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ABSTRACT.Using the phase-space technique to analyze the dynamics of two-body classical sys.
tems introduced in a previous paper we present an alternative proof of Bertrand's theorem on the
existen ce of only two types of potential aH of whose bounded orbits are closed.

RESUMEN.Utilizando la técnica del espacio fase para analizar la dinámica de sistemas clásicos
de dos cuerpos, introducidos en un artículo anterior, presentamos una demostración alternativa
sobre la existencia de sólo dos tipos de potenciales para los cuales todas las órbitas acotadas son
cerradas.

PACS: 03.20.+i

l. INTRODUCTION

Dertrand's theorem is a topie scarcely diseussed in the classical meehanics eourses, due to
the faet that its demonstration is lengthy and diffieult to find in textbooks. The original
demonstration was 'pllblished one hllndred twenty two years ago [1]' and it is diffieult
to obtain this reference, so that the more aeeessible demonstration is that fOllnd in Ap-
pendix A of the second edition of Goldstein's textbook [2]. Another demonstration was
published in the Revista Mexicana de Física, abollt twenty years ago by Derrondo et al. 13J .
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More recently Martínez y Romero el al. [4], published an elegant demonstration of the
theorem. They showed that the existence of closed and bounded plane orbits implies the
existence of an extra constant of motion A, this quantity can be a vector or a second rank
tensor, depending on how many dynamical axis of symmetry the orbit has. The symme-
try properties of A determine the functional form of the potential prod ucing plane close
orbits. Thus, when the orbit has only one dynamical axis of symmetry, they obtained the
Newtonian potential, and when the orbit has two dynamical symmetry axis, the result is
the harmonic oscillator potential, and proved Bertrand 's theorem.

Another compact demonstration was given by V.l. Arnold in one of his books [5]. This
last demonstration was disregarded by Western physicists, maybe because the presentation
is unusual and directed to the mathematicians. However Arnold's demonstration is a rich
one, being necessary to translate it into the physicists' language, which is, in essence, the
goal of this paper.

Recently the authors introduced a phase space approach to the orbits in central force
fields [61, this is the natural scheme to study the closed orbits in central fields and the
convenient scheme to understand the alternative proof of Bertrand's theorem made by
Arnold.

The structure of the paper is as follows. In Sect. 2 we summarize the results of Ref. [6]
rederived in a slightly different language, more suitable for our purposes here and, in
Sect. 3, we present the demonstration of Bertrand's theorem using the phase space ap-
proach. Finally in Sect. 4, we comment about Arnold's ideas behind his demonstration.

2. THE PHASE SPACE FOR THE ORBITS IN CENTRAL FIELDS

We begin by showing that the energy and angular momentum conservation for central
fields allow to construct a phase space.

The energy conservation for central fields is given by

~mv2+ V(r) = E. (1)

Since the angular momentum is conserved, the particle moves in aplane and, therefore,
we can describe the motion using polar coordinates, in terms of which the particle's vector
position and velocity are given by

and the angular momentum is

¡= rx p= mr2ek = ek.

Introducing the fact that e = mr2e into Eq. (2) we have that

_ _ e_
v= Ter + -eo.

mr

(2)

(3)
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The orbit in plane polar coordinates is given by r = r(Ii), using this fact, we have that

r _ dr iJ _ dr _l !....!!:... (!)
- dli - dli mr2 - m dli r ' (4)

where we use the conservation of the angular momentum. Thus, this conservation law
implies that the velocity may be written in the form

(5)

where u = l/r. Introducing the Eq. (5) into the energy equation, given by Eq. (1), we
have that

1 (dU)2 1 (1)- - + _u2 + aV - = aE
2 dli 2 u '

(6)

where a = m/l2• This equation is formally identical to the energy equation for a particle
of unit mass, moving in one dimension under a potential

and with energy E' = aE. Then we can rewrite Eq. (6) in the form

1 (du)2"2 dli + W(u) = E'.

(7)

(8)

We introduce a phase space of coordinates u and u' = *. The portrait of an orbit in
this space consist of a continuous curve, symmetric with respect to the u-axis and crossing
it at the apsidal positions. Clearly, only the pari of this curve Iying in the half plane u > O
will be physically meaningful. For a closed path completely contained in the region u > O
the area enclosed by it is given by

A = 2f~:'u' du = 2f~n~J2(E' - W(u)) duo (9)

On the other hand, the angle between two consecutive apocenters (or pericenters) is
given by

¡um~du
toe = 2 -,.

Umin U

From Eqs. (9) and (10), it follows that

(10)

(11)



(12)
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For sorne values of the energy, the phase curve defined by Eq. (8) and the condition
u > O, is not closed. In this case we have only one apsidal point, due to the fact the
Umin = -r 1 = O, and the quantity

m~

A = 2 foum~u' du
corresponds to the area enclosed by the phase curve and the Jine u' = O, then Eq. (10)
takes on the form

rUm~ du
~e= 2 Jo -";;=2(""E=='=-""W;=(;=u""))= 2110, (13)

where 110 is the angle between the asymptotic Jine to the orbit and the Jine from the center
to the nearest point in the orbit.

3. PROOF OF BERTRAND'S THEOREM

In this section we use the phase space of orbits in central fields to prove Bertrand's theorcm,
following Arnold's ideas.
We obtain the phase portrait of the orbits deviating sJightly from a stable circular orbit.

The circular orbits are obtained when u' = O.Therefore their energy is determined by

W(uo) = E~,

where Uo denotes the extreme point for W(u), ¡.e., W'(uo) = Oand these orbits will be
stable when W"(uo) > o.

Using the form of W(u) given by Eq. (7), we have that Uo is determined by

Uo + aV'(uo) = O,

the energy for a circular orbit is given by

!u5 + aV(uo) = E~

and the stability condition impJies that

1 + aV"(uo) > O.

(14)

(15)

(16)

The phase portrait of a circular orbit is the point (uo, O).
When the energy is increased by a small amount bE in such a manner as to keep l and

therefore a constant, we have that u = Uo+ bu, E' = Eb + bE', then the phase curve is
given by

1 (dbu)2 "2' dll + W(uo + bu) = Eo + bE . (17)
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Expanding the potential up to second order in u around uo, and using the conditions
for circular orbits, we obtain that

1 (dÓU)2 12 dO + 2(óu)2[1 + aV"(uo)) = óE'. (18)

Finally, using the fact that óu = u - uo, we have that the phase portrait is an ellipse
with center in (uo, O) and semiaxes

b=

a = ';2óE',

2óE'
1+ aV"(uo)'

(19)

(20)

Now we calculate the angle between the apocenter and the consecutive pericenter, using
that

The area enclosed by the phase curve is

A- 27róE'
- ';1 + aV"{uo) ,

and from Eq. (ll) we have

11'

<ll = J2 + aV"{uol'

(21)

(22)

(23)

In general the angle <ll depends of the energy and angular momentum, ¡.e., <ll = 4>(Eo, ().
We are concerned with finding the functional form for the potential such that 4>would be
independent of these quantities. This is satisfied when

1+ aV"(uo) = c,

where e is a constant. Using Eq. (14) this condition takes the form

[
dlnV'(U)]

1 - u d = c.
u uo

(24)

We require that Eq. (24) would be valid over the entire domain of uo. Under these
circumstances this equation can be looked on as a differential equation for \'(u), it is a
simple matter to show that its solution is given by
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we assume that e # 2, in this case the orbit is bounded but not closed, thereCore we diseard
this value. For simplicity we rewrite the potential in the Col!owing way:

V(u)=ku', (25)

when e is selected as e = 2 - s > O, the inequality comes Crom the stability condition,
given by Eq. (16).
Substituting this value oC cinto Eq. (23) we have that

"cf> = ---,
~

(26)

and ~ must be a rational number iCthese perturbed orbits are to be closed. Nev-
ertheless, in order Cor a potential to al!ow bounded orbits, al! oC which are closed, it is
necessary that cf> be commensurable with ", not only Cor the orbits obtained by the aboye
perturbative method but Cor any bounded orbit.
Since cf> given by Eq. (26), is valid Cor E' close to Ea we need to find the general

conditions under which al! bounded orbits will rema in closed.
When the potential is given by Eq. (25), Uo is determined by Eq. (14) and

,-2Uo =
1

oks'
(27)

The parameters k and s which appear in Eq. (25) are not independent, as Col!ows Crom
Eq. (27). Due to the Cact that Uo > O and o > O, it is clear that ks < O, then we need to
analyze two cases: i) k > O and s < O; ii) k < O and s > O.
In the first case, V(u) goes to zero when u goes to infinity, and it goes to infinity when

u goes to zero, The energy Cor a circular orbit is given by

2
I ()uo k'Eo=Wuo =2'+0 Uo

and using Eq. (27) we have that

I 2 [1 1]Eo = Uo '2 - ~ > O, (28)

where the inequality is due to the Cact that s < O, The one dimensional potential is given
by

W(u) = !u2 + oku', (29)

Then Cor smal! values oC u, W(u) '" oku' and Cor large values W(u) '" !u2, This
behavior oC the potential and the Cact that Eo > O, implies that Cor energy E' > Ea the
orbits are always bounded. This is shown in Fig. 1.
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FIGURE 1. The semi-dolle<! (._._) curve represents the !u2 term: the dotte<! (... ) curve represents
the potential V(u) = ku' with k > O and s > O, and the solid (-) curve represents the one-
dimensional potential W(u).

Now we will analyze the limit of the phase portrait associated with bounded orbits
when the energy goes to infinity. The turning points when E » Eó, has the following
behavior:

Umin .....•.O,

!u2 ;:,: E'2 max .

(30)

(31)

To obtain the limit curve when E' goes to infinity we define the variable x = _u_, and
Urna.using the energy equation

1 (dU) 2 1 2 • I- - + -u + oku = E2 dO 2

dividing by u~ax we obtain

1 (dX) 2 1 2 .-2 • E'
2 dO + 2X + um.xokx = U~ax'

Since s < O it is clear that we can ignore the third term when E' --+ 00 and obtain

or, in terms of u, we have the phase portrait

(32)

(33)

(dU) 2- + u2 = u2 = 2E'dO max (34)
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and we conclude that the limit of the phase portrait when E' goes to infinity is a semicircle
of radius ';2E'. Then the area enclosed when E' ....•00 is given by A = 7rE', and the ¡imit
behavior of the angle ~(E') can be obtained from Eqs. (11) and (21), thus

lim ~(E') = ~8(7rE')
£'-00 2 8E'

7r

2
(35)

Therefore, from Eqs. (26) and (35), the condition for al! bounded orbits to be closed is

or S = - 2, yielding the potential

vr=s =2 (36)

(37)

which corresponds to isotropic harmonÍC oscil!ator.
Now, we analyze the second case in which k < O and s > O. Due to the stability

condition, we only need to analyze values of the parameter s in the range O< s < 2. The
one dimensional potential has the form

(38)

For large values of u, the leading term is the first one, i.e. W(u) ~ ~u2, on the other
hand for small values of u, the potential goes to zero following the second term, i. e.
W(u) ~ -alklu'. Therefore the minimum value of W(u), which determines the circular
orbit, has a negative value, this fact also follows from Eq. (28), which is negative because
s < 2. This situation is shown in Fig. 2.

Al! the bounded orbits have energy in the range O> E' > Eb and its limit is found
when E' ....•0-, like for E' = Owe have only one finite apsidal point, because Urnin •...•O
when E' ....•O, and this implies that for E' = O,we have an open orbit. Thus

lim ~(E') = 80,
E'-O

where 80 is given by Eq. (13) with E' = O, then

hum.. du
lim ~(E') = -,===",.;
E'-O O .j-2W(u)

the value of Urnax is determined by the condition

lV(urnax) = o.

Using Eqs. (38) and (40) we obtain that

,-2 1
U =--
rnax 20lkl

(39)

(40)

(41)
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FIGURE 2. The semi-dotted (.-.-) curve represents the !u' term; the dotted (... ) curve represents
the potential V(u) = ku' with k < O and 8 > O, and the salid (-) curve represents the one-
dimensional potential W(u).

and the one dimensional potential can be expressed as

Using Eq. (42) in Eq. (39) we have that

tim 4>(E') = {U
max

_¡===d=u=;;===
E'~O Jo V( u ).-2

U -- -1
Umax

If we make the Collowing change oC variable:

2_( U )2-.x - -- ,
Umax

then it is simple to show that

du 2 dx
-=---
u 2-8 X

Introducing Eqs. (44) and (45) into Eq. (43) we obtain

tim 4>(E') = _2_ {l dx 1r
£'-0 2-8JO ~ = 2-8

(42)

(43)

(44)

(45)

(46)
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This result is equal to Eq. (26), only when

V2=S = 2 - s; (47)

which is satisfied only for s = 1. Then the potential for which al! bounded orbits are closed
is

v = -Iklu = -~,
T

(48)

which is the Newtonian potential.
Therefore the only central potentials which give closed orbits are the isotropic harmonic

oscillator and the Newtonian potential. This is the statement of Bertrand's theorem.

4. CONCLUDlNG REMARKS

In Arnold's book [51, the demonstration of Bertrand's theorem can be found when the
reader solves a sequence of problems; this work saves that effort. The phase space for
orbits is behind the solution of the proposed problems. Our treatment is based on the
geometrical of the orbits in the phase space generated by the one dimensional potential
W(u). This treatment is summarized in the fol!owing steps:

i) \Ve determine the family of potentials, such that the angle for an orbit near to the
circular does not depend of uo, like Uo is a function of ( as fol!ows from Eq. (14),
then <I>is independent of the angular momentum, but depends on the potential's
parameter s.

H) The members of the family are separated in two groups, according to their behav-
ior with the energy. The first group contains the potentials which generate orbits
that are always bounded for any positive value of the energy E', greater than the
energy corresponding to the circular orbits, Eó' In the second group are included
the potentials which generate bounded orbits for negative values of E' > Eó'

iii) \Ve analyze the behavior of <I>(E') when E' > Eó'
\Vhen the first group of potentials is considered, the limit of <I>(E') when E' .....•00, is given
by 11/2. The compatibility of this result with the expression for <I>(E') near the circular
orbits, is satisfied only when s = -2, and this corresponds to the harmonic oscil!ator.
On the other hand when the second group is considered, the condition E' > Eó, means
that E' .....•O, and the evaluation of the limit of <I>(E') when E' .....•O , gives a function of
the s-parameter. Impossing the compatibility with <I>(E') given by Eq. (26) which is valid
for values of the energy near Eó, we obtain that it is only possible when s = 1, which
corresponds to the Newtonian potential.
Therefore, only for these two cases the orbits are bounded and closed for al! values of

energy and angular momentum.
Now, it is clear that the ideas behind Arnold's demonstration are based on an asymptotic

analysis for <I>(E', ().
First, he found that the potentials with the functional form given by Eq. (25), generate

bounded orbits for E", Eó and the angle <I>does not depend on the angular momentum.
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AIso for these potentials, the value of <I> neither depends on the energy, it only depends on
the s-parameter of the potentia1. For simplicity we denote this values by <I>cir(S). Clearly,
this result is only valid near the circular orbits.
Second, for the aboye potentials, the behavior of <I>(E',l) is analyzed when E' is far

away from Ea, and we found that <I>(E',l) does not depend on the angular momentum, it
only depends on the s-parameter, denoted by <I>•• ym(s), thus

lim <I>(E',l) = <I>•• ym(s).
E'>Eó

Third, Arnold introduced the condition that only the potentials which generate bounded
orbits for any value of E' and l, it is true that

<I>cir(S) = <I>•• ym(s)

This condition determines sorne s values, so that selecting those values which also pro-
duce a closed orbit. Using these arguments Arnold found the alternative proof of Bertrand's
theorem.
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