
Re.;.la Mexicana de Fí.lica 42, No. 6 (1996) 911-923

Localized orbitals for molecular calculations
A. RAMÍREZ-SOLÍS. AND RAMÓN HERNÁNDEZ-LAMONEDA
Facultad de Ciencias, Universidad Autónoma de More/os

62210 Cuemavaca, More/os, México
Recibido el 10 de abril de 1996; aceptado el la de junio de 1996

ABSTRACT.We present an overview of the existing localization algorithms which have been or are
being used to perform quantum chemical molecular calculations that take into account electronic
correlation effects. The natural distinction between intrinsic and extrinsic localization methods
is explained and developed. The advantages and drawbacks of specific methods are discussed in
terms of CPU time required to obtain the (in most cases) almost identical localized molecular
orbitals. Finally, we show using a specific example of a second order multireference perturbational
calculation, the enormous gain in computer time that the use of localized molecular orbitals can
bring. We also show explicitly the "concentration" of second order Miiller-Plesset correlation energy
into a much smaller perturbed space.

RESUMEN.Se presenta una revisión de los métodos de localización de orbitales usados para realizar
cálculos moleculares químico-cuánticos que toman en cuenta efectos de correlación electrónica. La
distinción natural entre métodos de localización intrínsecos y extrínsecos es explicada y desarrollada
en detalle. Las ventajas y desventajas de métodos específicos son discutidas comparativamente en
términos del tiempo de CPU requerido para obtener, en la mayoría de los casos, los orbitales locali-
zados prácticamente idénticos. Finalmente mostramos, usando un ejemplo específico de un cálculo
perturbativo multirreferencial de segundo orden, la enorme ganancia en tiempo de máquina que
el uso adecuado de orbitales localizados puede proporcionar respecto al uso de orbitales canónicos
SCF o CAS-SCF. También se hace explícita la gran "concentración" de energía de correlación de
segundo orden M611er-Plessct en un número mucho menor de determinantes.

PACS: 71.10.+x

l. INTRODUCTlON

Two opposite views appear when one considers the molecular aspect of matter. The first
one is the delocalized picture which has its natural roots in the concept of electronic
configurations in atoms. This concept has been confirmed by the surprisingly accurate
results of atomic spectroscopy.

The idea oí electronic configurations in atoms leads naturally to molecular delocaliza-
tion. This stems Írom the Íact that, since the selection rules that take into account the
molecular symmetry play the main role in molecular spectroscopy, it is straightforward
to imagine a set oí closed shells, filled with paired electrons, which reflect the symmetry
properties oí the nuclear skeleton.

The unescapable conclusion is that these electronic shells will thereÍore be delocalized
among thc equivalent atoms in a given molecule .
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On the other side, the localized approach has its origin in pure and applied chemical
experience. This can immediately be seen in the deep meaning of chemical formulae.
These formulae implicitly suggest the existence of couples of localized electrons since
these electrons should, in general, remain close to the nuclei between which they form a
chemical bond.
At this point there is no reason to choose one point of view or the opposite, since

each approach can help to understand many phenomena of rather different nature. For in-
stance, the delocalized approach can successfully explain molecular ionization or excitation
processes, while the localized view is better suited to deal with real chemical problems.
Nevertheless, these localized and delocalized views can be used as starting points of

two series which converge to the same resulto We see this idea clearly illustrated in the
mathematical equivalen ce of two molecular waye functions described by Slater determi-
nants, the first one built using delocalized molecular orbitals (MO) and the second one
built using localized MOs which have been obtained from the.delocalized set by a unitary
transformation; this means that the localized and the delocalized MOs are the same, up
to a phase factor.
Here it should be said that the mathematical equiyalence of the previously mentioned

molecular wave functions has deeper implications; the electronic density matrices calcu-
lated using one set of MO or the other are exactly the same. For this reason all the
molecular properties which can be calculated using these density matrices will be the
same, regardless of whether the localized or the delocalized set of MOs has been used.
It is yery interesting to note that, in spite of the rather common idea that it was

through the delocalized picture that the first quantum chemical calculations were made,
it was through the localized approach that they were performed. Millié el al. [1] made an
interesting historic review which showed that the first molecular wave functions were built
using bielectronic functions centered on only one or two atoms 121.
The generalized use of delocalized MOs did not a appear until after their application

to sorne specific problems such as the aromatic Hückel compounds or the successful study
of excited molecular states by Mulliken.
Without a doubt, the work of Pauling had a great impact on the theoretical milieu.

Electronic delocalization ceased to be a mere curiosity which appeared as a particular
property of some specific molecules which had "moving electrons" and became a universal
feature of all electronic systems bound to a nuclear framework.
In the 60's, the application of the Hiickel theory to all problems dealing with valence

electrons as well as the discovery of the Woodward-Hoffman rules for concerted reactions
are clear examples of this general delocalized approach by theoreticians.
Very soon after the formulation of the molecular orbital theory, one of its proponents,

Coulson, noticed that an N-electronic waye function made using a set of delocalized MO
could be analyzed in terms of quasi-Iocalized MO aud viceversa without any effect on the
global eleclronic slruclure of lhe moleeule. 11,' earefully looked al a few examples 13] and
showed tbal the delocalized MO set of Mulliken was equivalent lo the Hund localized set
except for the effect of the orthogonalization tails.
Some years later, the malhemalical proof of Coulson\ idea was giv<'n by Lennard-Jones

and two of his students, lIall and Pople [4-6]. They showed that lhe occupied 1\10 which
are solutions of the closed sl,,'ll Harlrcc-Fock equalions are dctcrmincd up lo a unilary
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transformation. This result is of utmost importan ce since, it yields the mathematical basis
upon which one can propose the relocalization theories which aim at recovering the local
character of the molecular orbitals using the previously mentioned transformation.

In this way we can transform the canonical molecular orbitals (those which satisfy the
Hartree-Fock equations) to obtain an equivalent set of localized MO, in the sense that
these localized MO have their largest coefficients corresponding to the orbitals centered
on two chemically bound atoms (bonds) or centered on a single atom (lone pairs).

The concept of localized MO equivalent to the delocalized canonical MO set has also
been extended to multiconfigurational self-consistent field (SCF) methods [71 and to con-
figuration interaction (CI) algorithms [8].
Once we know that is possible to obtain a unitary transformation that allows one to

find equivalent localized MO starting from the delocalized MO set (canonical or other),
it should be said that there are great many ways of delermining the precise form of this
transformation.
Ruedenberg [9] has classified the resulting localization methods in two categories, ac-

cording to the nature of the unitary transformalion used in each method: extrinsic and
intrinsic algorithms.

2. EXTRINSIC LOCALIZATION METIIODS

In this section we do not attempt lo give a full accounl of all lhe exisling extrinsic local-
ization methods, since there is an enormous number of possible choices. \Ve will further
impose another constraint in this sectiou since we will only consider methods which use
molecular orbilals as developed in the linear combinalion of alomic orbitals (LCAO) ap-
proach, lhal is, orbitals which can be writlen as

N

¡iPi) =LCi'lx~).
~

(1)

The extension of these localization algorithms towards 1Il0regeneral MO, such as numeric
Hartree-Fock orbitals, is not straightforward at al!.

2.1. Truncation o/ deJoca/ization tai/s

This seems to be the most natural method when constructing one (or many) MO centered
on one atolll or on a particular domain of the eutire molecule.

Given a set of delocalized MO, it is possible lo construct a series of unitary transfor-
mations such as

(
cos O
- sin O

sin O)
cos B 1

where the first one is determined by au angle O which insures that one of the molecular
orbitals does not haye any componenls oulside a certain ullmber of aloms, generally one or
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two of them. Unfortunately this method has a serious drawback: the remaining molecular
orbitals will have even larger delocalization tails in some of the unwanted atoms. The
father of this idea is Pople [10] who used it to build localized lone pairs. Some years later
this method was generalized by Peters [11) and Stamper [121.

£.£. HomogeneolUJ localization by Mulliken papulation

A more democratic alternative to the previous method will be given here. Instead of
choosing a particular MO to be localized, one could impose the more egalitarian condition
that all the elements (bonds and lone pairs) of the chemical formula play the same role.
In order to achieve this goal, Magnasco and Perico [151 proposed to maximize the overlap
Mulliken populations, that is, to maximize

p¡A.B = L L C¡Cf(XoIX¡3),
oE A ¡3E B

(2)

where i is the transformed localized molecular orbital associated to atoms A-B in the
overall chemical formula. Atoms A and B will then be chemically bound and a lone pair
will be produced if A = B. This method yields almost the same results as those produced
by the intrinsic algorithms or those of the following method.

£.3. Projection methods

The construction of MO that have a clear chemical meaning by projection of the appro-
priate mono- or bicentric orbitals is undoubtedly the most simple way, both from the
computational point of view or from the conceptual point of view.
We should note here that this method is also the most versatile, since it allows us to use

"group" orbitals instead of only mono or bicentric MO as projection tools; for instance,
with these group orbitals we could recover all the local (polarization, local excitations,
etc.) elfects d ue to a monomer in a polymer.
The basic principie underlying all projection technic¡ues is rather simple: one projects a

set of completely localized (on one or more atoms) orbitals Ix) on the subspace spanned
by the delocalized set 14»; this produces a new set of localized orbitals 14>'). Finally one has
to perform an orthonormalization process on this set, either by applying the symmetric
(5-1/2) orthogonalization of Liiwdin or by applying the Schmidt method.
It has becn proved [21 that this method is equivalent to the minimization of

(3)

or to the maximization of the sum of the scalar products

(4)
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We will see that these methods are comparatively, rather efficient, since they produce
almost identical localized MO as those obtained using methods which require the com-
putation of many monoelectronic or bielectronic integrals of a given operator and are,
therefore, much more time consuming. This CPU time is proportional to N3 or N4 where
N is the dimension of the atomic basis set in Eq. (1).

Here we will briefly mention the basic ideas of the method developed and used in
our group, which is an improvement of a program [131 based on the original proposal
of Chambaud el al. [141; this algorithm allows one to localize any subset B of a set A
of delocalized orbitals by projecting one or more sets of fragment orbitals on the space
spanned by A. In particular A could represent the doubly occupied canonical HF orbitals,
the open-shell orbitals and sorne or all of the virtual orbitals. For the interested reader, the
full details of the algorithm are carefully given in the original article [161. Let us start by
considering a molecule A composed of, for the sake of simplicity, only two fragments. This
restriction is only imposed for brevity and many fragments can formally and practically
be treated in the same way. Let us denote by Vi and Vi (i=I,2) the occupied and virtual
orbitals of fragment i and let

occ

P = L I</>k)(</>kl
kEA

(5)

be the projection operator on the Fock space of the molecule A (note that the sum goes
over all the occupied orbitals of A). Then

virt

Q = i- P = L I</>k)(</>kI
kEA

(6)

is the projector on the virtual SCF orbitals. The elements of the atomic overlap matrix
are given by

(7)

If NI and N2 are the dimensions of the basis sets of fragments 1 and 2, then N = NI +N2
is the dimension of the basis set in which the SCF orbitals I</>k) are expanded. Let us
denote by OSB the open-shell and bonding orbitals and by NMV the non-modified virtual
orbitals of the whole molecule A.

With these conventions we can now construct an orbital array as in Fig. 1. Each subset
represented there has N rows since orbitals are expressed as columns in the overall basis
seto Clearly, the complete set of vectors has approximately twice the dimension (2N) of
the original SCF (occupied and virtual) orbitals. The first subset is composed by the
open-shell and bonding orbitals which we may not want to change. The second and third
subsets represent the projection of the occupied orbitals of fragments 1 and 2 on the Fock
space of the molecule. The fourth subset is given by tbe occupied SCF orbitals oC the
complete molecule minus those orbitals already appearing in the first subset. The fifth
subset consists of the non-modified virtual orbitals which, in sorne ca~es, may already
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SCF"".OSD

FIGUREl. OSD: Open-shell and bonding orbitals; V~cc.• stand for the occupied and virtual orbitals
of fragment n in its reduced basis set; SCF"cc,' are the occupied and virtual orbitals the whole
molecule; NMV are the non modified virtual orbitals; P and Q are the projector operators defined
in the texto

be localized. The sixth and seventh subsets are the projections of the virtual orbitals of
fragments 1 and 2 onto the Q space of A. Final!y, the eighth subset are the SCF virtual
orbitals of the molecule.
As we have said, since the whole orbital matrix has about twice the number of original

SCF orbitals, one has to find a sensible way to get rid of the extra N linearly dependent
orbitals. This poses sorne serious technical problems when dealing with an actual calcula-
tion. The overall elimination process we use now is based on an overlap criterion and treats
molecular orbitals within each subset in an equivalent manner while, at the same time,
keeps the ¡-th orbital of the j-th subset orthogonal to al! the previously orthogonalized
MOs of the j - 1 preceding subsets through a Schmidt orthogonalization.
At this point we should say that there are two main strategies to c1iminate redun-

dant virtual orbitals. The first one is to Schmidt orthogonalize a given virtual MO to
the already chosen (occupied and virtual) I\\Os and then symmetrically-orthogonalize
(S-I/2) the remaining orbitals within each virtual suhset. This has proven to be rather
elfective especially for cases in which the two fragments (which can in tuen be com-
posed of many sub-fragments) are equivalent as far as the symmetry of the molecule
conceens. The second strategy is to simply Schmidt-orthogonalize all the virtual MOs
with respect to the previous orbitals, again occupied and virtual. In ReL [161 an ex-
ample of the application of this localization method has been given to deal with the
CuF molecule. In that case the localized orbitals were used to perform second order
multireference Miiller-Plesset calculations and an impressive gain was obtained regard-
ing the number of generated perturbed deterlninants. For instance, for the 3n and 1n
states, with a reference wave function containing 340 Slater determinants and using the
non localized SCF orbitals of the ground state, the multireference second order Miiller-
Plesset (MR-MP2) algorithm produced more than 25 million perturbed determinants; if
one uses instead the localized orbitals resulting from the previously described method,
the number of perturbed determinants decreases to only 7.9 million; this represents a
significant reduction of CPU time used in the perturbational part of the CIPSI [17] cal-
culation. Of course, we get exact.ly the same MP2 energetic contrihution from both cal-
culations.
Other cases have also heen treated which dilfer from the previous one in that there

were more than two fragments and that there were zero or one open-shell per fragment. In
this respect we have observed that, depending on these two variables (the number of frag-
ments and the number of open-shells per fragment), sometimes the Schmidt elimination-
orthogonalization method for the virtual orbitals or the symmetric S-I/2 method are
better suited to deal with each case. \Ve present in Table 1 the results regarding sorne of
the possible combinations of these factors and the best method to eliminate redundant
virtual orbitals.
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TABLE I. Elimination-orthogonalization method best suited for sorne cases including up to three
fragments.

Number of fragments

2

2

2

3
3

3

Number of open shells
per fragment

(1, 1)

(0,0)
(1, O)
(1,1,0)
(0,0,0)
(1,1,1)

Elimination-ort hogonalization
method
Schmidt
S-I/2

Schmidt
S-I/2

S-I/2

Schmidt

3. INTRINSIC LOCALIZATIONTECIlNIQUES

As a general rule, these methods employ spatial exlension or energetic criteria lo perform
the localization of the original input orbitals. This means that two electrons belonging to
two different molecular orbitals are said to be well localized if the mean distance between
them is as large as possible or if lheir interaction energy is as low as possible. Using
Dirac's notation, an extremely elegant operational definition of all the intrinsic localization
techniques exists, since these methods can be defined as lhose searching for an extremum
of the functional

N

1V(li))= ¿(iiIOWlii), (8)

where N is lhe number of occupied orbitals and OW is lhe operator which defines the
functional IV.

Let us review each one of the best known algorithms following their chronological order.
\Ve shall therefore starl with lhe method developed by Doys.

3.1. Hoys' localization method

Actually, the method we are aboul to describe is but one among many algorilhms proposed
by Doys and coworkers [18-20], bul the present method is lhe besl known because of ils
simplicity. As previously mentioned, in lhis case Doys' idea was lo seareh for lhe minimum
spalial extension of lhe oceupied orbilals. This is equivalenl to seareh for lhe minimization
of the funelional

whcre Doys' operator is givcn by

N

BUi)) = ¿(iiIOnlii), (9)

(10)
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Two equivalent equations can be derived for the functional B:

B(li» = - ~Bl(li» + 2tr(r2) - ~ltr(rW (11)

or

B(li» = -2B2(li» + 2 tr(r2), (12)

where
N N

BI(li» = ¿¿[(ilrli) - 0lrljW, (13)
i j;5;i

N

B2(1i» = ¿[(ilrliW (14)

One must note here that since the unitary transformation we are looking for leaves
unchanged the traces in Eqs. (11) and (12), the search for a minimum of the functional
B is equivalent to the maximization of the distan ce between centroids (functional BI) or
to the maximization of the sum of the squares of the centroids' distance to the origin
(functional B2). We should also stress the fact that, besides the SCF calculation which
generates the delocalized orbitals, one has to calculate N2 dipolar integrals. Finally, notice
that the functional B2 is the only one which is not invariant under origin translations.

3.2. Edmiston-Ruedenberg method
We know that the structure of the Hartree-Fock self consistent ¡¡eld theory insures that
each component of the total energy (kinetic, nuclear, Coulomb and exchange) is conserved
under the application of a unitary transformation of the occupied orbitals. For this reason,
the structure of the electronic interaction part has been suggested as a measure of the
degree of electronic localization or delocalization. A very interesting idea was proposed by
Edmiston and Ruedenberg in 1963 [21-231which is based in the fact that the quantity

NN N NN

¿ ¿ Jij = ¿ J••+ 2 ¿ ¿ Jij
j i~j j

(15)

remains constant before and after the unitary transformation has been applied to the
molecular orbitals, that is

N N N N

¿¿Jij = ¿¿J"j"
j i' l'

( 16)

where the primed quantities indicate that they are calculated Ilsing the transformed molec-
ular orbitals. Therefore, as a reasonable localizatiou condition we could impose that the
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sum of the interorbital Coulomb interactions be a minimum; that implies the minimization
of

N N
¿¿Jij.
iSj j

The Edmiston-Ruedenberg operator that should be substituted in Eq. (8) is then

ER 1n (r¡ , r2) = 11 11 'r¡ - r2

and we want to maximize the functional

N
ER(li))= ¿(iilllr¡ - r21¡-I¡ii).

(17)

(18)

(19)

Unfortunately there is simply no way to decrease the N4 dependence on the number
occupied orbitals. Of course, one has to calculate also the Coulomb bielectronic integrals
in the molecular basis set (which implies another N5 transformation); this, however, is not
a problem at aH if the SCF (or complete active space-SCF, CAS-SCF) orbitals were only
the starting point to perform anyway correlated molecular calculations that imperatively
need these integrals.

3.3. Van Niessen's method

One of the latest localization proposals was the one given by von Niessen [241who sug-
gested to maximize the charge density overlap functional

where the operator nN is

N
N(li)) = ¿(iifnNlii), (20)

(21)

We should point out that the dependence of the last two localization schemes on the
number of occupied orbitals is N4 whereas Boys' method's dependence is only N2•
There have been several works comparing the localized orbitals obtained using the var-

ious localization algorithms. The interested reader can find such comparisons for diatomic
and smaH polyatomic molecules in !lefs. 124,25); for molecules containing a large number
of atoms refer to [261.The important thing rcgarding these comparative works is that they
show that aH the localization techniques (both extrinsic and intrinsic) produce, qualita-
tively and quantitatively, almost identical localized orbitals rcgardless of the methods used
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to obtain them, exeept for the deloeaJization taBs. The small variations observed between
the resulting 10eaJized orbitals always eoneero minute details of these deloeaJization taBs.

Another remark that should be made here is that the intrinsie 10eaJization methods
based on energetie eriteria can, of eourse, only be applied to the oeeupied orbitals; they
will therefore be unable to produce reasonably well loealized virtual orbitals; these virtual
orbitals wil! be of no use when one is trying to get a better deseription of the moleeule
through the eonstruetion of eorrelated wave funetions, variationally and/or perturbation-
ally. \Ve see here that, besides being a lot faster to perform, the projeetion methods have
the important advantage over the intrinsie algorithms that they can produce well loealized
virtual orbitals.

4. AOVANTAGES OF USING LOCALlZEO ORBlTALS

Although we have mentioned all along this report sorne of the most obvious advantages of
using loealized orbitals, we will here explieitly diseuss the most important advantages one
gets by using loealized MO. \Ve can summarize these advantages in two specifie areas:

1) LoeaJized orbitals aUow a eoherent treatment of eleetronie eorrelation effects; and
2) when multireferenee perturbational methods are used to deal with these correlation

effeets, an impressive speed-up is obtained for the ealeulation of the perturbational con-
tribution to both the energy and the wave funetion. \Ve shall illustrate these points using
a particular example.

By the year 1986 the molecular strueture of the silver trimer was a debated subjeet.
\Valeh el al. [271found that the ground state was the ¡D¡ eomponent arising from the Jahn-
TeUer stahilization of the doubly-degenerate 2E' eleetronic state in D3h symmetry (an
equilateral triangle); this ¡D¡ component had an "obtuse"-triangled (11= 69°) geometry
while the first excited state eAIl had an aeute-triangle (11= 53°) geometry. However,
a previous work using the deloealized canonieal MO of the ground state of Ag3 and the
variational + 2nd order multireferenee perturbational CIPSI seheme [28] showed that
the most stable strueture of this trimer was the almost linear (11= 175.2°) geometry
and not the Jahn- Teller distorted geometry reported by \Valeh el al., this latte: obtuse
isoseeles structure Iying only 2.7 keal/mol higher in the potential energy surfaee of Ag3.
The problem arising here was that, using deloealized molecular orbitals, one eannot assess
the relative quality of the eorrelated deseriptions of the wave funetions eorresponding to
very different nuclear geometrics. A slight differenee in the quality of these eorrelated wave
funetions can give rise to artifaetual encrgy differcnecs whieh are larger in magnitude than
the real energy differenees we are looking fol'. So, in this case, a wrong trcatment of the
differential eleetronie eorrelation effeets as a funetion of the angle 11eould easily yield
completely unreJiable rcsults.

For this reason we dccidcd to apply a localization algorithm in order to bc able to
control thc intcratomic and intra-atomic excitations appearing in the variational and the
perturbational cnergy contrihutions. This allowcd us to identify the corresponding cquiv-
alent excitations of the almost-linear, the equilateral and the obtuse-triangled gcometries
of the silvcr trimer ami thus to perform a cohcrent trcatment of the electronic correlation
effects.
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TABLE JI. Comparative distribution of the multireference MP2 correlation energy using localized
molecular orbitals (MO) vs. non-localized MO.

Non localized MO Localized MO
Coefficient range Number of MR-MP2 energy Number of MR-MP2 energy

determinants (a. u.) determinants (a. u.)
0.01-0.05 83 -0.0110 541 -0.2234
0.002-0.01 11664 -0.1944 4396 -0.0958
0.0004-{).OO2 91894 -0.1507 37815 -0.0522
0.00008-0.0004 307587 -0.021 I 132985 -0.0085

Total 11.7 x lO" -0.3828 2.4 x lO" -0.3822

Special care had to be taken in order to have the same ratios of perturbational/
variational energy contributions since minute differences in the variational quality of
the wave functions could produce errors greater than the Jahn-Teller stabilization en-
ergy (óJT) for this trimmer. This óJT is the energy difference between the equilateral
doubly-degenerate state and the Jahn- Teller distorted triangular geometry. The use of the
localized orbitals allowed us to obtain differences of less than O.J% in the ratios of pertur-
bative/variational contributions for these two particularly stable AgJ structures. Applying
this method it was found out that the most stable structure was the obtuse-angled trimer
lying only 328 cm-1 (óJT) below the totally symmetric (doubly degenerate) equilateral
triangle and that the almost linear arrangement was 1610 cm-1 aboye the absolute mini-
mum. Here we can see that only because we used localized orbitals we could give credit to
these rather small energy differences and consider them as reliable figures. To show how
the use of localized orbitals "concentrates" the perturbational energy contributions into
a much smaller number of perturbed determinants, we present our results in Table II for
the case of AgJ given aboye.

This table was obtained using a basis with 72 molecular orbitals (no f orbitals) and
using only four determinants in the zeroth order reference space. It is clear that the ratio

EMP2(correlation)
1000 determinants (22)

as a function of the coefficient range is much more favorable for the localized calculation
than for the delocalized case. This is a very important remark from the practical point of
view, since it gives an answer to the question of how much CPU time is needed to recover,
variationally, a certain amount of the overall MP2 correlation energy. For instance, in order
to recover variationally 85% of the MP2 correlation energy of the example given aboye, in
the localized case it is enough to diagonalize a CI matrix of dimension 5000, whereas for the
delocalized case it would be necessary to diagonalize a matrix of dimension 70,000 to obtain
the same resulto Oí course, nowdays, nobody Willks an eye al such usmaIl" diagonalizations
since they can be performed rather swiftly on any low-priced workstation. However, when
one needs a reasonable number of energies using this variational-perturbational scheme
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in order to construct a potential energy surface (or a non negligible part of it) using a
localized scheme provides important time savings.
This comparison of localized vs. delocalized multireference MP2 calculations becomes

even more dramatic when the dimension of the molecular basis set is increased. We per-
formed equivalent calculations with 93 molecular orbitals (this time with 7 f orbitals per
silver atom) using the same four reference determinants as before. Using the localized
orbitals, the multireference MP2 CIPSI scheme produced 3.5 mili ion perturbed determi-
nants whereas, using the delocalized HF-SCF orbitals, we obtained more than 27 million
perturbed determinants. This meant that the delocalized calculation took 8 times the
CPU time required for the localized calculation, producing, of course, equivalent results.
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