(r¡¡ - r¡»] sinh[(f + t)(r¡< - r¡z)] (34)
(f + t)sinh[(f + t)(r¡¡ - r¡2)]

The construction of the electrostatic potential function requires the normal derivative at
the spherical electrode '11:

1 DGol---
h, D'
fJ TJ 11' =111

= _1_ 411"(cosh r¡ _ COS01/2
h1]' a

00 t • , , sinh[(f + t )(r¡ - r¡2)]L L Ytm(C<p )Ytm((, '1') . h[(f + !)( - )]
/=0 m;-t SID 2 r¡¡ r¡2
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(35)

(36)

{-(COSh Ti' - COS()I/2 cosh[(£ + ~)(r¡1 - r¡')j

+ 1 1 (COShr¡'-COS()-1/2Sinhr¡'Sinh[(£+~)(r¡I-r¡')1}
2(£ + 2) ~'=~l

= __1_ 411" (cosh r¡ _ coSOI/2
h~, a

00 1 " sinh[(£ + ~)(r¡ - TJ2)]~ nE/I:"(( , <p )Ylm((, <p) sinh[(£ + ~)(r¡1 - r¡2)]

x (cosh r¡¡ - cos ()1/2

The integral appearing in Eq. (12),

lo, df,' sin eNIPI( cosh (')-------- = GI(coshr¡¡)
o (cosh r¡1 - cosf)I/2

1 ( h ) 1+1 F (1 1 1 3. £ 3. h2 )= 21N
I
sec r¡1 2 212+"2+" +2,sec r¡1,

can be interpreted as the coefficients in the Legendre polynomial expansion of the inverse
of the square root of the binomial,

1
(cosh r¡1 - cos (')1/2

00

= l:GI( cosh r¡¡)NIPI( cos e)
l=O

_~"n( )1( h)l+lF(1 11 3.£ 3. h2)-~1YlrtCOS( IN sec r¡l 2 212+"2+" +2,sec r¡1'
1=0 2 l

(37)

The explicit form of this expansion can be obtained by using successively the binomial
expansion, expressing the powers of cos e as a linear combination of Legendre polynomials,
exchanging the order of the summations and identifying one of them as the hypergeometric
function 2Fl' Obviously, the explicit form of the integral in Eq. (36) is written by reading
it off from Eq. (37).
The numerical values of the GI( cosh r¡) functions vary monotonically between

and

( )1 - 1 (1 1 l 3. 3.) _ 2Gl cosh71 - 2lN 2F¡ 2" + 4'2 + ,,£+ 2,1 - v'U+T"~o l 2l + 1
when the radius goes from zero to infinity.

(39)
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