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A Hopf algebra structure in self-dual gravity
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ABSTRACT.The two-dimensional non-linear sigma model approach to Self-dual Yang-Mills theory
and to Self-dual gravity given by Q-Han Park is an example of the deep interplay between two
and four dimensional physics. In particular, Husain's two-dimensional chiral model approach to
Self-dual gravity is studied. \Ve show that the infinite hierarchy of conservation laws associated to
the Husain model carries implicitly a hidden infinite Hopf algebra structure.

RESUMEN.El enfoque de modelo sigma no-lineal 2.dimensional de la teoría de Yang-Mills y Ein-
stein autoduales dada por Q-Han Park, es un ejemplo de la profunda interelación entre la física
2 y 4 dimensional. En particular, se estudia el enfoque tipo modelo quiral 2-dimensional de Hu-
sain para la gravedad autodual. Encontramos que la jerarquía infinita de cantidades conservadas
asociadas al modelo de Husain, lleva implícitamente una estructura de algebra de Hopf infinita.

PACS: 04.20.Fy; 04.20.Jb; IUO.Lm

l. INTRODUCTION

Self-dual gravily (SdG) is a very inleresling arena to undersland the inlerplay belween
lhe physics and/or malhematics in lwo and four dimensions [1-3]. Ooguri and Vafa have
shown lhal SdG is aclually an e!feclive lheory of N = 2 slrings, and lhat il has a mosl
natural inlerprelalion in lhe context of slringy physics [41. The N = 2 heterolic slring the-
ory (SdG coupled wilh Self-dual Yang-Mills lheory (SdYM)) can be seen as the "masler
system" in which one is able lo understand the deep interelalion belween the integrability
in four dimensions (coming from the Peorose construction [5)) and lhe integrability arising
in the two dimensional models [4]. It is hoped lhal lhe quantum geometry (geomelry as-
socialed to lhe relevanl N = 2 superconformal ficld lheory) coming from N = 2 helerolic
superstrings will generalize the Ricci-flat Kiihler geomelry involved in SdG, since SdG
is conjeclured to be related in a deep way to lhe quanlum geomelry trough lhe N = 2
supersymmelric non-linear sigma models on Calabi-Yau manifolds [4] (for a rece nI review
about quantum geometry see [6)). This quantum geometry mighl be useful in order to
undersland (al lhe algebraic geomelry level) lhe relalion of lhe lwo lwislor conslruclions
associated wilh SdG and SdYM. This is beca use many of the fealures of lhe c1assical
geometry are valid at quanlum level.
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All string theories are conformal field theories in two dimensions (CFT2's). Almost all
the 'magic' properties of string theory have their origin in this CFT2. These symmetries are
expressed through the Virasoro, affine Lie and W",,-algebras and they can be very useful
in inducing (up to dimensional obstructions) nice properties to the self-dual structures
in four dimensions. One of these properties is the existence of conserved quantities in
a physical theory. In a CFT2 (due to the infinite dimensional symmetries) always arise
infinite hierarchies of conserved quantities.
On the other hand in SdG the history has been a bit different. The first notion of an infi-

nite hierarchy of conserved quantities has been given in a paper by Boyer and PlebalÍ.ski [7].
Using the first and the second heavenly equations [8] it is shown that SdG admits an infi-
nite hierarchy of conservation laws. These quantities are defined in terms of the first and
second key holomorphic functions n and e. Later, sorne global aspects associated to the
aboye construction have been studied [9].For this the maximal isotropic submanifolds for-
malism is employed. This construction is formal, thus avoiding the use of the infinitesimal
deformation of the twistor space [5).The symmetries play an important role here, showing
that the underlying symmetry group is the area preserving diffeomorphisms of a twistor
surface (totally geodesic null surface). In fact, this approach shows the existence of a corre-
spondence between the formal holomorphic bundles over the Riemann sphere Cpl and the
group of area preserving diffeomorphisms. After this, Takasaki, in a series of papers [lO],
shows the existence of a hyper-Kiihler infinite hierarchy. He found that it was possible to
construct inequivalent metrics in SdG by using the area preserving diffeomorphisms group.
Later, Strachan has shown that the existence of the infinite hierarchy is related with

an infinite family of twistor surfaces [11]. To be more precise, he found a one to one
correspondence between a family of twistor surfaces and the conserved charges. Similarly
to Refs. [7,9], Strachan starts also from the heavenly equation to make his construction.
Another approach to this setting was given recently by Husain [12].He has used strongly

his own result concerning the use of the equivalence of SdG and the two-dimensional chiral
model with the gauge group defined by the group of area preserving diffeomorphism of
an "internal" two-surface N2 [13]. Husain's construction of the infinite hierarchy involves
the use of induced properties of the two-dimensional chiral model to SdG. In the present
paper we continue this philosophy and explore how sorne other features of a more general
two-dimensional field theory (i.e., a CFT2) can be carry over to self-dual structures in
four-dimensions.
In Sect. 2 we briefly review Husain's construction ofthe infinite hierarchy in SdG [12,14).

After this in Sect. 3 we show how this hierarchy has associated a hidden infinite Hopf
algebra structure. Finally, in Sect. 4 our final remarks are given.

2. INFINITE HIERARCIlY OF CONSERVED CURRENTS IN SELF-DUAL GRAVITY

2.1. Conservation laws ¡rom Husain's chiral model

In this section we shall briefly review the necessary arguments in order to display the
Hopf algebra structure of sdiff(N2) in the next section. In Refs. [12,13], starting from
the Ashtekar-Jacobson-Smolin (AJS) formulation for SdG [15), Husain found a set of
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equations for four vector fields U, V, X and T. These vector fields arise after a light-
cone variable decomposition of Vo and a triad of vector fields V;, i = 1,2,3 on a three
manifold E3. Vo is a vector field used in the 3+ 1 splitting. Here E3 comes from the global
splitting of the space-time manifold M into E3 x iR. The four-manifold M admits local
coordinates {xO,xl,x2,X3}. In fact for the most relevant part of Husain's construction
the three manifold E3 can be identified locally with iR3• Choosing suitable expressions
for the vector fields U, V, ,y and T, Husain proved that the AJS equations led to the
two-dimensional chiral model (with the two-dimensional 'space-time' (iR2) coordinates
{x, t} and with gauge group being the group of area-preserving diffeomorphisms of a two-
dimensional "internal space" N2 ¡ with local coordinates {p, q}). This chira! model is given
by the equations

fOI = Boa¡ - éi¡ao + {ao, a¡}p = 0,

Boao + 81a¡ = 8,a, = 0,

(1)

(2)

where i = 0,1 (or x, t), { , }p means the Poisson bracket in p and q and ai = ai(x, t,P, q)
are analytic functions on y = iR2 X N2 which satisfy the above equations. In the Husain's
formulation the functions ais are close related to the hamiltonian vector fields ua and va
which are given by

Ua = (:t) + wba8bHo,

Va= (:x)+wba8bH¡,

(3)

(4)

where Ho, H¡ E COO(Y) are the hamiltonian functions which differ from ao and al by the
arbitrary functions G and F, respectively [12]'

ao = Ho +G, a¡ = H¡ - F. (5)

wab = (&)Ia 0(iq)b
1 whose inverse is precisely the symplectic local form Wab = dPalldqb on

JV2 and satisfying the relation WabWbc = ó~.In all that a, b = P, q. AII these considerations
are of course local. 2

1 As we make on!y local consideral ions we assume lhe space N2 lo be a lwo-dimensional simply
connecled sympleclic manifold wilh local coordinales p and q. This space has a nalural local
sympleclic slruclure given by lhe local area form w = dpl\dq. The group SDiff(N2) is precisely lhe
group of diffeomorphisms on N2 preserving lhe sympleclic slruclure w, ¡.e. for a1l 9 E SDiff(N2),
g'(w) = W.

2 Globally lhe sympleclic form is dofincd by w:TN2 ~ T'N2 and inverso w-':T'N2 ~ T/v'.
While lhe hamillonian veclor fields are UII, = w-'(dH;) salisfying lhe a1gebra [UII, .UII, I =
U{II"II,} where { . } slands for lhe Poisson brackel. Locally il can be wrillen as {H •• H,} =
w-'(dH •• dH)) = wab8.H,cJoH).
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Now we define a two-dimensional vector field-valued 1-form with "space-time" compo-
nents precisely the vector fields U and V, that is,

A; = (U dt + V dx);, (6)

where the notation means Ao = A, =U and Al = Ax = V.
Thus the 1-form A = A, dx' can be interpreted as a sdiff(N2)-valued connection 1-

form on :R2, ;.e. A E Coo (T':R2 0sdiff(N2)). This connection is of course flat and that
condition implies that its curvature n vanishes:

n = dA + A !IA = O.

Locally this condition yields

.1'01 = BoA¡ - atAo + [Ao,A¡j = O,

where [ , 1 stand s for the Lie bracket.
According to Re£. [12] the vector fields U and V must satisfy also the relation

or

(7)

(8)

(9)

Thus in terms ofthe connection A" the chiral Eqs. (1), (2), can be expressed as Eqs. (8),
(9) respectively.
The first conserved current is taken to be

.:rP)(x,t,p,q):= A;(x,t,p,q), (10)

which is immediately seen to be conserved using the equation of motion (9). Introducing
the two-dimensional Levi-Civita symbol f'j (fOl = -flO = 1), it is easy to see that the
first conserved current is

(11)

implying the existence of a vector field lJ(1).

The second conserved current is defined by

(12)

This current will be conserved using the Eqs. (8), (9). Similarly to the aboye equation the
n-th conserved current can be defined to be

(13)

which will be also conserved using the aboye argumento
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Using now mathematical induction after several steps one can prove that the (n + 1)-th
current

'T.(n+I) .= [A 7J(n)]"', • a, ,

is also conserved (for details see Ref. [12]).
In what follows we will use only the first conserved current.
The conserved charges Q(I)(t) and Q(2)(t) can be defined as

Q(I)(t) = I d2sdx.:TJI)(t,x, s),
'!1xN2

where s are the local coordinates on}(l (i.e. d2s = dpdq) and .:TJI) = Ao =U, then

Q(I)(t) = I d2sdxU(t,x,p,q)
'!1x/lf'

and

Q(2)(t) = I d2sdx.:TJ2\t,x,s),
RxN2

Q(2)(t) = I d2sdx [u, IX dx'U(t,x',p,q)].
RxN2

(14)

(15)

(16)

(17)

(18)

2.2. Affine Lie algebra associated lo the Lie algebra o/ sdiJJ(}(l)

In Ref. [141 Husain found an afline Lie algebra (of the Kac-Moody type) associated with
the Lie algebra of area preserving diffeomorphisms. Beginning from the sdiff(}(l)-chiral
equations (1), (2) Husain show the existence of an infinite dimensional hidden non-local
symmetry associated with the Poisson bracket. The conservation law

ai Ji(n) (x, t,p, q) = O

for the corresponding currents of Eq. (13),

J(n)( t ) - .. a.A(n+I)( t )i X, ,p,q -(,])J\ X, ,p,q J

(19)

(20)

determines the existen ce of a scalar function A(n+I) on y = R2 x}(l. This function can
be obtained from a hierarchy of such a functions by

(21 )

where Do is the zero component of the covariant derivative DiA:= aiA + {ai,A}p.
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The currents (20) are conserved under the symmetry transformations

(22)

Now, in order to obtain the aboye mentioned Kac-Moody algebra Husain defines the
generators associated to the transformation (22) by

or

(23)

\Ve first wish to give sorne general remarks in order to fix the notation for further
considerations. For this we will use the standard notation of general 2-index infinite alge-
bras 116,17, 18). To be more precise let (em(x)} be a generic basis of hamiltonian functions
satisfying the algebra

Expanding now A(n)(x,t,p,q) in the aboye basis (em(x)} we have

A (n)(x, t, p, q) = ¿:>m(X) Al;:) (x, t)
m

(24)

(25)

where m, m' and mil are constant 2-vectors, (i.e. m = (m¡,m2), with m¡,m2 E Z and
x = (p, q) is a 2-vector with p, q the local coordinates on JV2) and C:::~,are the structure
constants which depend on the topology of JV2.

Let Cem(x)'" Cm be the associated hamiltonian vector fields which satisfy the Poisson
algebra sdiff(JV2)

(26)

Any general function F(x) can be expressed as the linear combination of the basis of the
vector fields

(27)
m

where 1m are the expansion coefficients.
In terms of the basis (em(x)} the generators T(n) can be expressed by

(28)
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Final!y Husain found also an affine Lie algebra structure for these generators T;;:) to
be

[T(m) T(n)] = Cm" T(m+n)
m , m' mm' m" . (29)

The most trivial case, m = n = O, corresponds precisely with the Poisson algebra
sdiff(N2) (26)

[
(O) (O)] _ m" (O)Tm , Tm, - Cmm, Tm". (30)

These results are of course at the classical leve!. The quantization might be related to
knot theory and integrable 2d field theory. According with Ref. [14] it is possible that this
connection come from the Yang-Baxter equation.

3. A HOPF ALGEBRA STRUCTURE IN SELF-DUAL GRAVITY

In this section we make the construction of the Hopf algebra 1t associated to the affine
Lie algebra (29), in particular, that associated to the Poisson algebra sdiff(N2). In order
to do that we fol!ow MacKay's paper [191 and we apply sorne of the results of Ref. [19) to
the Husain's model of SeU-dual gravity described in Sect. 2.
First of al! we would like to make sorne comments about the MacKay's construction. In

Ref. [191it is found that a Poisson-Hopf algebra structure is present in the two-dimensional
quantum chiral mode!. This algebra is a realization of the Drinfeld's Yangian algebra
presented in several two-dimensional integrable systems.
In the present section unlike MacKay, we find only a Hopf algebra structure. This is so

beca use our conserved charges are operators rather than functions. Also our Hopf algebra
structure is derived under the assumption that we are working with a one charge only. As
it is shown in Ref. [19] a second charge is needed in order to find the Yangian structure.
\Ve define new generators (or charges) Q~)(t) from Eq. (28) by

T;;:) = J dt Q~)(t),

where

and

'(n)( ) _ D. \(n)( ) 61m Xl t - IJ ro X, t ~.
Ua¡

The defined charges satisfy of course the algebra

(31)

(32)

(33)

(34)
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Now following MacKay (19)we decompose the integral (32) into two integrals

Q~)(t) = rO dxj~)(x,t) + roo dxj~)(x,t).
J-oo Jo (35)

Obviously this splitting still holds (as the case presented by in Ref. [19]) because the
conserved currents are operators. Thus we can write the last equation as

(36)

where the signs + (-) correspond to positive (negative) values of x.
In what follows we restrict ourselves to the case (30) (i.e., m = n = O), but the

generalization for the general case is easy to gel. In this case we hope to find the mentioned
Yangian algebra structure.

3.1. The Hopf algebm structure

It is well known that the diffeomorphism group Diff(M) of a compact manifold M is
not a Banach Lie Group but a Hilbert manifold [20,21). Due to that N2 is a compact
symplectic manifold with symplectic form w = dpl\dq which defines a subgroup SDiff(N2)
of Diff(N2). The associated Lie algebra to SDiff(N2) is sdiff(N2), the space of locally
hamiltonian vector fields on N2. This algebra has the structure of a Frechet manifold and
therefore the product sdiff(N2) x sdiff(N2) is the product of Frechet manifolds which is
also Frechet [21].
Consider the infinite dimensional Lie algebra sdiff(N2) over the field R and a basis of

this algebra to be the QI::)(t). Introducing an infinite dimensional universal enveloping
algebra 1i = U (sdiff(N2)), we can now define on 1i a structure of a Hopf algebra (for
details see Ref. [22)). Thus, in what follows the tensorial product of universal enveloping
algebras of sdiff(N2), 1i 01i, will be defined in the Frechet sense.
Following MacKay's [19)we define the co-product, t>, as follows:

t>: 1i --+ 1i 01i,

that means

On the identity element, 1 E 1i, the co-product is defined by

t>(1)=101.

(37)

(38)

(39)

This co-product t> is an R-algebra homolllorphism. The definition for the co-product,
Eq. (38), is fulfilled also when we define

(40)
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where the signs + and - correspond to the decomposition given in Eq. (36), the numbers
1, 2 mean the first and the second entries of 7t l8i7t, respectively.
Defining now the "twist" map r: 7t18i7t-+ 7t18i7tgiven by r (Q\::)l8iQ~¡) = Q~¡ l8iQ\::),

one can see that the co-product (38) is co-commutative. This holding because the relation
r o D.= D. is fulfilled.
With the aboye definition one can show that the coproduct satisfies the co-associativity

axiom

(id l8iD.)o D.= (D.18iid) o D., (41)

where id is the identity map, ¡.e., id:7t -+ 7t, id(Q\::\t)) = Q\::)(t). To prove this axiom
one can decompose the charge Q\::)(t) into three parts just as it is mentioned in Re£. [191.
On the other hand the co-unit f is also an !R-algebra homomorphism f: 7t -+ !R,which

one can define by

f(Q\::)(t)) = O, f(l) = 1, (42)

where O E !R.With the aboye definitions for the co-product and co-unit one can easily
prove that the co-unit axiom is fulfilled:

(id l8if) o D.= (f l8iid) o D.. (43)

The antipode is an !R-algebra antihomomorphism S: 7t -+ 7t. In our case we define the
antipode as

5(Q\::)(t)) = -Q\::)(-t). (44)

It is an easy matter to see that the definitions (38) and (44) satisfy the axiom of the
antipode:

m 0(5 l8iid) o D.= m o (id l8iS) o D., (45)

where m is the operation product in 7t and is defined as a homomorphism m: 7t18i7t -+ 7t,
m (Q\::) l8iQ~¡) := [Q\::),Q~¡l = C:::;;',Q~!" where Q(l)m, Q(1)m' E 7t.
From the point of view of current algebra the aboye definition for the antipode map,

(44), corresponds to a usual, classical, PT transformation

5 (j~)(x, t)) = -j~)( -x, -t),

which coincides with McKay's result [19) whenever

5 (A\::)(x, t)) = A\::)(-x, -t).

(46)

(47)



704 H. GARCÍA-COMPEÁN ET AL.

4. FINAL REMARKS

In the present paper we have used the infinite hierarchy of conserved quantities for SdG just
as it has been given by Husain [12,141. Then using the conserved charges and following
MacKay [19]' we display how they possess a Hopf algebra structure. Many interesting
implications might be derived from our results. First of all one could generalize everything
presented here by considering the Moyal algebra. This is the unique deformation (with
deformation parameter to be k) of the Poisson algebra considered here sdiff(N"l). The
Moyal algebra is

(48)

One would like to find the Hopf algebra associated to the Moyal deformation of sdiff(N"l).
In fact there exist a further q-deformation of the Moyal algebra. It was considered in
Refs. [23-25] a q-deformation of the Moyal algebra

[ ] ( mxm' -mxm').cm, Lm' qmxm' = P - P £m+m" (49)

This structure of quantum algebra of the Moyal deformation of sdiff(,V2) might be impor-
tant in order to give a bit of more consistency to our results [26].

Another way to address a quantum algebra structure is through the existence of a QUE
(quantized universal enveloping)-algebra associated with both sdiff(N2) and its Moyal
deformation might be achieved using the methods of massive 2d quantum field theory
given by Le Clair and Smirnov [27,28]. Then by considering these methods one wilJ have
a no(co)commutative (co)product which give us directly a q-deformed version of sdiff(N2)
and its Moyal deformation.

One more possible situation to be considered in this context concerning conserved cur-
rents. Strachan found an infinite hierarchy of symmetries associated to SdG equations [29].
A different approach has been given also very recently by Husain [14]. It would be inter-
esting to make the connection between both approaches which seem to be equivalent.

Furthermore, since the Husain's model has been solved (for finite subgroups of sdiff(N"l))
in terms of harmonic maps [30], one could ask about the possibility to address the whole
problem concerning conserved laws, Hopf algebras, its deformations and harmonic maps.

Finally, given the possible relations between self-dual gravity and knot theory by using
the Yang-Baxter equation one could to use the technique [31,321 in order to get such a
connections. This technique has been successful to find solutions in self-dual gravity and to
obtain a WZW-like action which might be connected to 2d integrable field theory similarly
as usual chiral model. We will address this considerations in a forthcoming papero
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