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ABSTRACT.How do learning processes escape from local oplima? Doing so requires an exploralion
of lhe landscape al a range of lhe order of lhe landscape correlalion length -a "long jump" in
synapsis space. This brings up a dilemma: because of the high dimensionalily of lhis space, the
probabilily lhal a rondom long jump lead lo a beller oplimum is nearly zero. We conjeclure
that "intelligent" coarse-grained learning operators emerge as a consequence oC a self.organization
process in neural syslems, as follows. The presenlalion of a single new dala veclor slimulales
lhe recall of olher veclors, each of which generates a small displacement in synapsis space. The
sum of these displacements constitutes a coarse-grained learning even!. Although long jumps are
occasionally needed to escape from local optima, lhey should be the exception ralher than lhe
rule. This leads us to propose a neural nelwork model where lhe recall process self-organizes lo a
critical slate and one has a power-law dislribulion in lhe number of data vectors recalled.

RESUMEN.¿Cómo pueden los procesos de aprendizaje "escapar" de mínimos locales? Para ello
se requiere de una exploración de la topografía de error a una escala del orden de la dislancia
de correlación -un "brinco grande" en el espacio de sinapsis. Esto nos lleva a un dilema: por
la alta dimensionalidad de este espado, la probabilidad de que un brinco grande aleatorio con.
duzea a un mejor óptimo es prácticamente cero. Proponemos una conjetura: que operadores de
aprendizaje "inteligentes" emergen en sistemas neuronales como consecuencia de un proceso de
auto-organización, como sigue. La presentación de un vector de datos estimula el recuerdo de
otros vectores, cada uno de los cuales genera un pequeño desplazamiento en el espacio de sinapsis.
La suma de tales desplazamientos constituye un operador de aprendizaje macroscópico. Aunque
se requiera de brincos grandes ocasionalmente, para escapar de mínimos locales, el aprendizaje
debe estar dominado por pequeños pasos deslinados a encontrar los mínimos locales. Eslas con-
sideraciones sugieren un modelo de red neuronal donde el proceso de recuerdo de memorias se
auto-organiza en un estado crítico, de tal manera que la distribución en el número de vectores
recordados (tamaño de avalancha) sigue una ley de potencias.

PACS: 87.1O.+e; 89.70.+c; 87.22.As
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1. INTRODUCTION

The process of "Iearning" can be viewed as the evolution of an algorithm to perform
certain tasks. The performance can be measured by a "fitness function", which evaluates
how well the tasks are accomplished. When the algorithm is executed by a complex system,
such as a neural network or gene expression mechanisms, this fitness function is a rugged
landscape [1) on the space of algorithms.
Qne distinguishes two types of learning operators: small-stepping operators generate

displacements that are small in comparison with the landscape correlation length; their
role in learning is to generate f10wsto a local optimum. Long-jump learning operators, in
contrast, generate large displacements which may reach to other valleys in this landscape,
with the purpose to seek out better optima.
It is not presently known whether biological learning systems make use of long-jump

learning operators, although there is sorne evidence which points in this direction. The
evolution from reptile to bird, for example, seems to imply escape from a local optimum.
In the context of neural networks, the development of human motricity offers several
examples: from lying to crawling, from crawling to walking and from there to riding a
bicycle, all require several coordinated changes in motor control which are of no use if
carried out independently, rather the contrary. We should stress that even though these
examples appear to imply that long-jump learning operators are required to clear past
a "barrier", not enough is known about neural and genetic systems to assert that there
is no way to go around such barriers in small steps that are beneficial or at least close
to neutral. As Bak has shown, one can model punctuated equilibria in learning processes
without tunnelling through barriers 14]. In such models one has long jumps in algorithm
space but these are not motivated by the purpose to escape from local optima.

This article is based on the premise that long-jump operators indeed play an important
role in learning, whether or not they playa role in clearing fitness barriers. We will further
speculate that these operators occur as a manifestation of self-organized criticality (SQC),
as "avalanches" of small displacements. With this conjecture, there is no need to postulate
the existence of a separate class of learning operators -rather, the long-jump operators
would emerge as coarse-grained operators in an effective theory describing the learning
process at a longer time scale.

Why self-organization and criticality? First of all, since a long jump by definition exceeds
the landscape correlation length, learning by random long jumps would be no better than
a random search in the space of algorithms. Qne cannot presently rule out that this is
the way long-jump learning proceeds in biological systems -for example, it is difficult to
estimate the number of failed mutations for every successful one since there is no fossil
record of the failures- yet it is difficult to explain the observed efficiency of both genetic
and neurallearning without considering that the search in algorithm space is organized in
sorne way. Since there are no external factors to carry out such an organizational task, one
can only assume that a process of self-organization takes place. Self-organization of neural
systems has been considered elsewhere, e.g., in Kohonen's networks [2]' and more recently
by Stassinopoulos and Bak in a simple brain rnodel 13]. The argurnent for criticality relies
on the observation that stable systems are slow to change, while unstable ones tend to
lose previously acquired beneficial traits, so learning would proceed most efficiently at the
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boundary between these situations, i. e., at the critical point. In terms of the distribution
of sizes of learning events, the claim is that learning proceeds most efficiently when a
majority of coarse-grained events are small but events of all sizes occur, including long
jumps. Discrete dynamical systems which tend to a steady-state regime characterized
by long-range correlations and a high algorithmic complexity are typically self-organized
critical systems. In the case of genetic learning, there is evidence in the form of power-law
distributions of various empirical correlation functions [4].
Clearly, the evidence for long-jump operators and for sac is weak because the biological

learning processes are complex and poorly understood. ane of our aims in this work will be
to lend partial support to these conjectures through numerical simulations with a model
based on the feedforward neural network [5].
The proposal that long-jumps can be non-random, or "organized", is highly non-trivial.

Since a long jump exceeds the landscape correlation length, it can lead to a better-than
average fitness value only if the mechanism which generates the jump "knows" the struc-
ture of the landscape beyond its immediate vicinity. This knowledge can only arise from
previous experiments, which lends further weight to our claim that long-jump learning
operators must be effeclive operotors in a time coarse-groined theory. In other words, the
"intelligence" of the long-jump operators is an emerging property -from there to the
conjecture that they are "avalanches" of smaller events is a relatively small step.
The claim that the long-jump learning operators can target regions of higher fitness

indicates that there is an emergent topology in the coarse-grained theory that is distinct
from the original one: the targeted regions are "nearby" in the sense that they can be
reached in a single step. According to this point of view, it is not so much that long-
jump operators must organize to be effective in spite of reaching beyond the landscape
correlation length, but that these jumps appear to be "long" because they are being
measured with the wrong metric.
Avalanches propagate through "near.neighbours", so to claim that a system enjoys the

property of sac one must be able to specify what is meant by "near neighbour"; this
implies that there is a distance function in the space of training vectors. This in turn
induces the mentioned "emergent topology" in algorithm space, as follows. According to
our discussion aboye, a coarse-grained learning operator consists of an ordered sequence
of presentations of training vectors. ane can define the "norm" of such an operator as the
sum of the distances between the successive training vectors. An avalanche involves near-
neighbours, so the corresponding norrn is small compared to a coarse-grained operator
involving the same number of randomly-chosen training vectors.
The "emergent intelligence" must manifest itself in the choice of which training vectors

are recalled in the avalanche process; i.e., it is encoded in the distance Junction on the
space of training vectors. So this distance function must be allowed to self-organize via
some reinJorcement mechanism. Following Stephanopoulos and Bak's proposal that self.
organization in the brain should follow fronl a "democratic reinforcerncnt" rncchanisffi,
one would assume that the result of each coarse-grained learning step is evaluated and
the distance between vectors that participated in the avalanche is reduced (increased) if
the result was positive (negative). In this way, when a new data vector is presented the
previously-viewed vectors that are recalled will be precisely those which can cooperate to
realize a fruitful long-jump in algorithm space.
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FIGURE l. A model of learning is proposed, which allows for the emergence of inte!ligence through
topological reinforcement. A learning avalanche propagates through near-neighbours in the space
of data vectors; the organization of learning processes is then naturally relatOOto the definition of
what one means by "near-neighbour". Applying the principIe of democratic reinforcement, points
which cooperate in successfullearning avalanches should be drawn closer together, and vice-versa,
points which cooperate in failed learning attempts repel from each other. In this way, one expects
the distance function to organize so that the presentation of a new training vector provokes the
recall of previously-viewed vectors which are likely to help generate an inte!ligent long jump in
algorithm space.

The proposal for neurallearning which we have outlined in the previous paragraphs is
summarized in the organigram of Fig. 1. When a new data vector is presented, one deter-
mines whether this forces a shift in the pile -a test referred to as "overcrowding", in anal-
ogy to sandpiles. As long as this occurs, the system proceeds to recall "near-neighbours"
and test for continued overcrowding; every recall is accompanied by the corresponding
learning iteration. When there is no further shifting, the overall result of the learning
iterations is evaluated and a democratic reinforcement signal triggers an update of the
distance function which defines the notion of "near-neighbour".
How does this proposal differ from that of Stephanopoulos and Bak? Rather than apply-

ing the principie of democratic reinforcement at the level of individuallearning operators,
our proposal is that it should be the guiding principie which allows for the emergence of
"intelligence" in coarse-grained learning operators. We do not have any specific proposal
on the nature of the small-step learning operators in biological neural networks, as very
little is known about the biochemical processes involved. \Ve stress that the mechanisms
which we are proposing here are in principie applicable to any "microscopic" learning
scheme -in the extreme case, the coarse-grained operators may end up being similar for
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different schemes and the choice of fine-grained operators would then be irrelevant (within
a universality class).
In this framework for learning one distinguishes two independent proposals: that of

self-organized criticality, and that of democratic reinforcement applied to the structure of
coarse-grained operators.
In this article, we will consider only the first of these two proposals: We will construct

a system where the recall of previously-viewed vectors proceeds by "avalanches". Specif-
ically, we will look for evidence for selj-organized criticality [6] in a modification of the
backpropagation learning algorithm for feedforward neural networks.
To this end, we will create a "critical pile" where previously-viewed data vectors are

stored. Each displacement of a data vector in the pile is associated with a learning itera-
tion. The introduction of a new data vector can provoke an avalanche in this pile, which
propaga tes through a possibly large set of previously-viewed data. Thus, a single new
data vector can force the system to recall previous experiences, and in the case of a large
avalanche, provoke a long jump in synapsis space.

2. ERROR BACKPROPAGATION IN FEEDFORWARD NEURAL NETWORKS

In order to choose a specific model on which to test sorne of these ideas, we opted for
the possibility of practical applications over biological realismo The model which will be
discussed below is a generalization of a neural network model which has a track record of
successes in a wide array of modelling tasks: the so-called "backpropagation network".
The backpropagation network is a parametric model jw(x) of a map y: IRn -+ (0,1),

given by (Fig. 2)

where g(x) = 1+;-' is the neural "transfer
so-called "hidden neurons" , given by

function" and x(2) is the activation of the
]

The synaptic weights W]:) and W]2) are free parameters, to be determined by the "learn-
ing" procedure.
In the language of the Introduction, the "algorithm space" is spanned by the weights, or

"synapses"; the computer which executes the algorithm ls the neural network running on
a training set of input-output vectors, {(Xk, Yk); k = 1,2, ... , P}. The "fitness" is defined
as the inverse of the mean squared error on this set,

f ~ L (Yk - j(Xk))2 .
k
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FIGURE 2. A feedforward neura! network. The middle units, ca!led "hidden neurons" receive an
activation poten tia! which is the weighted average of the inputs, and respond with an output given
by the transfer function. Likewise for the output unit, only its activation potentia! is determined
by the outputs of the hidden neurons.

The backpropagation learning algorithm [5] is a steepest-descent optimization method
applied to this error function, where the corrections to the weights are computed one
training vector at a time. One "epoch" of learning consists of a single presentation of each
vector in the data seto A complete training process typically involves a large number of
epochs.

\Ve wiIl focus for now on the fine-grained learning operator which consists of the presen-
tation of a single data vector. For each training vector (Xk, Yd one has a learning operator
8k whose action on the weights is proportional to the gradient of the error function eval-
uated at this point:

= -r¡(fk - Yk) fk(l -ik)X)2),

= -r¡(!k - Yk) !k(l -!k) w)2) X)2) (1 - X)2»)Xi

(with the notation f(xk) == !k). The operators 8k generate the fine-grained evolution of
the weights. It is usual to apply these operators in random order. This strategy allows
the system to escape from shallow local optima, as follows. If the weights are at a local
optimum of the error averaged over the entire training set, they are gene rally not at a local
optimum of the error averaged over a proper subsel of training vectors. So if one considers
the subset of m consecutive vectors in the random ordering of the training vectors, out
of a total of N data vectors, training over this subset will generate a net movement in
weight space. For m « N this is essentially a random walk, so the random presentation of
training vectors allows the learning algorithm to explore a region in weight space within
a radius proportional to r¡Jffi around the local optimum.

One can think of such a subset of m learning iterations as one coarse-grained learn-
ing operator -so the practice of presenting the training vectors in random order is seen
to provide a class of medium-jump learning operators, i.e., operators that generate dis-
placements that are large compared to 8k bllt small compared to the landscape correlation
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length. As mentioned aboye, this allows the system to escape from "shallow" local minima,
whose attracting radius is small compared to the landscape correlation length. For larger
values of the learning rate these become long-jump operators, but then the convergence of
the learning algorithm is lost. This should come as no surprise since, by definition, random
long jumps in weight space lead to a random (uncorrelated) fitness.
The effective landscape at finite learning rate differs from the "bare" landscape in that

it disfavors steep valleys: the expectation value of the fitness with the fluctuating weights
reflects how quickly fitness deteriora tes as one moves away from the optimum. At large
values of the learning rate the effective force caused by a widening of the valley can
dominate over that which reflects the slope at the bottom of the valley. Clearly, a better
method to escape from local optima would be helpful.
Our proposal in this paper is to let the presentation of training vectors be given by the

mechanics of a critical data pile, rather than a random process. In this way most iter-
ations will consist in small or medium "jumps" in synapsis space, with large avalanches
coming in as rare punctuations. Eventually, one would like to let the exploration away
from the local optimum self-organize through a reinforcement loop, to reach the objective
of an intelligent search -the "intelligence" would then manifest itself through the choice
of particular subsets of training vectors which comprise the "avalanches"- however, the
implementation of such a reinforcement loop lies beyond the scope of this work. In sum-
mary, criticality has to do with the size of a training subset, while the emergent topology
(which we do not consider here) defines its structure.
We will close this section with a few facts about the structure of the landscape f(W)

and their significance to the backpropagation learning algorithm.

2.1. Compensalion through different hidden neurons

As long as the activation potential of the hidden neurons is small, the transfcr functions
act as linear maps: for small x,

g(x) = _1_:;:, -21(1 + =2)'1+ e-X

In this regime, an increase in the product of the weights from a given input to the output
through one hidden neuron can be compensated by an opposite change in the product of
weights through another hidden neuron, with no change in the output. Away from the
linear regime this sort of compensation is imperfect, but there is a remnant which makes
for quasi-horizontal directions in the landscape. There is one such direction for every
set of input neuron and other hidden neuron, so one concludes that most directions are
approximately "irrelevant". At the bottom of an error valley, the relevant displacements
in weight space are deleterious so learning procecds mostly along the irrelevant directions.

2.2. Overlearning

For large values of the weights, the activation potential of the hidden neurons, which is
the weighted mean of inputs, tends to be large in absolute value. Consequently, the neural
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activation saturates at either O or 1, since g(x) --. 1 at x --. 00 and g(x) --. O as x --. -oo.
This saturation of the hidden neurons can be avoided only by a careful balancing act,
where very large positive and negative contributions from the various input neurons must
balance to achieve a neural activation potential near zero. The output then becomes highly
sensitive to smal! changes in the input vectors (a phenomenon known as overlearning),
and the landscape becomes more and more "rugged" as one moves away from the origin
in weight space.

2.3. Random walk in the irrelevant subspace

In practical applications one normal!y works with a large number of weights, typical!y of
the order of lOO. The number of "irrelevant" directions is similarly large, and learning
proceeds along these directions mostly at random since the gradient of the error function
is poorly defined, so once the system has reached the bottom of a val!ey learning proceeds
as a random walk in the irrelevant subspace. This implies that the norm of the weight
matrix grows as the square root of the number of epochs.

Combining these observations, one finds that the structure of the landscape is that of
a network of winding val!eys that become narrower and narrower as learning proceeds
and one is driven away from the origin in weight space. One frequently finds that the
learning procedure takes the network along a long path which eventual!y folds back on
itself and returns to a point quite close to the original one, albeit separated from it by
a steep barrier. There may or may not be local minima, depending on the function y(x)
and the neural architecture, but even in cases where local minima are not present it would
be clearly advantageous if one could go through the steep barriers between val!eys rather
than fol!owing the long path along the irrelevant directions. Of course this wish is as old
as the neural networks themselves, and we do not pretend to answer it here. Our aim
is to investigate if and how long-jump operators can emerge as an avalanche of smal!
backpropagation steps, as described in the Introduction.

3. A SANDPILE OF TRAINING VECTORS

Stable criticality is a property displayed by certain forced many-body systems with non-
linear near-neighbour intemctions and unrestricted energy escape through a free boundary.
The forcing energy propaga tes through the system from the input site to the boundary,
and the non-linear interactions imply that this propagation proceeds through a process
of avalanches, rather than a steady f1ow.The criticality is an approximate concept, as
the system is usual!y slightly subcritical right after an avalanche and the finite size of
the system imposes a large-scale cutoff, but nevertheless it is reflected in the power-law
distributions of avalanches and correlations at a certain scale.
The prototype of "self-organized criticality" is the sandpile model [7,8]: A slow input

of grains of sand at the top of the pile forces avalanches which involve non-linear friction
forces between the grains of sand. 1£the pile is placed on atable, the edge of the table
is the free boundary. When the pile reaches its asymptotic size, one finds that avalanches
occur with a power-law distribution in the number of grains of sand involved.
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FIGURE 3. Organigram oC lhe crilical neural nelworkmode!.

To design a crilical backpropagation network, we will construct an analogy between
grains of sand and training vectors. The tumbling of a grain of sand should be related to
a learning iteration, so it is natural to assume that the "height" is the network prediction
error for a training vector.
The algorithm is as follows (Fig. 3). Training vectors are presented one at a time; in

each presentation the prediction error is calculated and the synaptic weights are updated
according to the backpropagation algorithm. If the prediction error exceeds a toleran ce
threshold, then the training vector is stored in apile which consists in a fixed number of
error bins, equal to 100 in our simulations. These "bins" are specified by bounds on the
prediction error, which wc shall rcfer to as markers. Thus, bin number k will contain the
data vectors for which the prediction error ¡¡es between marker[k] and marker[k + 1].
Each error bin has a capacity ¡¡mit; if it is exceeded, an "avalanche" is initiated which

will stop only when all bins in the pile have returned to below the capacity ¡¡mil. The
avalanche proceeds as follows. All points in the overfull bin are presented for one learning
iteration. The markers for the lower and upper bounds of this bin are then adjusted so as
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to reduce the size of the bin, according to the algorithm

marker[k + 11-+ markerjk + 1]- f(marker[k + 1]- markerjk)),
markerjk] -+ markerjk] + f(markerjk + 1) - marker[k)), (1)

where f = 0.01 in our simulations. Note that both the learning iterations and the move-
ments of the markers tend to reduce the occupancy of the overfull bin. We will refer to
both processes together as an event, and refer to the bin in question as active.

Following an event, the weights of the neural network have been modified so it is neces-
sary to recalculate the errors of all training vectors in the pile and reassign them to error
bins.

If overfull bins are found either aboye the active bin or below its lower neighbour, it
is assumed that the cause is the change in weights rather than the movement of one of
the vectors in the active bin -indeed, one expects that the learning process should push
one or more data vectors down to the bin immediately below the active one. The markers
are adjusted by the algorithm (1) until there are no overfull bins except possibly for the
active one or its lower neighbour.

Qne then checks the occupancy of the active bin. If it remains overfull, the process
is repeated starting with one learning iteration for each training vector in this bin. If
not, then one checks the occupancy of the next lower neighbour. If it in turn exceeds the
capacity limit, the process described aboye is repeated for this new "active bin".

Thus, the "activity" proceeds downward one bin at a time untíl every bin's occupancy
is below the capacity limito In this entire process the lowest marker, which marks the
"toleran ce threshold" below which points are discarded from the píle, is kept fixed.

When the prediction error on a training vector falls below the tolerance threshold
(marker[O)), this vector is considered to have been "learned" and is dropped from the píleo
What value should this "toleran ce threshold" take? For very large values of the threshold,
training vectors will be easily "learned" and the pile will maintain a low occupancy, un-
likely to lead to extensive avalanches. If, on the other hand, the threshold is low, training
vectors will accumulate whíle the network struggles to meet the accuracy demand; any
new training vector then generates an avalanche which propagates through the entire pile,
until extensive learning iterations on the lowest error bin finally succeed in reducing the
error for one of the vectors to below the threshold. In-between these two extremes one
expects to find a "critical" threshold where the distribution of avalanche sizes follows a
power law.

The toleran ce threshold is allowed to self-organize to the critical value, as follows. At
every presentation of a new training vector, the threshold is lowered by

marker[O] -+ marker[O] - 0.1 x inf{ marker[O], marker[l] - marker[O]} (2)

After each avalanche, the marker is raised by this amount multiplied by 0.05 times the
number of events. Thus, the threshold reaches an equilibrium value when the average
avalanche involves 20 events.

Numerical experiments were carried out with a píle of 100 bins, each with the capacity
to hold 10 training vectors. The network architecture was chosen with 6 input neurons, 8
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hidden neurons and one output, and "Iearning" proceeded with 50,000 randomly-generated
training vectors. The use of random training vectors is intended to focus on the issue of
criticality rather than the structure of the landscape -in particular, in deterministic land-
scapes one often finds that learning proceeds by "jumps" independently of any emerging
property, simply because the landscape ineludes steep dropoffs from one valley floor to
a lower one. When training on random data, the individual (fine-grained) learning steps
have comparable sizes.
The code was designed to keep a record of several characteristics of the avalanches:
1. The number of events in response to the presentation of each training vector (sizes
of avalan ches).

2. The number of times the activation of one bin eventually leads to the activation
of the n'-th lower bin (spatial correlation).

3. The number of consecutive presentations of training vectors that do no! lead to
an avalanche, or "waiting time" (temporal correlation).

4. EVIDENCE FOR STABLE CRITICALITY

The subject of self-organized criticality has received much attention in the recent literature;
it is most1y an empirical concept at this point, so we will attempt to be thorough and
provide an extensive list of observations which can be expected at criticality.

1. Two time scales: one, slow, for the introduction of new energy in the system: we
will call T the time for complete renewal of the system's energy. The other, fast,
for the propagation of avalanches.

2. Power-law behaviour of the temporal correlation functions, with a cutoff at T.
3. Two elearly distinguished spatial scales: the range of near-neighbour interactions
which separates individual motions in the avalanche, and the total size of the
system, N.

4. Power-Iaw distribution in sizes of avalanches, with a cutoff at N.
5. Power-law behaviour of the spatial correlation functions, with a cutoff at N.
6. Existence of a self-organizing parameter (e.g., the slope of a sandpile).
7. Loss of the properties (2-5) aboye when the self-organizing parameter is forced
away from its critical value.

In order to look for signs of self-organized criticality in our model of critical backprop-
agation, we ran the model described in the previous section on a set of 50,000 randomly-
generated data vectors.
1. New data vectors are introduced one at a time, and any ensuing avalanche is com-

pleted before a new vector is presented. Thus, the time scale for the execution of an
avalanche is T = 1 and that for complete renewal of the data v('ctors is equa.l to the aver-
age number of vectors in the pile, which turns out to be T "" 500 (the maximum capacity
of the pile would be 10 x 100= 1000).
2. The distribution of waiting times between avalanches is given in a log-log plot in

Fig. 4: this experiment does not provide convincing evidence of power-law behaviour in
the temporal correlations.
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FIGURE 4. Log-Iog plOI of lhe prohabilily dislribulion of wailing limes belween avalanches. No
linear region can be idenlified; lhis graph reBecls inslead an exponential dropoff of lhe probabilily
of large wailing limes.

3. The total size of the system is equal to the number of bins, or N = 100 in our case.
The interactions are between neighboring bins only, by designo
4. The distribution of avalanche sizes is given in Figs. 5 and 6. In the tirst case, the total

number of events is considered, while in the other one considers only the number of bins
visited by the avalanche without regard to how many times the bin is visited. Both follow
power law behaviour in the range 100.2 < size < 101.4, with critical exponents 1'1 = 2.0
(events), and 1'2 = 2.75 (bins visited).
5. The spatial correlation function is the probability that the activation of bin number k

generates an avalanche which eventually activates another bin n positions lower. We find
a power-Iaw decay as a function of n, with a cutoff at the total number of bins (Fig. 7)
and an exponent 1'3 = 1.45.
6. The self-organizing parameter is the "slope" of the markers, i.e., the difference be-

tween the levels of neighbouring markers. As seen is Fig. 8, the markers settle at asymptotic
error values determined by a linear function of the bin number. Thus,

marker[i + 1] - marker[i] = Oc>

where Oc = 0.00061. The linear disposition of the markers is a cOI;lsequence of the algo-
rithm (1): the size ofbins is reduced each time it becomes overfull, so the system converges
to where each bin has is equally likely to beco me overfull. For random data, the distribu-
tion of errors is roughly tlat in the low-error range, so the bins are equally likely to beco me
overfull if they have the same size. Large errors are less frequent, so the bins near the top
of the pile tend to be larger.
7. Qne can en force a different slope by freezing the lowest marker. For large values of

the lowest marker, ° < Oc and most points are learned with no avalanches or with only
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FIGURE 5. Power.law behaviour of the distribution of the sizes of avalanches. The "size" is the
total number of backpropagation iterations which resulted from presenting a new training vector.
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FIGURE 6. The number of bins visited by an avalanche, as the size, has a power-law distribution.

short ones. The distribution of avalanche sizes shows an exponential suppression of large
events. Viceversa, with o > Oc the system eventually reaches a state where it fails to learn
the data vectors and itera tes indefinitely on overfull bins.
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FIGURE 7. The correlation between the activity oí bins decays as a power oí their separation. The
cutolf at large separations reflects the finite size oí the sandpile.
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FIGURE 8. The markers which separate squared-error ubios" organize according to a critica! slopc,
discarding edge elfects at both extremities. If the markers are írozen at values which lead to a slope
larger than this one, supercritical behaviour results. Viceversa, ií the slope is íorced to a lower value
then the system becomes subcritical and one has an exponential cutolf oí large avalanches.

5. CONCLUSIONS. ApPLlCATIONS IN ADAPTlVE SYSTEMS MODELLING?

\Ve proposed a set oí two conjectures on the role oí long-jump operators in learning. Both
are based on the hypothesis that coarse-grained /eaming operators emerge as a consequence
o/ a memory recaU mechanism whereby the presentation oí a new data vector can stir up
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previously viewed data and provoke a series of smalllearning steps. The first ansatz is that
this recall mechanism self-organizes to a critical state, so that one has a power law in the
sizes of the coarse-grained operators. The second one is that the principie of "democratic
reinforcement" operates not at the microscopic level (fine-grained learning operators) but
at the level of the coarse-grained operators, by specifying which of the previously viewed
data vectors are recalled and in what order. In this way, in the struggle to understand
neural processes we shift the focus away from the individual learning steps and towards
the emergence of structure in the coarse-grained learning operators.
We proposed a toy model centered around a critical data pile. In this model, the data

vectors are organized according to the level of error; overcrowding (many vectors with a
similar error) triggers learning iterations which propagate through the pile as "avalanches".
We described evidence that the pile self-organizes to a critical state.
One of the motivations for this work is the idea that organized avalanches have a role

to playas a long-jump operator in the learning process. In order to test this idea in our
code, we attempted training with a logistic map with a fiuctuating gain parameter:

where JL is switched at random with a probability p = 0.1%, between the values

JLl = 3.69, JL2 = 3.99.

To evaluate the usefulness of the critical learning scheme, we compared the results to a
sliding-window training scheme. In these schemes, the learning algorithm is carried out
over data vectors from the present time t to t - r, and r is chosen to minimize average
mean squared error. The results indicate that adaptation with the critical model proceeds
roughly twice as fast as with sliding windows. More specifically, the number of new data
vectors which must be presented before the mean squared error recovers half-way to the
asymptotic fixed-JLvalue is half as much as with the optimal sliding window.
What happens to an organized pile when the system is changed? Since the new training

vectors are not recognized by the neural network, the hidden neurons are found to saturate
most of the time, one way or the other. The network thus produces an output which sees
only a broad categorization of the input vector, so that many new training vectors are
assigned the same output. This leads to an accumulation of most of the new training
vectors in only a few bins, which quickly become overfull. In this way, avalanches are
initiated on the new data and proceed until the system has learned the new data sufliciently
well.
Thus, we have two of the ingredients required for a good model of adaptive systems:

system changes are detected and can be recognized through the behaviour of the system,
and they automatically trigger extensive learning with a certain bias towards the new
data. The result (a factor of two drop in the adaptation time) is not very spectacular
because the avalanches are not sufliciently organized to focus training accurately on the
new data: a better definition of "near-neighbour" is required, so that avalanches propagate
mainly on data vectors from the same system (same value of JL, in this case). re the
distance function on the space of training vectors is allowed to self-organize to improve
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the result of learning avalanches (by a "democratic reinforcement" procedure), one expects
that a training vector from one of the two systems will be recognized to be the "near-
neighbour" of other data vectors from the same system, so that a learning avalanche
will recal! training vectors only from the system currently producing the data. Work is
underway to implement a reinforcement loop which should lead to the desired structure
in the coarse-grained operators.
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