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ABSTRACT.The behavior of periodic traveling-wave solutions for three different nonlinear chains
is studie<!. In aB cases it is found that nontrivial solutions exist only for the sector of the frequency-
wavenumber plane given by w(k) ~ Wh•• monk(k). There is a "dispersion relation" (understood here
only as a functional relationship between frequency and wavenumbers) for each value ofthe average
energy of the wave. In the case of the Fermi-Pasta-Ulam chain this result can be related, through
scaling, with the existence of only one energy-independent dispersion curve for the harmonic chain.
The Iimits of small amplitude and large wavelength are also explore<!, and use<! to implement
different approximations to the traveling wave solution.
RESUMEN.En este artÍCulo estudiamos el comportamiento de las soluciones de ondas viajeras
periódicas para tres tipos de cadenas no lineales. En todos los casos encontramos que existen
soluciones no triviales únicamente para un sector del plano frecuencia-número de onda, dado
por w(k) ~ Wa<m6ni<a(k). Existe una "relación de dispersión" (que se debe entender sólo como
una relación funcional entre la frecuencia y el número de onda), para cada valor de la energía
promedio de la onda. En el caso de la cadena con potencial de Fermi-Pasta-Ulam, este resultado
se puede relacionar I por medio de un reescalamiento, con la existencia de una sola relación de
dispersión independiente de la energía "ara la cadena armónica. También se estudiaron los límites
de pequeña amplitud y número de onda muy grande, y se utilizaron para implementar diferentes
aproximaciones a la solución de onda viajera.

PAes: 63.20.Ry; 46.10.+z

1. INTROOUCTION

Vibrations in solids can be treated very successfuBy in terms of the linearly indepen-
dent modes of harmonic lattices, as it can be seen on any standard text on solid state
physics [1, 2J. This fact sometimes makes one forget that interatomic interactions are fun-
damental!y nonlinear in nature, a problem that is sometimes addressed a posteriori, with
the introduction of nonlinear corrections to harmonic Hamiltonians. In most situations,
characterized by smal! displacements of the atoms around their equilibrium locations, this
approach is quite valid and gives good agreement with experimental results [2].
However, there is a lot to be said about the actual evolntion of systems when their

fuB nonlinearity is taken into account from the beginning, becanse very often the most
interesting phenomena associated lo nonlinearity is not accessible from perturbation the-
ory. To give a simpleminded example, for a physical pendulum with polential V(lI) =
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mg/(1 - cos 8), the rotating solutions one has for E > 2mg/ cannot be obtained for any
finite Taylor expansion of the potential. For a more complex example, the "kink" solitonic
solution for a two-minimum quadratic-quartic potential has a singularity for its quartic
coupling going to zero 13].
Large part of the research efforts in vibrations on nonlinear lattices has been concerned

with their approximation by continuous media, which is valid for wavelengths much larger
than the lattice spacing. In this limit, there has been extensive study of solitons, isolated
perturbations that travel through the medium completely unchanged (a more restrictive
definition of solitons require that they survive collisions [3,4]). These solitary perturba-
tions are remarkable in that they represent a perfect -and robust- equilibrium between
the dispersive effects of the medium, and nonlinear effects that tend to give higher speed
to large amplitud e displacements, creating as a result shock waves [5]. Solitons have been
found as exact solutions for many nonlinear wave equations, and besides their undeniable
theoretical interest, are now being considered for technological applications, for instance,
as carriers for communications via nonlinear fiber optics [6]. On the other hand, there
are also sorne exact results for completely delocalized solutions for the vibrations of non-
linear media, as is the case of the so-called "cnoidal waves" for the Korteweg-de Vries
equation [7,8]. These periodic solutions have received much less attention, and even their
stability properties are not completely established 19, lO].
Compared with the continuum, there is a scarcity of results about the vibrations of

fully discrete nonlinear lattices. In fact, the only known exact traveling wave solutions are
those for the Toda chain [l1j. Recently, sorne solutions for breathing modes with compact
support were found for quartic chains 1121, and there is also sorne numerical work in wide
localized excitations, known as envelope solitons [13]' and in narrow breathers, known as
intrinsically localized modes [14-16). For extended excitations, besides those of the Toda
chain, there is sorne work in vibrational modes with special symmetries, for instance zone
boundary modes [15, 17]' where k = 'Ir. In general, much is still unknown about vibrations
in nonlinear discrete chains.
In this work we will study fully extended modes, in the form of periodic traveling waves,

in three different nonlinear chains. In Sect. 2 we present, for completeness, a short review
of the most important properties of the harmonic chain. In Sect. 3 we present a model
of an anharmonic chain with quartic potential, which was first treated by E. Fermi, J.
Pasta and S. Ulam [191 in 1955. In Sect. 4 we show how traveling-wave solutions can be
obtained from this model and the algorithm used for that purpose. \Ve also discuss here the
numerical results and the small amplitude and continuous limits. The Morse and Lennard-
Jones potentials are discussed in Sect. 5 in an analogous way as it is done for the quartic
potential model. In Sect. 6 we present our conclusions and discuss sorne open questions.

2. REVIEW OF THE HARMONIC CHAIN

The simplest vibrational behavior for a discrete chain is given by the Hamiltonian

2

H =L fn +L ~(Un+I - un)2,
n m n
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where un(t) are the displacements around the equilibrium positions of the particles in the
chain. Equilibrium positions for successive particles are separated by a distance a, which
we will take to be 1, fixing in this way the distance scale. We will also assume an infinite
number of particles, so that boundary conditions can be ignored.
Prom this Hamiltonian one gets the equations of motion

Pn =

Ün =

aH
- Oun = "(Un+! - Un) - "(Un - un-d,

aH Pn
=

aPn m'

which combine to give a system of second order coupled differential equations

(1)

with 112 = le/m and n running over al! integers. It is convenient at this moment to scale
out the frequency parameter 11 by changing t -+ t/l1, which is equivalent to setting the
time units so that 11 = 1. Under this transformations, the energy of the chain becomes

Due to the linearity of the equations of motion (1), they can be solved as a combination
of elementary modes, where a mode is a solution of the form

with e, k, and w constants. Upon replacing this solution in the differential equation one
gets a relationship between k and w

(2)

which is the wel! known dispersion relation for the harmonic chain, a curve in the fre-
quency-wavenumber planeo One usual!y confines k to -tr < k :5 tr (first Brillouin zone).
The average energy per particle associated to this mode is

so al! modes al!ow for any given value of energy, and the only restriction in the mode
is the one imposed by the dispersion relation. If, for sorne value of the wavelength, we
plotted energy VS. frequency, we will just get a vertical line at the correct value of w, as
given by the dispersion relation (2). We may choose to interpret this fact as an example
of degeneracy, where a physical state al!ows for any value for the energy, irrespective of
other parameters.
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3. QUARTICPOTENTIAL:THE FER~II-PASTA-ULAMCHAIN

In this section we review the so caBed FPU system, a model that was investigated numer-
icaBy at the beginning of the computer age [191. It was expected to observe the relaxation
to equipartition of energy among the linear normal modes of the system, but the numer-
ical simulation actuaBy showed that the energy of the initially excited mode was shared
only with the first few modes. Even more surprising was the fact that almost all of the
energy f10wsback to the initial mode at longer times. Later investigations revealed that
energy equipartition can be reached, but at sufliciently high energies, where a transition
to chaotic behavior is observed in the system [17,181.
The Hamiltonian for this model is

HFPU = L: :~ +L:~(Un+l - un)2 +L:q(Un+l - un)4,
n n n

where the potential term can stand on its own or be taken to be the first two terms
of the expansion for sorne nonlinear potential without cubic terms. In order to have the
Hamiltonian bounded from below, we require /3 > O. However, " is allowed to have any
real value, which for " < O gives us potentials with two minima, which in turn can give
rise to symmetry breaking rest states and topological solitons, due to the existence of
two different minima for the energy [31. Here we will keep " > O and concentrate only in
extended solutions.
The equations of motion for the system are now

Ün = (,,/m)(un+1 - un) - (,,/m)(un - un_¡)

+ (/3/m)(un+! - un)3 - (/3/m)(un - un_¡)3,

which because of their nonlinearity can no longer be solved as a superposition of elementary
modcs. The two parameters here can be scaled out with the replacements

t - Vm/"t = t/r!,
so that time is measured now in units of 1/r! and the amplitude of the oscillations in units
of .jí<ffJ (notice that this implies the use of different units for the interparticle distance
and the amplitude of oscillations). The resulting equation of motion is the simpler one

(3)

This scaling has very important consequences, since its application to the energy results
in the transformation

(4)

from where we scc that, if we havc a traveling wave solution for the scaled Eqs. (3), and
try to take /3 - O (approach the limit of the harmonic chain), we get divcrging cnergies.
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4. PERJODIC TRAVELING-WAVE SOLUTIONS

Of all the possible solutions to the equations of motion (3) we will concentrate in a very
reduced seto Let us consider only those solutions that obey

Un+l(t) = un(t - l/v),

where v is a constant velocity (remember that we took the distance between particles to be
1). This makes the solutions into traveling waves of the form un(t) = u(t - n/v). Besides
this, we will also require that the solutions be periodic:

u(t) = u(t + T).

These two conditions are very restrictive, and allow us to find unique solutions to
Eqs. (3). These periodic traveling waves have also associated to them a frequency w =
2rr/T and a wavenumber k = w/v, allowing us to introduce the concept of energy-
dependent "dispersion relations", understood here only as the functional relationship
between frequency and wavenumber for some given value of energy. It should be clear
that there is no relation between this and the actual dispersion of a wavepacket in a linear
chain, since these traveling waves cannot be superposed.

Introducing the definition to == l/v, the equations of motion now become

ü(t) = u(t + to) + u(t - to) - 2u(t)

+ (u(t + to) - U(t))3 - (u(t) - u(t - tO))3. (5)

This is now a delayed-advanced ordinary differential equation, with an extra condition
of periodicity. These equations are invariant with respect to the addition of a constant,
u(t) -> u(t) + C. We will fix this constant by making the average value of u(t) equal to
zero. Since the potential is even in u, and Eq. (5) is invariant under an inversion in the
time direction, we can use the symmetry conditions u(t) = u(T /2 - t) and u( -t) = -u(t).
This last two conditions are quite general and do not restrict the problem more than the
periodicity condition does.

4.1. Algorithm for numerical solution

The algorithm for the solution is based in a finite difference method [201 where the equation
of motion (5), written as

ü(t) = F(u(t + to),u(t - to),u(t)),

is discretized on a mesh with timestep !lt « T, such that t -> j!lt, with j integer,
and where to -> jo!lt and T -> M !lt. The mesh is finite amI contains M points. For
convenience, we will denote from now on u(t) = u(j!lt) == uj. The second derivative can
be approximated to order (!lt)2 by

.. 2 j _ uj+1 + uj-1 - 2uj 2
u(t) -> D (u ) = (!lt)2 + O(!lt) ,
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or, to next order, by

. _uj+2 + 16uj+! - 30uj + 16uj-1 - Uj-2 4
Ü(t) -+ D2(uJ

) == 12(At)2 + O(At) .

The force term is replaced by

F (u(t + to), u(t - to), u(t)) = F (uj+jo, uj-jo, uj) ,

and we impose boundary conditions uO = uM = O, and periodicity by uJ+M = uj• The
two symmetries we have discussed al!ow us to solve only for M /4 points in the mesh. The
equations to solve become now

j = 1,2 ... M,

and the solution is achieved with a Newton-Raphson multivariable routine. The quality of
the results is checked by increasing the number of points in the mesh, and by comparing
the e!fect of using second or fourth order approximations in the derivative termo In al!
numerical work presented here, these checks show only negligible changes in the solutions.

4.2. Numerical results

\Ve have found periodic traveling wave solutions for the FPU chain. Their most important
characteristic is that they exist only for values of w and k such that w(k) > WJ¡(k) ==
2sin(k/2), and they are therefore "supersonic waves". The harmonic dispersion relation
acts as a boundary in the k-w plane between nontrivial solutions and zero solutions. \Vhen
w is close to, but aboye the harmonic value, the amplitude of the solutions is smal! and
their shapes are almost sinusoidal (Fig. 1). As we raise w away from WJ¡, or approach
k = Oor k = 2"., for a given w, the amplitude grows and the shape becomes closer to
that of a rectangular step (Fig. 2). Notice that we choose to plot the amplitud e of the
wave vs. time. \Ve could have chosen to use the lattlce site coordinate n instead of the
time; however, remember that the solutions are traveling waves which obey the relation
un(t) = u(t - n/v), so it makes no di!ference to use t or n, apart from the fact that using
n as coordinate would produce a discrete graph.
\Ve calculate the average energy per particle using

1 (T [u2(t) ]E = T Jo dt -2- + V(u(t), u(t + to), u(t - to)) , (6)

and obtain energy VS. w plots as the one shown in shown in Fig. 3, and energy vs. k plots
as that of in Fig. 4. Notice that the energy curve for nontrivial solutions starts from WJ¡

with nonzero slope. In Fig. 5 we show the energy surface in the k = w plane, which shows
very clearly the absence of periodic traveling wave solutions for w(k) < WJ¡(k). For any
given nonzero value of the energy, the corresponding transversal cut of this surface gives
the "dispersion relation", j.e., the allowed functional relationship between w and k. The
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o 1
Time
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FIGURE 1. Waveforms for 4 differenl periodic lraveling wave solulions for lhe FPU chain. Here
we have fixed w = 2.4, and lhe values of k are, in increasing order of magnilude, 1.2 x 11', 1.4 x 11',

1.6 x 11', and 1.8 x 11'. The differenlial equalion (5) was discrelized on a mesh of 480 poinls.
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FIGURE 2. Waveforms for 4 differenl periodic lraveling wave solnlions for lhe FPU chain. Here we
have fixed k = 1.0, and lhe values of w are, in increasing order of magnilude, 1.5,2.3,3.1, and 3.9.
The differenlial equalion (5) was discrelized on a mesh of 480 poinls.

harmonic dispersion curve corresponds to a cut taken at E = 0+. These curves also seem
to converge at w = O for k _ O and k - 211', meaning that energy diverges at these two
values of k.

Prom this surface it is also quite clear how the scaling (4) of the Hamiltonian selects
the harmonic curve as f3 _ O. In this limit, zero energy remains zero (no solutions), and
any solutions with finite energy see their energy diverge. So, as we make f3 close to zero,
onlya narrow band of states whose "dispersion relation" (their value of w for a given k)
is close to that given by the harmonic curve will retain moderate values for their energies,
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FIGURE 3. Energy per partide as a function of frequency for the FPU chain. Here k = 2.5. The
squares correspond to the solutions obtained using finite differences, and the continuous line to
the approximation given by the optimal amplitude sine wave, Eqs. (9) and (lO).

4 5
Wavenumber

6

FIGURE 4. Energy per partide as a (unction of wavenumber for the FPU chain. Here w = 2.4.
The squares correspond to the solutions obtained using finite differences, and the continuous line
to the approximation given by the optimal amplitude sine wave. Eqs. (9) and (lO). This energy
diverges as k approaches Oor 2".

and for the limit {3 = O. only the sta tes sitting just aboye the harmonic curve, having
energies infinitesimally close to zero, will have nonzero finite energies.

4.3. Sma/l amplitude /imit

From the numerical results shown in Figs. 1 and 2 it is apparent that the small amplitude
oscillalions of the chain fit almost perfectly a sinusoidal shape, as they should. This is lo
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FERMI.PASTA-ULAM

Frequency

Wavenumber

FIGURE5. Energy surface for lhe FPU chain, as oblained from lhe finile differences melhod. The
regions of k close lo O and " are nol giyen because lhe numerica! algorilhms slarl lo faH in lhose
seclors. The wayenumber goes from O lo 2" and lhe frequency from O lo 4.

be expecled from the differential equation, and is just a numerical realiza tia n of the smal!
oscil!ation approach that is customarily used as a first approximation to the dynamics of
arbitrary potentials [21]. An interesting question to ask here is how clase to the actual
solution a simple sinusoidal wave can be. For this purpose we take the approximated
solution u(t) '" A sin(wt), and consider the normalized squared error in the differential
equation, defined by

Err = ¡[dt [ü - F(u(t), u(t + to), u(t
¡[dt u2(t)

(7)

In practice, what we do here is lo fit a lowest order Fourier expansion for the actual tray-
eling wave. \Ve use the normalized error instead of the lotal error given by the numerator
in Eq. (7) in order to avoid the A = O trivial minimum. The error we obtain is a function
of A2, and can be written as

where the different coefficients are defined by

X = w2 - 4sin2(k/2) = w2 - wr.,
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C2 = -~w~, (8)

C4 = kw~ (!w~ - 3w~ + 9) .
When we minimize this error with respect to A2 we get

(9)

Therefore, one gets here that there is a real value for the amplitude A only if w2 ~ w~
(note that the expression in the denominator is a positive definite quadratic form), and
that amplitud e goes to zero as w ---> W¡, from aboye. The energy associated to this minimum
is

A2(w, k) (2 2 3 2 4)E(w,k) = 4 W+Wh+sA(W,k)Wh' (10)

This energy diverges as we take k ---> Oor k ---> 2rr, where W¡, ---> O, for al! W > W¡,. This effect
is also quite clear in the numerical work, where solutions start to grow out of numerical
reach for vallles of k near these two limits. Even though the actual wavefunctions become
very non-sinusoidal as we approach k = O or k = rr, the approximated energy (10) gives
a very good agreement with the actual energy of the chain, for the whole k range (see
Fig. 4). Notice also that, for W close to Wh, A2 "" W - W¡" and therefore E "" W - W¡"

explaining the linear behavior found for E for smal! amplitudes.

4.4. Continuous limit

For traveling waves with wavelength much larger than the lattice spacing, a continuous
approximation can be made. Assuming the change in the wavefunctions from site to site
is smal!, we can take Un(t) into u(l, x), where x == na, and then use the approximations

_ _ 8u(t,x) a282u(l,x) a3aJu(t,x)
Udl(I)=u(l,x:l:a)_u(l,x):l:a 8x + 2 8x2 :l:6 8x3 + .... (11)

Rere we are, for the moment being, writing explicitly the lattice constant as a. We wil!
take a = 1 later on. Plllgging this approximations in the equations of motion (3), keeping
terms up to fourth order, we get a partial differential equation [22)

plus terms of order (al >.)6. If we want to restrict ourselves to traveling waves u(x,l) =
u(x:l: vi), we obtain final!y an ordinary differential equation (taking a = 1)

u"" + 12 [1 - v2 + 3(u')2] u" = O, (12)
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where the primes denote deriva ti ves with respect to the argument z '" x:l:vt; if we integrate
with respect to it we get

u'" + 12[1 - v2 + (u')2]U' + a = O.

Multiplying by u" and performing another integration we obtain,

(13)

For the integration of this equation we want to use the initial conditions u(O) = u'(O) =
u"'(O) = O, fixing an arbitrary initial value for u"(O). Prom he re we get a = Oand b = u"(O).
This choice assumes that we start from a minimum of the function, which we can set to
be zero beca use of the independence of the equations with respect to u, and that we are
explicitly using the symmetries of the potential to set u'" = O at that point.

Putting y = u', we arrive at the following equation:

which is an elliptic integral. The solutions can be expressed in terms of Jacobi elliptic
functions [231, and correspond to the "cnoidal" solutions for the continuous limit of the
FPU chain, usually expressed in terms of the modified Korteweg-de Vries equation [4, IOJ.
For our purposes here, it is more practical to perform a numerical integration of Eq. (13).

Results of the numerical integration of this differential equation are shown iu Fig. 6.
They are only qualitatively correct, probably because the approximations involved in
going to a continuous description are too strong for the examples we are giving here.
The integrated functions are periodic, have the expected symmetries, and their shapes
correspond to the smoothed step forms of the actual solution, becoming more step-like as
k is reduced. However, the amplitude of the solutions does not change much with changes
in u"(O), and therefore the traveling wave and its assoclated energy are quantitatively
wrong. \Ve have verified that this difficulty remains even as we adjust w to values close to
Wh, where the amplitude of the wave is expected to go to zero.

5. MORSE AND LENNARD-JONES POTENTIALS

In the modeling of real physical systems, one needs to have potentials that go to zero
at infinity, since interparticle forces acting at macroscopic and atomic leve! always decay
at long distances. In the other hand, one usually wants these potentials to grow, even to
diverge, as the interparticle distance decreases. Two important and often used potentials
with these characteristics are the r\lorse potential
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FIGURE6. Waveformsfor 4 differentperiodic travelingwavesolutions for the FPU chain, obtained
solving the differential equation (13).

and the Lennard-Jones (LJ) potential

where R denotes the interparticle distance and Ro is a distance scale para meter. Morse
potentials are often used in molecular physics and chemistry for modeling interatomic
interactions, while the LJ potential, which can be shown to originate with induced dipole-
dipole interaction, is common in the simulation of liquids [24,251. This later potential
diverges at R = 0, while Morse potential remains finite for aH finite R.
In order to compare with the results obtained for the FPU system, we need first to scale

the parameter in these two potentials so that their minima be located at R = 1 and the
quadratic and quartic ter m of an expansion around this point agree with the two terms
in the FPU model. For the Morse potential this means that we will require

Expanding up to fourth order in R - 1 we find

so that, comparing with the two terms for the scaled FPU potential, and taking m = 1
for convenience, one gets that b = ,j6ft and VD = 7/12.
For the LJ potential, the requirement that the equilibrium distance be one makes Ro =

(1/2)1/6, and the fixing the quadratic term in the expansion to be the same as that oC
the FPU potential means that Vo should be 1/36. Since we introduced the LJ potential
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with only two parameters, we do not get to fix the coefficient of the quartic term in the
expansiono It should be noticed that, while a power-series expansion of the Morse potential
around its minimum is convergent for al! R, the LJ potential has zero convergence radius
around its minimum, and therefore the expansions one makes in order to fix the coefficients
are only formal. This fact does not seem to affect much the results for the numerical
integrations.
Using now these normalized expressions as interparticle potentials for an infinite linear

chain with rest lattice spacing equal to one, one gets the Hamiltonians

and

p~ 1[ 1 1]HLJ = - + - -~ 2 ~ 36 2(Un+l - Un + 1}12 (Un+l - Un + 1)6 .

The work done for these two nonlinear chains reproduces the steps already taken for the
FPU chain, except that the equations of motion are not symmetric under the interchange
U --+ -u, unless we reverse the n indexing of the chain. Therefore we no longer have the
symmetry u(t) = u(T/2 - t). This means that we need to solve now for half a period,
instead ofT/4 as we did in the case of FPU. Therefore, this limiting solutions have a half-
wavelenght symmetry, in contrast to the FPU solutions which exhibit a quarter-wavelenght
symmetry.
The behavior of the Morse and LJ systems for w close to the harmonic value Wh is, as

expected, analogous to the FPU system, that is, we get smal! amplitude solutions that are
almost sinusoidal. However, as we raise the w value, the shape of the solutions becomes
closer to that of a saw-tooth wave, as we see in Figs. 7 and 8. Note that this solutions are
essential!y the same, except for the greater amplitude in the Morse case. This reílects the
fact that this potentials have the same qualitative behavior. Again, nontrivial solutions
are only found for w(k) > Wh(k); this can be seen in Figs. 9 and 10, and in the energy
surface plot in Fig. 11.

5.1. Small amplitude limit
Assuming as before a simple u(t) = Asin(wt) solution for the dynamics of either the LJ
or the Morse chains, one can implement a numerical minimization of the normalized error
given by Eq. (7), in order to find the best fitting sinusoidal approximation for periodic
traveling waves. Jt was found however that for these potentials this procedure does not
yield the correct behavior for A when w --+ Wh, except for k = 71'. To understand where the
problem lies, one needs to expand any of these chain potentials up to fourth order terms
in the form
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FIGURE 7. Waveforms for 4 different periodic traveling wave solutions for the LJ chain. Here we
have fixed w = 2.4, and the values of k are, in increasing order of amplitude, 1.2 x >r, 1.4 x >r,
1.6 x >r, and 1.8 x >r. The corresponding differential equation was discretized on a mesh of 400
points.
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FIGURE 8. Waveforms for 4 different periodic traveling wave solutions for the Morse chain. Here
we have fixed k = LO, and the values oí w are, in increasing arder of amplitude, 1.5,2.3,3.1, and
3.9. The corresponding differential equation was discretized on a mesh of 400 points.

where we have as before scaled out the coefficients of the quadratie and quartic terms,
and are left with only one parameter. For this cxpandcd potential, the normalized error
is given by

Err = C4A4 + XC2A2 + tW2 A2 + X2,

where X, C4 and C2 are as given in Eq. (8), and W2 is givcn by

W2 = Cjw~(4w~ - w~).
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FIGURE 9. Energy per partide as a funetion of frequeney for the LJ ehain. Here k = 2.5. The
solutions were obtained using the finite differenee approach.
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FIGURE 10. Energy per partide as a funetion of wavenumber for the Morse ehain. Here w = 2.4.
The solutions were obtained using the finite differenee approach.

Minimization with respeet to A2 yields

2 12(w2 - w~) - 2W2 /w~
A = W4[w4 _ 6w2 + 18] ,

h h h

whieh is the same result obtained for FPU in Eq. (9), exeept for the extra ter m eontaining
W2, which is proportional to CS. This means that we will obtain real values for the
amplitude A if
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FIGURE 1 J. Energy surface for lhe Morse chain, as oblained fram lhe finile differences melhod.
As befare, regions of k clase lo O and 11' are nol given since lhey become numerically ou1of reach.
The wavenumber goes fram O lo 211' and lhe frequency fram O lo 4.

and lherefore, sinusoidal solutions lhal minimize the error do nol start righl on the har-
monic curve. However, we know lhat nonlrivial solulions do slart exactly there, i.e., for
w > w¡" and we have lo conclude thal lhe parlicular form of the small amplitude limil
we have implemenled here does not work for pOlenlials with cubic terms. 11 should be
noticed lhal for lhe special cases k = n1l', one gels IV = O, and so al these values of k lhe
sinusoidal approximations appear at lhe harmonic curve.

5.2. Continuous ¡imit

The limit of long wavelenght for lhe LJ pOlenlial,

VLJ ",I[ I
= - 7 36 2(Un+I - Un + 1)12

has been investigaled by making lhe same expansion as in Eq. (11), lhat is, we expaud
Un,,1 up to fourth arder. Notice thal a fully consistent expansion of lhis potential would
also involve a polynomial expansion of lhe rational expressions. \Vhat we do IIPre is onl)'
a partial approximation, keeping the rational forms; this allows us to cousider cas,'s of
large displacements without changiug the as)'mptolic heha\'ior of lhe potentia!' 11 can he
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FIGURE 12. Waveforms for 4 di!ferent periodic traveling wave solutions for the LJ chain, obtained
solving the di!ferential equation (14).

argued that large displacements (Un+l very di!ferent from Un) faíl anyway to fulfill the
conditions assumed for the long wavelength expansiono This is true, but for intermediate
cases it is worthwhíle to verify how good this particular approximation can be. Using this
expansion the following equation is obtained

where

2" 1[ 1 1
v u + 6 U + g)13 - -U-+-g)-7 - 1 + 1 ] = O,

U - g)13 U - g)7
(14)

f -_u' + 61u'" + 1, 1" 1""9 = 2'u + 24 u ,

come from the Taylor expansion of un,H. In order to solve this equation numerically, we
need to rewrite it as a system of four first order equations. Defining UI == u', U2 == u", and
U3 == u"', we get for u"" the following expression:

m, U"

6v2u2 = (UI + u2 + u3 + ~ + 1)-13 _ (UI + U2 + u3 + ~ + 1)-7
2 6 24 2 6 24
U U UW U U u@

_ (UI - 2. + -.2 __ + 1)-13 + (UI _ 2. + -.2 __ + 1)-7.
2 6 24 2 6 24

This equation must be solved self-consistently in each step. This is not a problem since
we have verified that it has a unique root for u"". The system is solved using an adaptive
stepsize fourth-order Runge-Kutta method, and the initial conditions used were u(O) =
u'(O) = O, u"(O) i' O, and u"'(O) i' O. Here u"(O) is used as the independent control
parameter, and the value of u'" (O) is adjusted to obtain a solution with zero mean slope,
so the solutions are actually periodic.
Several solutions are shown in Fig. 12. As in the case of the FPU system, this are only

qualitatively correct, so we think that a di!ferent scheme must be used for the investigation
in the continuous limito
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6. CONCLUSIONS AND FINAL COMMENTS

\Ve have studied periodic traveling wave solutions for three nonlinear chains: quartic poten-
tial (also known as the FPU ¡3-model), Lennard-Jones potential and the Morse potentia1.
The case for the quartic potentia! was solved numerically, although analytic solutions can
be expressed in terms of Jacobi elliptic functions for the small amplitude approximation.
Solutions were found only for values of k and w such that w(k) ;:::w¡,(k), ¡.e., aboye the
harmonic dispersion curve. This is a similar situation with a spring subjected to a "hard"
return force: the frequency is shifted upwards [5].Although this is well known for a single
oscillator, it is not an obvious result for a chain. The solutions are small-amplitude, almost
sinusoidal functions when w is close to w¡" but tend to a rectangular step as we raise w
aboye from the harmonic value or approach k = O or k = 21r (Figs. 1 and 2). The energy
per particle was found [see Eq. (6)1 as a function of w and k, confirming that there are no
solutions below' the harmonic dispersion curve.

As a test of the usual sinusoidal solution for the small amplitude Iimit, we introduced an
approximate solution u(t) = A sin(wt), and varied A to minimize the error with respect to
the actual differential equation. Prom this approach we get an analytic confirmation that
real values for the amplitude A exist only if w2 ;::: w~, as it was seen from the numerical
results.
In the continuous Iimit (for wavelenghts much greater than the lattice constant), we

used an approximate solution by taking the four leading terms in the Taylor expansion
of the solutions UnH (t), and got a differential equation which was numerically solved
assuming traveling wave solutions. The solutions obtained are correct only qualitatively.
The Morse and Lennard-Jones Potentials were solved in an analogous way as we did

for the FPU case. \Ve found the same kind of behavior except that the Iimiting solu-
tions are of the form of a saw-tooth wave. The small amplitude Iimit did not gave correct
results when applied to these systems. \Ve show how the presence of the cubic term
in the potential is responsible for this failure and a different approach must be imple-
mented.
FinallY' the continuous Iimit for the Lennard-Joues potential was investigated giving

as before only qualitative results, so a careful examination of the approximations made is
necessary in a future work in order to get better results in this limit.

ACKNOWLEDGEMENTS

\Ve wish to thank Dr. Romeo de Coss for his valuable comments on the manuscript. \Ve
also acknowledge the financial support from CONACyT, under grant 4178-E9405.

REFERENCES

1. N.\V. Ashcroft and N.D. Mermin, Salid State PhYBics, Holt. Reinhart, and \Vinston. Philadei.
phia (1976), Chapo30.

2. G.P. Srivastava, Tite Pltysics o/ Pltonons, AdalllHilgcr,Dristol, (1990).
3. R. Rajaraman, Solitons and lnstantons, North-Holland,AlIlstcrdalll,(1982).



896 MANUEL RODRÍGUEZ-ACHACH AND GABRIEL PÉREZ

4. N.J. Zabusky and M.D. Kruskal, Phys. Rev. Let!. 15 (1965) 240.
5. LC. Main, Vibrations and Waves in Physics, Cambridge University Press, Cambridge, (1993).
6. E. Desurvire, Physics Today, 47 (1994) 20.
7. D.J. Korteweg and C. de Vries, Phy/. Mag. 39 (1895) 422.
8. P.C. Drazin and R.S. Jonhson, Solitons: an introduction, Cambridge University Press, (1989).
9. P.C.Drazin, Quar/. J. Mech. Appl. Math. 30 (1977) 91.
10. C.F. Driscol and T.M.O'Neil, Phys. Rev. Lett. 37 (1976) 69.
11. M. Toda, J. Phys. Soco Jpn. 22 (1967) 431; see also M. Toda, Theory o/ non/inear lattices,

Solid State Science, Vol. 20, Springer, Berlin (1981).
12. Y.S. Kirchar, Phys. Rev. E48 (1993) R43.
13. R. Dusi and M. Wagner, Phys. Rev. B51 (1995) 15847.
14. A.J. Sievers and S.Takeno, Phys.Rev.Lett. 61 (1988) 970.
15. K.W. Sandusky and J.B. Page, Phys. Rev. B50 (1994) 866.
16. T. Rosseler and J.B. Page, Phys. Lett. A204 (1995) 418.
17. P. Poggi and S. Ruffo, preprint chao-dyn/9510017 at Los Alamos e-print repository xyz

(http://xyz.lanl.gov) (1995).
18. J. Ford, Phys. Rep. 213 (1992) 271.
19. E. Fermi, J. Pasta and S. Ulam, Los Alamos Scientific report, (1955) (unpublished). Also in

The col/ected papers o/ Enrico Fermi, Vol. 2, pp. 977-989, University oí Chicago Press, Chicago
(1965).

20. W.H. Press et al., Numerica/ Recipes in Fortran: The Art o/ Scientific Computing, Cambridge
University Press, New York (1992).

21. Coldstein, C/assica/ Mechanics, Addison Wesley, New York, (1980).
22. A.J. Lichtenberg and M.A. Lieberman, Regular and Chaotic Dynamics, Springer-Verlag, New

York, (1992).
23. M. Abramowitz and L Stegun, Handbook o/ Mathematieal F\mctions, Dover, New York (1972).
24. W.W. Wood and F.R. Parker, J. Chem. Phys. 27 (1957) 720.
25. L. Verlet, Phys. Rev. 159 (1967) 98.

http://xyz.lanl.gov

