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ABSTRACT. T.B. Andersen proposed an alternative method for the calculation of high order aber-
ration coefficients for an axially symmetrical optical system; however the method does not give
information of the contributions of each surface to those coefficients. The purpose of this work is
to present an alternative method for the calculation of these contributions based on the method
of Andersen, where the theorem of Aldis is used.

RESUMEN. T.B. Andersen propuso un método alternativo para el clculo de coeficientes de aber-
racién de alto orden para un sistema ptico axialmente simétrico; sin embargo el método no pro-
porciona informacién acerca de la contribucién de cada superficie a esos coeficientes. El propésito
de este trabajo, es presentar un alternativa para el cdlculo de las contribuciones basados en el
método de Andersen, para lograr este propésito, se usa el teorema de Aldis.

PACS: 42.15.Eq; 42.15.Fx

1. INTRODUCTION

The main purpose of this paper is to find a set of equations for the contributions from each
surface of an optical system to its total transverse aberration. The achieve this goal the
method developed by Andersen [1] is used, employing the so called theorem of Aldis [2]
presented by Cox [2], in his book on optical design. Another aim of the formulation here
established is to obtain more comprehensive equations than those obtained by Cox [2]
and Buchdahl [3], for finding the aforementioned contributions of each optical surface. It
is important to state that the method of Andersen only permits knowledge of the total
amount of transverse aberration in the optical system, whereas in this paper each surface
contributions is obtained.

In a comparative study between the works of Buchdahl, Cox, and Andersen, it was
found that the total amount of transverse aberration in a triplet lens was the same for the
three cases. Considering that Cox’s results were obtained by using the Aldis theorem to
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find the contributions of each optical surface to the total transverse aberration of a system,
a decision was made to use the method of Andersen together with the same theorem of
Aldis, in order to find the necessary equations for the surface contributions.

2. ANDERSEN’S METHOD

Andersen developed a method based on ray tracing, that allows the computation of polyno-
mial functions from knowledge of the ray coordinate intersections (z,y), and the direction
tangents (£,n) of any skew ray with respect to the image plane. While this method may
be applied to both symmetric and non-symmetric systems, our present study is valid only
for the former. In the equations derived in this paper, the aberration coefficients are not
obtained explicitly, but instead a series of quantities are derived as functions of several
variables that can be represented in a computer program as arrays, having the coeffi-
cients of a power series of those variables up to a certain order. The arithmetic operations
between the quantities just mentioned can be performed by means of the subroutines
contained in Andersen’s paper [1].

2.1. Notation and conventions

As has already been mentioned, the optical system is considered axially symmetric, with a
Cartesian coordinate system whose z axis lies along the optical axis. The system in general
has I surfaces, with the zero surface at the entrance pupil. The vertex for each surface
has the coordinates (0,0, z;). The focal plane is assumed perpendicular to the optical axis,
and has coordinates (0,0, zr41). The distance between the surface vertices is given by

d; = &g =& i=0,1,...,1 (1)

The sagittate for the i—th surface (z — 2;) is represented by the function

z =2z = fi(z,y), (2)
where the functions f; are
filz,y) = filp) = Zaijﬂj, (3)
F=1

with p = 2% + 2.
The index of refraction before and after each of the refracting surfaces is written as v;_;
and v;, respectively. The relative index of refraction for the :~th surface is

(4)

{ u=l'"if the surface is refracting,
B = '

—1,  if the surface is reflecting.
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The intersection points and the direction tangents of a skew ray with the osculating
plane at the vertex of each refracting or reflecting surface, have the coordinates (z;,v;)
and (&,7;), respectively. For the case of a symmetric optical system it is not necessary
to know all four quantities since it is well known that p; = z? + 32, ¥; = ¢? 4+ n? and
ki = z;§; + yini- Hence with p;,v;, k; known, the ray is fully characterized along its entire
path.

2.2. General ray tracing equations

There are in the literature several methods for calculating the ray trace of an optical
system [4-6]. The method that is presented in this paper is similar to the one developed
by Spencer [4] in what he called equations for a general method of ray tracing.

For an ray incident at the i-th surface, the unit vector along the ray direction is

&y = (L, My, Ni); (5)

Li, M;, N; are the direction cosines of the ray; and the “crossing” point of the ray with
the osculating plane z = z; is P;(x;, yi, 2:)-
Hence, the coordinates of the intersection point, 13,-(:'6,5,2) of the ray with the optical
surface are related with other parameters by means of the equation
Zi—xzi G-y _ Zi—-z _ fil@, ) (6)
Li M; = N, N,

However, instead of the direction cosines, let us use the direction tangents defined by

L; M;
— ;= — i
AN ()

§i =
substituting Eq. (7) into Eq. (6) the coordinates Z;, §; are equal to

ji = Ty Eiff(£i1y-i)a
Ui = yi +n0ifi(Zi, %). (8)

The solution for Eq. (8) in general is obtained by the iterative Newton-Raphson method.
Instead, here we will follow the Andersen method that defines the four functions S; =
(p0’¢01n0)3 T, = (PO,TJJOaKD)a v‘t = (PO,'QbO-,K«D), and Wi = (p0a¢ﬂa50)a such that the
coordinates (z;,y;) and the direction tangents (;,7;) can be determined by means of the
equations

[;:] = Si(po, Yo, ko) [;g] + Ti(po, Yo, ko) [fyg] , (9)

[g:] = Vi(po, Yo, ko) [';g] + Wi(po, Yo, ko) E,g] . (10)
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Here the parameters pg, ¥ and k¢ are defined for the entrance pupil of the optical system,
that is, for the first considered surface of the system.
On the other hand, the functions S;, T;, V;, W; can be calculated according to

[%:; ;‘:f:l]= 1 - xi(di — fi) fi+(di—fi)i(ﬂi%—3(ifi) [5: 3&_], (11)

—Xi Hi Nix1

— Xl

where!

%
Nip

Xi =2 (cos 8 — p;icos 6;), (12)

and N, is the direction cosine with respect to the z axis for the refracted ray at the i-th
surface; 6; and ; are the incident and refracted angles at the same i-th surface; and

-1/2
_ ary? . I
Other equations used by Andersen for calculating the defined functions S, T', V' and W
through the parameters p, v, k are

G(po, Yo, Ko) = i Zn:

n=0;=0k=

J
Gﬂ,ﬂ—j,j—k,k pg ! % K’S' (14)
0

For example, p; = pi(po, Yo, ko) is equal to

0o n ] )
pi(Po, Y0, K0) = D DD Pinn—jj—kkPo e (15)

n=03=0 k=0

where pin n—jj—kk are the associated coefficients to the variable p;, that can be stored in
the computer as an array. The reader is referred to the appendix A of Andersen [1] work
for the computer subroutines to calculate sums, products, etc. of the quantities G.

In what follows, mathematical equations representing the optical surfaces will be written
since they will be used later on. Considering axially symmetric optical surfaces, the conic
surfaces can be represented by their sagittate by means of the equation

zi = filpi) = (16)

cipi
1+ 4/1- (1 + ki)e2ps

with ¢; as the paraxial curvature, and the conic constant k; takes the values shown in
Table I [8].

! In this paper we use x; for the parameter f; in Andersen’s work.
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TABLE I. Eccentricities of the conics.

Eccentricity Surface

ki< -1 Hyperboloid
ki = -1 Paraboloid
-1<k; <0 Ellipsoid-major axis
k=0 Sphere
ki>0 Ellipsoid-minor axis

The aspheric surface equation is equal to

N .
cpi + 2c; Yoaii o+l —cfip)? =1, (17)
i=2

where @;; are the deformation coefficients of j-th order.
Another way to describe the sagittate ; of Eq. (16) is as follows:

Z = fi(p) =
j=2

& 1/2
1- (1 —cihi— 26 Y @i pJ) : (18)

Considering that the derivatives of f;(p) will be used, from Eqgs. (16) and (17) it can be
shown that for a conic surface

~ Ci
f:(pi) = = 3 (19)
2/1 = (1 + ki)c2pi
and for aspheric surfaces
N ez . =il
i+ 2 im0 2§85 p
fitpe) = S Lepma Wi A (20)

2[1 — ci fi(Bs))]

3. THE ALDIS THEOREM

The Aldis theorem aliows us to have a mathematical equation that gives the transverse
aberration for any ray, from the knowledge of the contribution of each surface to such a
transverse aberration. This theorem was fully explained by Cox (2], who used it to obtain
the aberration coefficients for an axially symmetric system, but including, where required,
the decentering of the optical components. Welford [9] also mentiones in his book the
Aldis theorem, but he does not use it for any practical purpose. One reason why the Aldis
theorem is not used more frequently could be the fact that it gives information for just
one ray, and not for a bundle of rays. Therefore, if it is desired to know the crossing points
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of a beam of rays with the image plane, it is necessary to obtain polynomial equations
for such crossing points for each optical surface and the image plane; and this requires
calculation of the polynomial aberrations of the optical system. In this section the Aldis
theorem will be briefly described. A more complete explanation can be found in the book
by Cox [2].

For an axially symmetric optical system, considering the notation of Sect. 2, the fol-
lowing paraxial quantities can be defined:

i = viiLi, mi=vi1Mi, ni =N, (21)

bi = bi—1 — ciBi(vi — vi-1), (22)

Bi = Bi-1 + bi_—ltii, (23)
Vi-1

Bi = bj + vific; = bi_1 + vi—1fic, (24)

y*bo = yybr = -+ = yrbr = H, (25)

where b; and ; are the paraxial angles and heights of the rays; y* is the object position
at the object plane, whose actual value is chosen such that z* = 0; and B; is a paraxial
invariant for the i-th surface. Therefore, it is possible to obtain

r
brNrs1(Gre1 — ') = 3 Bi[§(Nix1 — Ni) = 5i(Miyy — Mi)]
=1

r
=3 Biled(niss — ni) + (1 = &) (Mg — mi]

i=1

B
—HY (Niy1 = Ni); (26)

g=1
and

r
brNrsrire1 = 9 Bi[Ei(Liv1 — Li) — &i(Mig1 — M)

i=1

r
=3 Bilesilliar = b)) + (1 — ciZi)(miga — ma)] - (27)
i=1
The above Eqgs. (26) and (27) are known as the Aldis’ equations [2]. The method to obtain
such a set of equations is known as the Aldis theorem.
For the case of conic and aspheric surfaces, the Aldis’ equations are equal to

e, — ’—ZF:{E[E- + R - B, } (28)
Ir41 r = - b{" ir iT bI" T
r
N B; Bi H
gre1—y = {BF[Eiy + Fy) - FI:Q“’ = Epi} ) (29)

$=1
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where
N — N
Poter 28 3 (30)
Nri1
E;; = %P, (31)
Eiy = §:F;, (32)
Fiz = ‘;;; — i), (33)
Miagn-M;, ., .
Fy = —%—'ﬁ(ﬂi), (34)
T+1
kici fi(pi)(lis1 — I,—)ﬁ“, if surface 1 is conic;
Q. = 4 N _ e (35)
—&; 2 i1t | = if surface i is aspheric;
7 Nriy
\J=2
( 1
kici fi(pi)(mig1 — mi)m, if surface i is conic;
Qiy = < . o\ e = (36)
—; 2ja;; pl- Sl if surface 7 is aspheric;
- 7o Nriy1
with
z; = fi(pi). (37)

If a ray tracing is performed, Egs. (28) and (29) allow us to determine the contribution
to the transverse aberration for each surface for a particular ray through the optical
system. As an alternative method to ray tracing, Andersen’s method can be used for
the calculations of the ray trace by means of his polynomial functions to any order of
approximation. In the next section, Eqs. (28) to (37) will be used, in the method developed
by Andersen.

4. FORMULAE USING ANDERSEN'S METHOD WITH THE THEOREM OF ALDIS

Andersen has used his mathematical equations for calculating the aberration coefficients,
to determine focal surfaces [10], caustics [11], and the derivatives of the aberration func-
tions with respect to the axial distances [12], or with respect to the refractive index [13],
or some other surface parameters [14]. It should be said that Andersen’s method has not
been used profusely. Only Tam [15] has reported this method for the study of the diffrac-
tion of an optical system with symmetry about the optical axis. Hence, after analyzing
some properties of Andersen’s work, it was decided to use the Aldis theorem together
with the equations derived by Andersen. In order to achieve this task, in the first place, a
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finite approximation order is considered for Eq. (14). In this case the quantities obtained
from Eqgs. (28) and (29) must have the same approximation order. Therefore, starting with
Egs. (28) and (29) and after some algebraic manipulation, each term can be written as a
function of the Andersen quantities S, T, V and W.

4.1. Aberration equation for object at infinity

From the definitions
AeM) = gpy) - o, (38)
Az = gr., — o/, (39)

for the transverse ray aberrations at the Gaussian image plane, to the order M; the quanti-
ties from Eq. (30) to Eq. (37) appear implicitly or explicitly within the method developed
by Andersen as briefly explained in Sect. 2. Therefore, using Egs. (28) and (29), then
Eqgs. (38) and (39) can be written as

AzM)] I (B [E, + F, 1, [0]_ & [
- Li iz x| _ ~ p Y t . 0
[Ay‘“’”} > { br [Eiy +Fy] bl [H] b [ﬂw} } ’ i

i=1

and each term of Eq. (40) will be analyzed in what follows.
From Eqgs. (31) and (32) it is possible to write

Ei] _ i
[Ei ] S [?7:] ’ (4D
and from Eq. (8), then

] =2 {l] 5[5} @

Combining Eqgs. (9) and (10) and (42) we have, after further algebraic manipulation,
E;z o 50]
= = (Si + f:V;)P, .+ WP |20 . 43
[E,-y] (Si + fiV) Py [m] +(Ti + W) P [m (43)

Conversely, from Eqs. (7) and (10) the following equation can be obtained:

(Lig1 — L) / Nry _ NipVis = NiVi [xo] o NeriWigs = N, [50] -
(Mit1 — Mi)/NI‘+1 Nrii Yo Nri1 o

By substitution of Eq. (44) into Eqs. (33) and (34), we have

Fir] _ filNit1Vigr = NiV3) [zo] | filNigaWig1 — niW5) [
= & . (45)
Fy Nrya Yo Nri1 70
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Therefore, combining Egs. (43) and (45)

5 78] = (e wpm - Ry [
(s g, - Ao = NI 6 g

As can be noticed, Eq. (46) finally contains the quantities defined by Andersen, and will

be used later on.
Now, from Egs. (7), (10) and (21) it is possible to obtain

bai=li | _ ooar wr o s [T0
[ 2% ] = @iNaaVirn = ¥ [2]

+(viNisaiWig1 — vio i N;W5) [gg] . (47)

If the i-th surface is a conic, then by means of Egs. (35), (36) and (47)

[Qt'x] = U1N1+1V:+1 — 9;-1V; V; [330] % Cf
Qiy Nri Y b
i(NVig1Wip1 — vio 1 ;W
Y. (Nig1Wig1 — v [60] kst (48)
Nri1
for the case of an aspheric surface and considering that
(Rit1 — i) = viNgg1 — v NG, (49)
and using Eqgs. (8) ,(9) and (10)
z; i €n
= (S + sz) + (T4 KRG ) (50)
Yi Mo
we have
Qiz o To
Qiy = (S, + f,‘ 2 2_](1',13 p] ’U,Ni+1 — U,'_]N,') [yo]
s - 3
(Ti+ £fiwi) | 3256 5171 | (viNig1 — vie1 V) [ﬂg] . (51)
j=2

If the i-th surface is conic or aspheric, then Eqgs. (48) and (51) can be written as

Eﬂ:&LJ+ m] (52)
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where
( kicifi(viNig1Vig1 — i1 NJV)) % :
Ve , if surface i is conic;
—(Si+ fiVi) (E 2ja;; p’-‘?"l) , if surface 7 is aspheric.
! j=2
( kici fi(viNii Wi —vioil ;W)L .
cifilv +1N:+1 Sl ’), if surface 4 is conic;
T+1
F: = { N (54)
—(T; + fiW5) (Z Qi ﬁ{'l) , if surface 7 is aspheric.
\ 7=2

As can be seen, Eq. (52) has been written using the quantities defined by Andersen.
With the results obtained in Eqs. (46) and (52) the contributions to the transverse
aberration contained in Eq. (40) are now equal to

S - £ 2 @l n ) -£ (e n[ED)-2n ) o

with

Fi(Nix1Vig1 — NiV3)

Qi = (S + V)P — , (56)

Nry
i(Niga Wi — NiW;
R; = (T; + fiW;)P; - fi(WNiss N;‘l ), (57)

For an object at infinity, from Eq. (55) the Smith Helmholtz invariant H = y'bp.Taking
into account that y' = f'ng, and the conditions ' = 0, and & = 0, then

[g] =brf [7?0] ' (58)

where f is the effective focal distance. With the previous results Eq. (55) for this case
can be written as

aon] = {(Ba- Ea) [r] + (Br-Era 2)[2]} @

Equation (59) implies that for an object at infinity, 7o is constant for the entrance pupil
plane. This means that incident rays are parallel to the optical axis and therefore they
have the same direction tangent.
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TABLE II. Cooke triplet design from H.A. Buchdahl with the stop positioned at a distance d =
0.041353 behind rear to the fourth surface.

J
1 2 3 < 5 6
c 4.82439 —.753929 —1.64505 5.11794 .310726 —1.46116
N 1 1.6162 1. 1.5725 1, 1.6162
d .040278 .016851 0096145 138738 .0313246 —

TaBLE III. Contributions of the surface i = 1, M = 3 from the Eq. (56).

B - By, LpiBin-py ® A-7 -8 b
br bp br bp
.000000E + 00 .000000F + 00 0 0 0 0
—.132443E + 02 —.132443F + 02 1 1 0 0
—.103684F + 01 —-.975177E - 01 1 0 1 0
—.249132F + 01 —.234315F + 00 1 0 0 1
—.160872F + 03 —.151304F + 02 2 2 0 0
—.103029F + 02 —.969017F + 00 2 1 1 0
—.456051F + 02 —.428928FE + 01 2 1 0 1
.242500F + 00 .228077E - 01 2 0 2 0
A72104E + 01 161868 FE + 00 2 0 1 1
.103580F + 02 974192FE + 00 2 0 0 2
—.223980F + 04 —.210659E + 03 3 3 0 0
—.146164F + 03 —.1374T1FE + 02 3 2 1 0
—.104364F + 04 —.981565FE + 02 3 2 0 1
.384475E + 01 .361608FE + 00 3 1 2 0
.T25705E + 01 .682544F + 00 3 1 1 1
.144315F + 03 135731FE 4+ 02 3 1 0 2
—.119538FE — 01 —.112429F — 02 3 0 3 0
—.111649E + 01 —.105009F + 00 3 0 2 1
—.976423F + 00 -.918350F - 01 3 0 1 2
342496 E + 02 322126 E + 01 3 0 0 3

5. RESuLTS

As a means of checking that the equations derived in this work are correct, a comparative
study of the surface aberration contributions between our results and those obtained by
Buchdahl [16] was performed. The particular optical system chosen was a Cooke triplet,
since Buchdahl’s analysis of this system was performed in depth. In Table II are shown
the values for the curvatures c; refractive index, N; and surface separations, d, for the
studied triplet.

The results shown in Tables III to VIII are for an object at infinity, and where obtained
in such a way that the coefficients are functions exclusively of the entrance pupil coor-
dinates and the ray direction tangents. However, for a closer object, the transformation
coefficient described by Andersen [10] can be used. The optical surface contributions are
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TABLE IV. Contributions of the surface i = 2, M = 3 from the Eq. (56).

%Qi—-f—;Ai %R{—f—;(Fi—ﬁ) n n—j j—k k
.000000E + 00 .000000E + 00 0 0 0 0
—.176346 F + 02 .616619F + 01 1 1 0 0
—.229983FE + 01 .804168E + 00 1 0 1 0
.123324FE + 02 —.431220F 4+ 01 1 0 0 1
—.416083E + 03 .110354F + 03 2 2 0 0
—.317229E + 02 .642671F + 01 2 1 i 0
.247819F + 03 —.559880F + 02 2 1 0 1
—.102849E + 01 .328188FE + 00 2 0 2 0
.182043E + 02 —.507424F + 01 2 0 1 1.
—.455446F + 02 .101644F + 02 2 0 0 2
—.982425E + 04 .225995E + 04 3 3 0 0
—.803335E + 03 .163665E + 03 3 2 1 0
528891 F + 04 .101000E + 04 3 2 0 1
—.218306F + 02 .500120e + 01 3 1 2 0
1497986 F + 03 —.130741E + 03 3 1 1 1
—.106611F + 04 .253545E + 03 3 1 0 2
—.233176E + 00 .595896 E — 01 3 0 3 0
.993218F + 01 —.307263F + 01 3 0 2 1
—.107915E + 03 .347683E + 02 3 0 1 2
.125529F + 03. 461004F + 02 3 0 0 3
0

TABLE V. Contributions of the surface i = 3, M = 3 from the Eq. (56).
%Q.«f—;m %Re—f—;(ﬂ-ﬂ) n on-j  i-k  k
.000000E + 00 .000000E + 00 0 0 0 0
.239033E + 02 —.725795E + 01 1 1 0 0
.250325E + 01 —.760084F + 00 1 0 1 0

—.145159E + 02 440759E + 01 1 0 0 1
.584009E + 03 —.134570F + 03 2 2 0 0
413787E + 02 —.813729E + 01 5 1 1 0

—.335433E + 03 694388E + 0 2 2 1 0
978258 E + 00 —.282152E + 00 2 0 2 0

—.199853E + 02 4TB994E + 01 2 0 1 1
571142E + 02 —.108737E + 02 2 0 0 2
.143935E + 05 —.289681FE + 04 3 3 0 0
.109331E + 04 —.204544E + 03 3 2 1 0

—.787120E + 04 .141438E 4 04 3 2 0 1
228317E + 02 —.482148E + 01 3 1 2 0

—.608788E + 03 .140463F + 03 3 1 1 1
.156989E + 04 —.333224F + 03 3 1 0 2
.123421E — 01 .101229E — 01 3 0 3 0

—.650828E + 01 .170811E + 01 3 0 9 1
104717E + 03 —.280439E + 02 3 0 1 2

—.144915E + 03 A11811E + 02 3 0 0 3
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TABLE VI. Contributions of the surface 1 = 4, M = 3 from the Eq. (56).

%Q.‘—f—;/ﬁ %Ri—f_;(ﬂ—})i) n n—j i—k k
.000000E + 00 .000000E + 00 0 0 0 0
.T48422F + 01 .162409F + 01 1 1 0 0
.128408FE + 01 .27864TE + 00 1 0 1 0
.324818E + 01 .T04863FE + 00 1 0 0 1
.925538F + 02 127191F + 02 2 2 0 0
.112641E + 02 .228684F + 01 2 1 1 0
.285T33FE + 02 TTAT51E + 01 2 1 0 1
—.202153F - 01 316647TE — 01 2 0 2 0
.136201FE + 01 .383413F + 00 2 0 8 ! 1
—.625545F + 01 —.159615F + 01 2 0 0 2
.234894E + 04 .196532F + 03 3 3 0 0
.170550FE + 03 .143242F + 02 3 2 1 0
—.248757E + 03 .803025F + 02 3 2 0 1
.349216FE + 00 .632201F + 00 3 1 2 0
.100851FE + 03 .238990F + 02 3 1 1 1
—.192327E + 03 —.455022F 4 02 3 1 0 2
.7T95529FE — 01 478387TF - 01 3 0 3 0
—.202804E + 00 —.385413F + 00 3 0 2 1
674156 E + 00 —.117125E + 00 3 0 1 2
.154016 E + 02 .584220F + 01 3 0 0 3

TABLE VII. Contributions of the surface i = 5, M = 3 from the Eq. (56).

%Q;—%A, -?:R;—f—;(Fg—Pg) n n—j j—k k

.000000F + 00 .000000F + 00 0 0 0 0
—.107635E — 03 —.T46417FE — 03 1 1 0 0
—.644107F — 01 —.44666TFE + 00 1 0 1 0
—.149283E - 02 —.103523F — 01 1 0 0 1
—.548399F — 02 —.432382F — 03 2 2 0 0

.426406FE — 02 445376 E + 00 2 1 1 0
—.536994F — 01 —.445053F + 00 2 1 0 1
—.829507TFE — 02 —.475696 F — 01 2 0 2 0
—.284127F - 01 —.5T7579E + 00 2 0 1 1

189726 E + 00 .128188E + 01 2 0 0 2
—.105194F + 01 —.949128F + 00 3 3 0 0

.582717E + 00 .230006 £ + 02 3 2 1 0
—.119320F + 02 —.B869543FE + 02 3 2 0 1
—.857759F — 01 —.177094E + 00 3 1 2 0
—~.131879E + 01 —.215298E + 02 3 1 1 1

A3477TE + 02 910599F + 02 3 1 0 2
—.197288E - 02 —.817659F — 02 3 0 3 0
—.926076 E — 01 —-.902162E — 01 3 0 2 1
—.260575E + 00 —.180360F + 01 3 0 1 2
—.208160F + 01 —.130423F + 02 3 0 0 3
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TABLE VIII. Contributions of the surface i = 6, M = 3 from the Eq. (56).

EBF'Q,-—%A; %R.‘—"f—;(ﬂ—ﬂ) n n-—j i—k k
.000000F + 00 .000000E + 00 0 0 0 0
—.186761F + 01 .699379E + 00 1 1 0 0
—.540447F + 00 .202386F 4 00 3 0 1 0
139876 FE + 01 —.523805E + 00 1 0 0 1
—.867857TFE + 01 .345533E + 01 2 2 0 0
—.186154E + 01 .660529F + 00 2 1 1 0
125579F + 02 —.459316F + 01 2 1 0 1
.212374FE + 00 —.117461F + 00 2 0 2 0
.223562F + 00 .156459E + 00 2 0 1 1
—.267421F + 01 .59T293E + 00 2 0 0 2
—.237852F + 02 378898 FE + 01 3 3 0 0
908724 FE + 01 —.443309F + 01 3 2 1 0
—.14T188FE + 02 .239501F + 02 3 2 0 1
—.559330F + 00 .161893F + 00 3 1 2 0
—.412069F + 01 TTIS570FE + 01 3 1 1 1
.368407FE + 02 —.338075E + 02 3 1 0 2
.645830F — 01 —.363432F — 01 3 0 3 0
—.139305E + 01 \264718F + 00 3 0 2 i
.195437F + 01 —.577715E + 00 3 0 1 2
—.957890F + 01 .665T80F + 01 3 0 0 3

TABLE IX. Sum of the contributions, M = 3 from the Eq. (56).

%Q;—%A; %Ri—%(ﬂ—ﬂ-) n n— 3=k k
.000000F + 00 .000000E + 00 0 0 0 0
—.135912F + 01 —.146952F — 01 1 1 0 0
—.154197FE + 00 —.190677FE — 01 1 0 1 0
—.293905E — 01 J17TT79E — 01 1 0 0 1
.909239F + 02 —.231728F 4 02 2 2 0 0
.875966E + 01 .7T13145E + 00 2 1 1 0
—.921417F + 02 .118708E + 02 2 I 0 1
.376129FE + 00 —.645229EF ~ 01 2 0 2 0
.149721F + 01 —.160137E + 00 2 0 1 1
131876 E + 02 547905 E + 00 2 0 0 2
465358 E + 04 —.648148F + 03 3 3 0 0
.324031F + 03 —.217346E + 02 3 2 1 0
—.390134F + 04 .323519F + 03 3 2 0 1
.454999F + 01 J115833E + 01 3 1 2 0
—.813383E + 01 .204897E + 02 3 1 1 1
.506089FE + 03 —.543557E + 02 3 I 0 2
—.906244F — 01 .T1907T1E — 01 3 0 3 0
.618948E + 00 —.168044F + 01 3 0 2 1
—.180697FE + 01 .413408E + 01 3 0 I 2
186042 F + 02 —.224028E + 01 3 0 0 3
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TABLE X. Numerical values for the optical surfaces contributions to the aberrations.

i

1 2 3 4 5 6 >
St —13.244  —17.634 23.903 74842  -.03108 —1.8676  —1.3501
Stio  —1.0368  —2.2008 2.5032 1.2841  —.06441  —.54045  —.15419
et 1.2457  —6.16622 72579  —1.6241 037464  —.69937 014696
Tio — —.09752 80416 -.76 278647  —.44667 202385  —.01907
Fd. —3eaag 43193 4.4075 704867  —.01035 5238 031778
S3ie  —160.87  —416.08 584.01 92.5538  —.025483  —8.6786 90.9239

shown in Tables III to VIII, and the total amount of transverse aberration is presented in
Table IX. The upper left heading in each table represents the specific aberration coeffi-
cients, while the upper right heading indicates the order of approximation. The numerical
values for each aberration are listed according to the particular coefficient with the index
n, j and k.

For example, if we consider the third order spherical aberration coefficient, then n = 1,
k =0, 7 = 0. From Table IX, for these index values, the total aberration coefficient is
equal to —1.35912. A comparison with the study realized by Buchdahl on the Cook triplet
(Table X) shows that the numerical value for the same aberration coefficient is remarkably
similar.

6. CONCLUSIONS

The main purpose of this paper was to investigate the application of the Aldis theorem
combined with the mathematical results of the method proposed by Andersen. As result
we have derived a set of equations that allow the calculation of each surface contribution to
the transverse aberration, for an axially symmetrical optical system. The results have been
verified by comparison with those obtained by Buchdahl for a Cooke triplet optical system.

One should bear in mind that although the example selected contains only spherical
and refractive elements, our results are more general, since the equations obtained are
valid for conic, aspheric, and also reflective surfaces.

Given that with the combination of the Aldis theorem with the Andersen method a
symbolic treatment it is not possible, the authors will try in the future to use only the
theory of Andersen with the symbolic representation for studying the surface contributions
to the aberration coefficients of an optical system.

APPENDIX. OPTICAL ABERRATION COEFFICIENTS DETERMINED BY A. COX

In the development of what is called paraxial optics, it is well known that from the
knowledge of the height and angle of any two rays, any other ray can be defined and
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calculated. By convention, the two chosen rays are the one starting at an object point
on axis and starting the edge of the entrance pupil; and that starting at the edge of the
object and passing through the center of the same pupil.

In this Appendix, the coefficients derived by Cox [2] are written using the paraxial
quantities defined in Sect. 3, mainly Egs. (23), (22) and (24). Therefore

ai—1ti—1
th =g b ————;
Vi-1
a; = ai-1 + cioy(v; — vi-1),
Ai = 0; +v;0i¢; = 0i-1 + Vi-104C, (60)
B = bi  biy
AT TR
3;' gz i
... % i—1
Ai i R
v vl

i 1

where «; is the ray height, a; is the incident angle for the i—th surface; and A; is a quantity
defined in a similar way to B; represented in Eq. (24).

Following Andersen’s method of defining the aberration coefficients, see Cox [18], the
following equations can be derived:

. 1
STl00 = ﬂBs?B:ﬂh

*i b; a? a;?_l b; bi—l) 1 9
Sto0 = b [ﬁ; (-27? - 2L + (v-—t _ 5C0|

T

1
Tuoo e :?:AiBiB;,ﬁia

: 1
Tio10 = Eb%Ai(Aﬁ + A;Bja;),

: 1 aib; a-_lb-_l (a,- a.:_l) a,-bi a,-_lb,-_l
ot ? o R I el L o G || s — —— =
T1001 L B [Bt {ai ( ‘Uf 'Uiz—l + c‘latﬁt % Vi1 Uiz Uiz—l )

; 1 3
S2300 = —55;{[ AiB;Bf; — B B+ ﬁ:C:B ( )] ZBQB’ABJ

3 162 3b
__B B)B:ZA BBtﬁJ (5;%_5_2) B'?B:ﬁz

3 b; bi—l) 3 2 22 }
sy | = v — < (Bici)*B{ BB ¢ .
4 (v? '“1'2—1 4

1

As a comparison example of an optical system, a Cooke triplet analyzed by Buchdahl [16]
was chosen, whose numerical values for the optical surface contributions to the aberrations
are shown in Table X.
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In this case the initial values for the entrance ray are, bg = 0; 1 = 1l; a0 = 1; a; =

—.113227; and the chief ray reaches the first optical surface with a cosine angle equal to
1 and of height —.113227.
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