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ABSTRACT. Using an SU(2)-based model of triatomic molecules for vibrations and a coherent-state
method to extract a classical variable for one of the bonds, we derive a scattering Hamiltonian for
one-dimensional atom-diatom collisions which generalizes previous descriptions. The problem of the
energy transfer from the atom to a diatomic molecule described by a Morse oscillator is considered
in detail. We briefly discuss the generalization of the model to three-dimensional systems.

RESUMEN. Con base en el modelo SU(2) para la descripcién de vibraciones moleculares y emple-
ando un método de estados colierentes para extraer una variable cldsica de uno de los enlaces,
se deduce un hamiltoniano de dispersién para colisiones unidimensionales dtomo-didtomo, el cual
generaliza las descripciones anteriores. Se considera en detalle el problema de la transferencia de
energfa del 4tomo a la molécula diatémica, la cual se describe mediante un oscilador de Morse. Se
examina brevemente la generalizacién del modelo al caso tridimensional.

PACS: 03.65.Fd; 34.50.Ez

1. INTRODUCTION

Algebraic models have recently been proposed for the study of rotation-vibration molec-
ular spectra [1-3]. Both the SU(4) [1-3] and the SU(2) [4-6] algebraic models constitute
promising alternatives to the usual integro-differential techniques for the analysis of vibra-
tional spectroscopic data, the latter being specially suited for the incorporation of discrete
symmetries in a simple fashion [6]. On the other hand, atom-molecule one-dimensional
collision processes have been studied in detail with different degrees of approximation
by solving the Schrodinger equation in configuration space (7, 8]. In particular, collisions
between an atom and a diatomic molecule represented by a Morse oscillator have been
analyzed using classical [9], semiclassical [10] and quantum mechanical treatments [11].
In the last years Lic algebraic methods have also been applied to scattering problems in
molecular physics [12-15]. In the framework of these techniques one-dimensional collisions
have been studied in conjunction with time evolution operator methods for a variety of
molecular potentials, including harmonic, anharmonic and Morse oscillators, where the
atom-diatom interaction is usually restricted to an exponential form [13]. For three di-
mensional systems, however, no algebraic scheme has been implemented and thus one
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needs to resort to a number of computational integro-differential methods to describe
such interactions [16].

In two recent papers, we proposed a new algebraic framework, based on the vi-
bron model, that leads to a three-dimensional description of atom-diatom collision pro-
cesses [17,18]. Our basic idea was to first consider the atom-diatom system as a triatomic
molecule, described algebraically by means of the vibron model. This model incorporates
monopole, dipole and quadrupole interactions between the bonds and has been success-
fully applied to the description of molecular rotation-vibration spectra [1-3]. In addition,
an attractive feature of this scheme is that the Hamiltonian and other operators can be
transformed to configuration space by means of a coherent state basis, where coordinates
can be defined for each bond in the molecule [19, 20]. In particular, a direct connection can
be established between the SO(4) limit of the vibron model for diatomic molecules and
a Morse potential [21]. Given the parametrized triatomic vibron Hamiltonian described
in a Uy(4) x Uy(4) basis, we then apply the coherent-state method to only one of the
U(4) spaces, thus extracting a coordinate dependence for the interaction between one
of the atoms and the remaining diatom, while the latter is still described algebraically.
Although we start from a bound-state description, the formalism can then be analytically
continued to positive energies as will be shown in detail in the one-dimensional example
below. The result is a mixed coordinate space-algebraic Hamiltonian, which is formally
analogous to the ones used in one-dimensional schemes [12-15].As a bonus, all interactions
are well defined and we do not need to restrict them in ad-hoc fashion to an exponential
form [17,18]. In principle, this Hamiltonian can then be solved in the interaction picture,
including the evaluation of matrix elements and classical trajectories [17, 18].

Although the model introduced in Refs. [17,18] is fully three-dimensional and we are
hopeful that it will prove useful for the analysis and interpretation of real inelastic scat-
tering data; its application is still a difficult task. While the diatomic molecule can be
described to a good approximation in the vibron model framework, the parametrization
of the interaction requires considerable computational trials, as well as the analysis of the
approximations involved in the interaction picture. For this reason we have constructed
a one-dimensional version of our model based on the U;(2) x Uy(2) dynamical algebra,
which generalizes previous one-dimensional descriptions and is simpler to analyze than the
three-dimensional model, but already incorporates most of the attractive features (and
difficulties) of the full model. In this case the analytic continuation to positive energies
corresponds exactly to a U(1,1) description of the potential associated to the incoming
atom, as we show in the next section. For this system we can compare our results with
exact calculations for the interaction of an atom with a Morse potential (11] and can thus
gauge the accuracy of our approximations with the objective of extending them to the 3D
case.

In the next section we introduce the general U, (2) x U,(2) algebraic Hamiltonian and
derive the corresponding mixed Hamiltonian using the method described before. In Sect. 3
we analyze this Hamiltonian in the interaction picture and the procedure to obtain the
wave functions. We use the sudden approximation in Sect. 4 to obtain the time-dependent
solutions and describe new closed results for the time-dependent classical trajectories. In
Sect. 5 we rewrite the interaction potential in a way which will later allow us to remove the
sudden approximation. We present the harmonic limit of the model in Sect. 6, using the
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interaction potential previously obtained and then analyze the solutions for the case when
the dipole moment is null. An interesting variation of the harmonic result is sketched in
Sect. 7, while in Sect. 8 we consider a new method of approximation which goes beyond
the sudden approximation for Morse oscillators. In Sect. 9 we compare our results with
exact calculations carried out by Clark and Dickinson, while in the last section we present
our conclusions and discuss how the present analysis can be used as a guide for the study
of the three-dimensional model and its applications to real atom-diatom collisions.

2. ATOM-MOLECULE INTERACTION HAMILTONIAN

We start by analyzing the stretching vibrations of triatomic molecules. A straightforward
way to deal with this problem consists in considering harmonic interactions between the
atoms. This assumption, although physically reasonable for small number of quanta, does
not provide an adequate description of the system when the number of phonons increases.
One of the simplest potentials displaying anharmonic effects is the Morse potential, which
can give rise to dissociation, as expected for molecular systems. We shall consider Morse-
like interactions between the atoms of the triatomic molecule in the framework of an
algebraic approach, starting by establishing the algebraic representation of the Morse
potential in the one dimensional case.
The Hamiltonian of a particle of reduced mass p under a Morse potential is given by
- h? d*
Hm = 2p dx?

whose eigenstates we denote by £. These states can be associated with U(2) D SO(2)
states [22]. In order to see how this isomorphism comes about, consider the radial equation

: ( g 2 1'2) 6(r) = (N +1)(r), (2)

+D(eF - 2e71), (1)

———7
rdr dr = r?
which corresponds to a two-dimensional harmonic oscillator (in units whereh = p = e =1)
associated to a U(2) symmetry algebra [23]. By carrying out the transformation
P =(N+1)e?,

Eq. (2) transforms into

[-j—; + (E{—l)? (e - 2e-")] 8(p) = - (52’-)2 6(p), (3)

which can be identified with (1) after defining z = pd and multiplying by h?/2ud?, provided
that

2
D= (N+1) (4)
8ud
h? 2

(5)

=) WTH 5
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where we have defined m = /2. In the framework of the U(2) algebra, the operator N
(whose eigenvalues are denoted by N) corresponds to the total number of bosons and
is fixed by the potential shape according to (4), while m is the eigenvalue of the SO(2)
generator J,. In order to obtain the possible values of m in terms of N, we recall that a
simple realization of the U(2) generators can be given in terms of the number operator N

and the operators J,:

with

N =sts + 1ttt (6)

Je=4(ts+st), J.=itts-stt), J, = L(sts —the), (7)
where s' (s) and t! (t) are bosonic operators satisfying the usual commutation relations
[s,8") = [t,t!] = 1. (8)

All other commutators vanish. The operators (6), (7) satisfy the usual angular momentum
commutation relations, which in terms of the raising and lowering operators

Ji = J. + id, (9)
J=J i, (10)
are given by
[Jo, Ji] = +Jy, (11)
e, d ] = 2J.. (12)
Computing J? = P24 jj + J2, we find
. N(N
P==|=
8(5,), .
from which the identification
. N

between the eigenvalues j and N associated to J and N, respectively, is readily made.
One can show directly from (6)-(7) that [J2, N] = 0. The set (7) thus defines the SU(2)

subalgebra of U(2). In our applications N = N is fixed by the interatomic potential.
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From the identification (14) we obtain for m, the eigenvalue of J,, the following values:

m= ﬂ:—‘?;—r, :I:(Lz—m,...l or 0.
According to (5) the Morse energy is given in terms of m?, which means that the Morse
spectrum is reproduced twice. Consequently, when calculating particular spectral proper-
ties the m-values must be restricted to be positive. We note that the fact that only part
of the U(2) states in the representation [N] correspond to physical states is a peculiarity
due to the unphysical nature of the one-dimensional model. In the three-dimensional ver-
sion of the model the physical states span the full [N] representation of U(4) 17, 18]. For
practical purposes we can work with the full representation of U(2) and only impose the
m > 0 restriction when computing transition probabilities, as shown in the subsequent
sections. In terms of the U(2) algebra, it is clear from (5) that the Morse Hamiltonian has
the algebraic realization

B 8 = A T2, (15)

The eigenfunctions of this Hamiltonian are then specified by the quantum numbers N
and m, which are the eigenvalues of the invariant operators of the groups U(2) and SO(2),
respectively. For this reason they are denoted in the following form:

U(2) D SO(2)

1 ! (16)
I[N],  m),
where in this case we take
N N-=-2 1.
==, — ..., = 0. 17
m=2, =i o a7

The Morse Hamiltonian (15) can be rewritten in the more convenient form

A

I;{=AI;IM= E(j+j4+j_j+—'N), (18)

where we have used the relation

JP=Jt - Y do+ Jo0y)
and added the constant term ATN? in order to place the ground state at zero energy.
The parameters N and A appearing in (18) are related with the usual harmonic and

leading-anharmonic constants w, and z.w. used in spectroscopy. To obtain this relation
it is convenient to introduce the quantum number
N

v=j-m=?—m, (19)
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which corresponds to the number of quanta in the Morse oscillator as indicated by its
eigenvalues

sk > (20)

420, 1 2 5 or

for N odd or even, respectively. In terms of v, the Morse eigenfunctions are given by

U(2) D SO(2)

LT (21)
v, o),
where
V)0 = T (e, 0, (22)

and |[N],0) is the Morse vacuum state. In terms of v, the eigenvalues of the Hamilto-
nian (18) are given by

Eum =—§(N+ 1/2) + A(N +1)(v + 1/2) — A(v + 1/2)2, (23)

from which we make the identification

we = A(N +1), (24)
Btde = A (25)

Thus, in a diatomic molecule the parameters A and N can be determined by the spectro-
scopic constants w, and T.w,.

Before considering the model for the case of a triatomic molecule, we discuss the har-
monic limit of the U(2) model. The purpose of this analysis is two-fold. On the one hand
it clarifies the physical meaning of the algebraic model. On the other, it paves the way for
the subsequent analysis of the harmonic limit in the case of the atom-diatom system. We
start by establishing the action of the Ji operators on the Morse states (21)

J|[N),v) = V(N —=v+1)|[N],v-1), (26)
J_I[N]v) = /(N = v)(v + 1) [[N], v + 1), (27)

Defining the change of scale transformation

oI
—t
]

=0

b
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it is clear that

Jim B|[N],v) = Vv[[N],v - 1), (29)
A}i_r.nmfafl[N],v) =Vv+1|[N),v+1). (30)

which correspond to the harmonic limit of the model, as expected from the role of N in
Eq. (4), i.e., for infinite potential depth the Morse potential cannot be distinguished from
an harmonic potential. Using the definitions (19) and (28) we can rewrite the commutation
relations (12) in the alternative form

—_— 29
bl =1-=
where
N .
TA):E—JOa (32)

is the Morse phonon operator corresponding to the definition (19). The limit N — oo leads
to the contraction of the SU(2) algebra to the Weyl algebra generated by b, b’ and 1, with
the usual boson commutation relation [b, b'] = 1. Expression (11) can also be rewritten as

- 2Jo
b,bl) = =—
[ 1] ] N ) (33)
which means that in the harmonic limit
2Jy
im — =1. 3
s (34)

Relations (28)-(34) indicate the procedure to arrive at the harmonic limit of the model,
i.e., the J,, J_ should be renormalized by dividing by V'N and then take the limit N — oo.

Following the above procedure we obtain for the harmonic limit of the Morse Hamilto-
nian (18)

1 1
—(btb+bbt) - =
2(6 + bb") 5
= b'b,

which is the usual harmonic oscillator Hamiltonian. Here we have denoted with b} (bs)
the corresponding harmonic creation (annihilation) operators defined by bj = limy oo BL
b; = limpy —oo bi.
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We remark that Eq. (28) can be applied in the opposite sense, i.e., as a way to construct
the anharmonic representation of harmonic operators. Any given function of b, b' can be
mapped into the same function of J4, J_ through the correspondence

J4 W
b— —, Ol — — 35)
VN VN (

For example, the one-dimensional harmonic oscillator (with atomic units)
A= %(b*b+ bbt)

with eigenvalues E = v + 1/2, can be transformed to its anharmonic representation by
means of (35) and using Egs. (13) and (32)

5 T . & = i &
H — EN(J_J+ +J+J_)
| P ) ik
= §P - =+12) -, (36)

which corresponds to the algebraic realization of the Morse oscillator. This prescription can
be applied to every oscillator in the system and to the interaction terms among them [24]

We now turn our attention to a triatomic molecular system. In this case we assign a
U'(2) algebra to each interatomic interaction, which means that we describe each relative
interaction with a Morse potential. In addition, we may include bond-bond interactions
using the group generators, as explained below. All relevant operators in the model are
then expressed in terms of the generators of the group

U'(2) ® U%(2) (37)

which corresponds to the dynamical group of the system. In particular, the Hamiltonian
of the system can be expanded in terms of the dynamical group generators, taking into
account its hermiticity and its invariance with respect to the symmetry group of the
system. There is no point symmetry for A~ A— Band A - B - C molecules, while for
A-B-Aand A— A- A molecules (in one-dimension) it is isomorphic to the permutation
group Sz. Since we shall focus on the system H,-He, we do not worry about the point
symmetry of the triatom. The simplest molecular Hamiltonian describing the stretching
vibrational excitations can be written as [23)

H=AT + B + @k 30 54D &, (38)

where jfl.-, § = Z,y, z, are the generators of the SU(2) groups. A possible basis to diago-
nalize the Hamiltonian (38) is the one associated to the local mode chain

Ul(2) x U?(2) > S0!(2) x SO%(2) > SO(2)
1 | l | / (39)
[[V1],  [Vo; v, v2; V),
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where below each group we have indicated the eigenvalues characterizing the invariant
operators associated to each group. Explicitly the basis (39) is given by

|[M1], [N2]; v1,v2; V) = |[Na], v1) [ V2], w2), (40)

where |[V;], v;) are given by (22), and V is the total number of quanta defined as
V = +vs. (41)
The first two terms in (38) correspond to two independent Morse oscillators, as (15)

indicates. The third term represents a weak coupling between the oscillators, whose form
can be seen by its action on the basis (40)

.. N1 N
Jo1dz2|[N1][Ne]; v, v V) = ( 14 2~ L(Nyvug + Nawy) + ’Ulvz) |[N1][N2]; v1,v25 V),
(42)
where (19) was used. Note that in the harmonic limit both N; and Ny — oo, so that
2 jzljz2 N2 . 1
n}gnm( N 4 —‘2(U1+Uz)~ (43)

The last term jl . jg gives rise to a strong interaction of the two Morse oscillators. This
interaction is not diagonal in the basis (40) and in the harmonic limit it reduced to

. S o Jordoa | 1 .. Jrd_a + J_1J42
Jim —e= s Jim S+ g0 N
= o +v)+ 1(b1bh + blby). (44)

The Hamiltonian (38) thus corresponds to the anharmonic form of the simple Hamiltonian
HPo = ablby + Bblby + (b1 + biba) + 8(b]bz + biby). (45)

While the Hamiltonian (38) incorporates the dominant interactions in triatomic
molecules as shown in several papers on this subject [4-6], it is not the most general
one. We propose a simple generalization of (38) consisting of the following molecular
Hamiltonian

ﬂMol = Ajf'l + Bj222 + Cj_»_ljzg + Djl . j;_) + FNgjy‘l. (46)

We stress that (46) is chosen for simplicity and that in order to include long range polar-
ization or Van der Waals interactions additional terms must be included. Note that the
last term in (46) does not conserve the v quantum number and that it is asymmetric in
the two bonds. This fact reflects the different roles played by these interactions for the
scattering atom-molecule system.
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Before we can apply this formalism to atom-molecule scattering, we shall show that
Eq. (3) can be analytically continued to positive energies and that this procedure cor-
responds to a description of the system in terms of the U(1,1) algebra [25] To achieve
this goal, we first note that Eq. (3) suggests that the continuous part of the spectrum
can be obtained by analytically continuing m — ik, where k is then proportional to the
momentum and in the range 0 < k < oo. Since (2) and (3) are associated to a U(2)
algebra and it is well known that this algebra can be transformed into U(1,1) by analytic
continuation [25], we now study the chain of algebras

U(1,1) > O(1,1) (47)

arising from (21) by this continuation. The SU(1,1) subalgebra of U(1,1) is generated by
the set of operators K, K_, K, satisfying the commutation relations [26]

Ky, K_) = —2K,, (48)
(K., Ki] = K4, (49)

where Ky = K, + z'f{y, whose only difference with the SU(2) commutators is the minus
sign in (48). The quadratic SU(1,1) invariant is given by

C=K!-K!-R? (50)
which can be related to the linear U(1,1) invariant by the relation [25]

¢4

W | =

(M +1)(M -1). (51)

This linear invariant takes integer values and for positive energies plays the role of the
total boson number N in Eq. (2). A coordinate realization for the K; and M operators
can be written as [25)

N 18 92

(:r: i 2 s 2 2
. 1 &

K, = 1 (.r 6 + 6)

and

= 1, 5 (8 8
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From these relations it is simple to verify the commutators (48) and (49) and that
[K;i, M) =0, (56)
which proves the invariance of M. Using Eq. (51) and denoting the eigenvalues of C by
(€) =il +1) (57)
we find that
M=—(2j +1). (58)
The generator K, of (54) has been chosen to be a non-compact generator (associated to
O(1,1) in (47)) and thus it will have a continuous spectrum [27). We are concerned with

the simultaneous eigenfunctions of M and I, which we denote by |M, k),

M|M, k) = M|M, k), (59)
K,|M, k) = k|M,k). (60)

Returning to the realization (54) and (50) we introduce hyperbolic coordinates

x = rcoshb, (61)
y = rsinhé. (62)

In these variables, the operators M and K, are given by

. 1, 18 98 18

R 63
M 2("" rar’"ar+r2a¢2)’ (63)
Y

= 64
K:= 3% oy

The solutions of Egs. (59), (60) can be written as

Das(r,0) = Spgps(r) €27, (65)
where @ satisfies
1 10 8 4k?
2 (_; 5o o T 7‘2) Prri(r) = MOpk(r), (66)

which is the analog of Eq. (2). Finally, carrying out the transformation

r¢ = Me", (67)
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we find

P£;+(%)n(b“ewJQM“”=”%Mﬂ”- (68)

This is again the one-dimensional Morse-oscillator equation, but associated to the scat-
tering solutions, k? > 0. Comparing (68) with (3) we see that M = N + 1, in order that
both equations arise from the same potential. Also note that k is a continuous variable,
since € in (61) is an hyperbolic angle and hence is not periodic. We have carried out this
derivation of the scattering Morse equation in terms of U(1,1) in order to show that the
analytic continuation m — ik of Egs. (2) and (3) has a precise mathematical meaning.
We stress the fact that both (3) and (68) correspond to the same potential, as long as we
take M = N + 1. Having done so we return to the U;(2) x Uy(2) Hamiltonian (46) and
derive below a classical coordinate for Uy(2). Strictly speaking, the scattering Hamilto-
nian corresponds to U;(2) x Uy(1,1), but we shall derive an energy surface for the simpler
U1 (2) x Uz(2) system and then proceed to carry out the analytic continuation to the
positive energies corresponding to a scattering regime.

We now introduce a classical distance between one of the atoms and the center of mass
of the other two, by taking the expectation value of (16) with respect to a coherent state
basis associated to one of the bonds (e.g., bond number 2) [19-21]

1

VN1 +r2)N

where s' and t! are the two scalar boson creation operators (6), (7) and (8), with even
and odd parity, respectively, through which the U?(2) algebra is realized [23].The variable
r in (69) is a radial parameter, which is related to the distance z between the atom and
diatom center of mass by [21]

[N];r) = (st +rth)N |0), (69)

e—bz—zc)/a0
"=\ et e (70)

where z, is the value of x for which the Morse potential acquires its minimum value, i.e.,
if only BJi2 was present in the Hamiltonian (16), z, would correspond to the equilibrium
bond distance, while b is a potential parameter whose value depends on the molecule to
be considered and ay is a scale parameter which we take as the Bohr radius. The justifica-
tion for this change of variable will become clear below. Taking into account the explicit
realization (7) of the generators of the U%(2) group, we can compute the expectation value
of (46) with respect to (69). We arrive at a Hamiltonian which depends on the first bond

through the operators {J,,; a = z,y, 2}, and is a function of the second bond coordinate z:

H = Hy + Vi(z) + Va(z) + V3(z), (71)
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with
Hy = ho(Ny) + AJZ ), (72)
- w  bEmeg) [t I
P} = bl e (2 s )’ , (73)
bzx—ze) _2b(z—z¢)
(@) = -2 5 —e ), (74)
- x o blE—ae)
Va(z) = v'Jy1e w0 (75)
where
o/ = —}(C+ DN, (76)
B=-iBN(N -1), (77)
v = —1DN. (78)

The potential Vg( ) arises from the J22 operator in (46) and we see from (74) that the
application of (69) and (70) indeed leads to a Morse potential for this term, as expected.
In (71) Hy corresponds to the Morse-like Hamiltonian of the diatomic molecule, with
ho(N1) chosen to place the ground state at null energy. In order to understand the meaning
of the Vi(z) term in the Hamiltonian, it is convenient to recall the explicit realization (7)
of the operators {Jg;} in terms of boson operators s'(s) and t!(t) [23]. In analogy to the
situation in the three-dimensional model [17] where the space is generated by st and p#
boson operators with positive and negative parity, respectively [1], in the one-dimensional
case t! is assigned negative parity while s' remains with positive parity [23]. Thus t! is the
one-dimensional projection of the pL boson and can in fact be identified with pf). Given

that ¢' is odd and s is even the operator j;',, which appears in Vj(z), has odd parity
and can be identified with the one-dimensional projection of the dipole interaction. The
term V3(z) does not involve the SU(2) operators and as mentioned above corresponds to a
Morse-like interaction. Finally, the potential V3(z) contains the even parity operator Jy 1
and can be identified with the monopole interaction considered in previous analyses [7].
We note that the parameter F of (46) does not appear in (76)-(78) because its value was
fixed to be —D/2 in order to exactly reproduce an exponential potential in (75) and thus
be able to compare our results with other calculations [11-13]. In the 3-dimensional model
this interaction appears without the need of fixing particular parameter values [17].

The hybrid Hamiltonian (71) depends on the molecular coordinates, through the op-
erators jE.ls and on the relative coordinate z. This coupled system is quite complicated, -
however, and we need to resort to approximations in order to solve it. When the energy of
the projectile is high compared with the molecular vibrational energy an adiabatic approx-
imation can be applied. We can then “freeze” the molecular coordinates by substituting
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J,1 and jy‘l in (73) and (75) by appropriate expectation averages defined by

jz,l =¥ Jz.l(v) = (javljz,l Ijsv) = (N2 - U) ) (79)
; 0 = 1Jyalis )12 + (G, v + 1]y, )2
B o bt \/lo,v alidl + 160 + Wil g

where |j,v) corresponds to the vibrational states of the molecule (21), characterized by
the number of bosons N; = 2j and the number of quanta v = j —m [23]. The substitution
of (79) and (80) into (73) and (75), respectively, leads to an v-dependent (or m-dependent)
Hamiltonian which is only a function of the relative coordinate z. This approximation
allows the computation of classical trajectories followed by the atom. This task is achieved
by writing the classical Lagrangian for the system, which is given in general by

L=Ex -V(z), (81)

where Ex and V(z) correspond to the kinetic and potential energies, respectively. In our
case we are interested in describing the classical trajectory of an atom subject to the
interactions (71). According to (79), the contribution (72) is a constant during the motion
of the atom and consequently we identify the potential energy felt by the atom with the
energy surface (72)—(75):

V(z) = Vi(z) + Va(z) + Vy(z). (82)
We note that (82) generalizes the exponential interaction V3(z) assumed in previous one-
dimensional analyses [12-14]. Once the form of the potential has been established, we can
consider the classical equations of motion for the incoming particle. Since z corresponds

to the relative coordinate from the atom to the diatom center of mass, we write the kinetic
energy in the form

Ep =<z (83)

where y is the reduced mass given by

e (ma +mp)me

maq+mpg+ me

where m4 and mpg correspond to the diatomic molecule, and me is the mass of the
incoming atom.
The Lagrangian is then given by

L == gz _f_aefb(.r—x.)/Zan(z _ e—b(rg.‘zc)/ug)%

— g(e—%(-r—re)/ﬂe — 9~ Yz—z. )/ﬂo) _ .ye—b(z*rz}/ao, (85)
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with
a = o J;1(m),
v =7 Tya(m).
The differential equations to be solved are

‘1-: = PI/”‘!

" ___O!b —b(z—z)/2a —b(z—ze)/a %
P = = ol

ab —3b(z—z.)/2a0 —b(z—zc)/a0 _';'
+ 2aoe (2 —e )

y @ (e—2b(:—;r¢)/ao _ e—b(r—x,)/ag)
ap

+ 20 —bla—ze)/ao
ag

(86)

(87)

where P, is the conjugate momentum of z. The solution of the set of Egs. (86)—(87) gives
rise to the classical trajectory z(t), whose substitution in (72)-(75) leads a Hamiltonian

of the form
H=H+ V()
with a time-dependent interaction given by
V(t) = Vi(t)J: 1 + Va(t) + Va(t)Jya + Va(t)Jz1,

where

We have included the potential V(¢

(ST

Vi(t) = 3(C + D)sz,le—b(r(t)—rc).v’?ﬂo (2 . e"‘b(l'(t)"-fe)/%)
f/?(t) = —%BN(N - (efl’b(l(t)—xe)/ﬂo _ Qe—b(r(t)—lc)/ao) ,

Vi(t) = —LDN Jyqe~H=0-=/00,
Vi(t) = 0.

of a set of operators which closes into a Lie algebra.

(88)

(89)

(90)
(91)

(92)

(93)

) in order to show that V/(t) can be expressed in terms
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3. TIME-EVOLUTION OPERATOR

We now turn our attention to the eigenfunctions of the atom-molecule interaction Hamilto-
nian. A suitable procedure to obtain the wave functions of a Hamiltonian of the form (88)
is provided by the interaction picture [28]. In the framework of this scheme the wave
function 9(t) is given in terms of the time evolution operator

¥(t) = U(t, to)¥(to),

where the wave function 1(tp) corresponds to an eigenfunction of Hy, provided that

-

V(to) = 0. In our case
¥(to) = |[N1], m). (94)
In turn, the evolution operator U(t,) can be written in the form (28].
U(t, to) = U)¢, to)Us(t, to), (95)
where U(®)(t, ) is the time-evolution operator corresponding to Hp:
UO(t,t5) = e~k Holt—to) (96)
while Uy(t,to) satisfies the equation

Z_hc?U;(t, to)

ot = ViU (2, to) o)

with
Vi(t) = ek Holt=to) 7 (4) =k Ho(t—to) (98)

Now the problem reduces to solving the differential equation (97) for Uj(t,tg). This in
general is still a difficult task, and consequently approximations for V;(t) must be sought.

Since we are working in an algebraic framework we look for approximations which are
based on algebraic considerations, such as the one arising from the following theorem [29].

THEOREM: The solutions of equations of the form

dd_i” = AW0(), U0 =1, (99)

where A(t) is an operator which can be written as a linear combination of generators X
of a Lie algebra

k
A(t) =3 ai(t)Xi, k finite, (100)

=1
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can be written in the form

k
U(t) = ] explg:(t)X0)- (101)

i=1

The coefficients a;(t) are scalar functions of ¢ and the operators X, time-independent. It
is further required that the Lie algebra generated by the X under the commutator be of
finite dimension [29].

This theorem implies that if we can express the interaction potential Vi(t) as in (100),
then the solution for the evolution operator will be given in the form (101). The algebraic
space in our hybrid model corresponds to an SU(2) Lie algebra and thus the potential
V(t) [Eq. (89)] is given in terms of a linear combination of the SU(2) generators. The
qpproxima.tions we propose in the following sections linearize the interaction potential
V;(t) in the SU(2) algebraic space in order for (101) to remain valid.

4. SUDDEN APPROXIMATION
The simplest way to obtain an interaction potential Vi(t) linear in the jm corresponds

to the sudden approximation, in which the interaction time is so short that V(t) can be
taken as a pulse (At — 0) in time. If this is the case the expansion of (98)

() = V() + %[Hg,f/(t)]m . (102)

gives Vi(t) = V (), which is equivalent to assume a null commutator between Hy and

V(t). In this approximation the differential equation to be solved reduces to

., U (t, o)

ih— = V(t)U;(t, to), (103)

which has the form (99). The time evolution operator is then given by
Ui(t) = e—%ga(t)j:e—%gz(t)jye—}';ga(t)jze—%gq(t), (104)

where we have deleted the subindex 1 in js.l to simplify the notation.
Substituting (104) into (103) we find the differential equations satisfied by the functions
gi(t). By means of the modified Baker-Campbell-Hausdorff formula [26]

eABeA = B+ A B]+ 414, Bl + SIAAL A B+ .. (105)
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they can be written as

a1(t) 1 sin(g1(2)/h)tan(ga(t)/R)  —cos(g1(t)/h) tan(ga(t)/h) 0) [ 0O
g2(t)| |0 cos(g1(t)/h) sin(g1(t)/h) 0] Va(t)
a(t) | |0 —sin(g1(t)/h)/ cos(ga(t)/R)  cos(gr(t)/h)/ cos(ga(t)/h) 0| | Va(t)
94(2) 0 0 0 1/ \Va(t)
(106)

The solution of this system of differential equations leads to the time evolution operator
U(t). The vibrational transition probabilities P(|jm) — |jm')) of the diatomic molecule
can in turn be obtained from U(t,ty) by means of the scattering matrix

S = U(~o00, +) (107)
as
P(|jm) — |jm')) = |(m/||jm)|?. (108)
Explicitly,
P(|jm) — [jm')) = |(jm/]e~ 5=~ R | jm) 2, (109)

where the parameters

B = g1(—o00, +o0)/h,
Bo = gg(—00,+00)/ﬁ, (110)

correspond to the asymptotic values of the functions gi(t) in (106). A closed expression
for (109) in terms of Wigner’s D-functions can be found by inserting a complete set of
states |jm):

2

P(|jm) — |ym')) = ; (111)

Ze—fﬁl"d.i:n' (_g) d'lo (_g) d{lm(ﬁQ)

In general the system of equations (106) is difficult to solve analytically and the functions
must be calculated numerically. However, there are two cases, which we discuss in the next
subsections, where analytic solutions can be found both for the classical trajectories and
for the functions g,(t).
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4.1. Ezponential interaction potential

If the Hamiltonian (71) contains only the potential Va(z),

H = Hy + V3(z), (112)
the total energy is given by
1
E= E,uirz + ype~b=/a0, (113)
where we have defined
bz
p=eco, (114)
The evolution operator takes the simple form
igo (t) 1
Ut) = e 5, (115)
where go(t) satisfies the equation
go = ype i/, (116)

The solution for the classical trajectories is well known [10] and is given by

e—bz/a0 — E sech? ig_ EE , (117)
P V 21 ao
which leads to the solution

t
ga(to,t) = V2Eu 2 [tanh (ME- E)] , (118)
b Q,u ag '

for (116). In the limit t — oo and tg — —oo we have

2
ga(=00, +00) = =2 v/2Ep (119)
and the scattering matrix takes the form

S’ _ e_ 2iaggﬁp_’2Ep jyl (120)

According to (108) the transition probability from state |jm) to |jm') is given by
P(|jm) — [im’)) = |4} (B1)I%, (121)

where we have introduced the dfnm, functions [30] and

m:%ﬁmﬂ. (122)

Expression (121) was obtained previously by Levine and Wulfman [12] for the vibra-
tional energy transfer between an atom and a Morse oscillator in a linear collision as
well as by Frank et al [17] in the one-dimensional limit of the three dimensional algebraic
approach to atom-diatom collisions.
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4.2. Ezponential and Morse interaction potentials

When the Morse potential (74) is added to (112) it is still possible to find a closed expres-
sion for the transition probabilities. In this case the Hamiltonian is given by

H = Hy + Va(z) + V3(), (123)
with classical total energy
1
= g,usizz + ype~t2/e0 4 gp2e=2bz/a0 _ 2fpebz/a0, (124)

with p given by (114). The evolution operator now has the form

iga(t) 7 igg(t)
U(t) = e 5 Jve= ™, (125)
leading to the differential equations

g2 = ype~ /%, (126)
4 = Bp(pe= /%0 _ g¢=bz/a0), (127)

In order to obtain the classical trajectories we rewrite ( 124) as

2:2
2, _ kagz
2 —-1= SER (128)
where
z:( 21 /\/ﬁ (2ﬂ @8-y
and
yp = eb:r:/ao'

The solution to (128) is then given by

[2E bt _ [l 25 5 \/5 (28— )?
cosh( . a0+c)_( 5 )/ TR (129)

where C is a constant to be determined. At the classical turning point t = 0 and z = §
(maximal approximation), there is no kinetic energy and (124) becomes

B 'YPE_M/(ID + ﬁp2e—2b6/ug . 2ﬁpe—56/an (130)
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or
28 — 7 = fpelo0 — Z Mo,
P

while (129) reduces to

cosh(C) = (%ew“" 38—~ 7) / \/4513 + (28 - ).

The substitution of (131) into (132) leads to the condition
cosh(C) =1,

which implies that C' = 0. From (129) we find

el 28—y B (28— 2E bt
P = - 2F + E+W—008h ;—LE(')* Y

which can be introduced into (126) to obtain

26—y [B.(@B-)" 2F bt
_ failP0 | A e B
2E + E * 4E? e ioap

-1

ga(t) = v

with solution

t
Yagp 2# A2 E bt
= — | .1}— tanl ‘I_ —

g2(to, 1) WA ALY E [drctan ( a, anh ( 2 ag LO,

where we have defined

Taking the limit ¢ — oo and t; — —0o we obtain for (134)

2vag 24 Ao
arctan ¢ —.

b AlA?E Al

92(_001 +OO) =

(131)

(132)

(133)

(134)

(135)

(136)

(137)
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We note that for § — 0o we recover the function (119). An analogous procedure leads to

28ag / 2 (A1 — Ay ) A,
=00 doo) = = t p.
94( ’ ) b EA]A2 2A1A2 R Al

af |21 (138)
b A,V E"

+

Finally, from (125) we obtain the transition probabilities

P(|jm) — |jm") = |&, . (B1)?, (139)

2vag 24 A
i ol e 140
Pr="tp \ Il Pt % K

5. INTERACTION POTENTIAL

where

Although the use of the sudden approximation simplifies the analysis, much of the molec-
ular identity is lost. The Hamiltonian Hj is not present in Eq. (103) and thus cannot
influence the probability distribution, since the sudden approximation neglects the molec-
ular vibrational energy when compared with the collision energy, turning the vibrational
structure of the molecule irrelevant.

Even though these high energy collision processes are suitable to describe some limiting
physical situations, it is clear that a more general approach is required if we want to
describe the collision in greater detail. In this section we rewrite the interaction potential
in a way that will allow us to go beyond the sudden approximation.

We first note that taking into account the commutation relations

(B = <k~ g,
[jfv jl‘] =-J: 4+ 2?:j::jg,,w
and (105), it is possible to rewrite the interaction potential (98) in the form (see Ap-

pendix A)
) _ iV:g(t) _iAt o 2Atjz iAt 2Atjz .
i) = Goeaym) [e "y COS( h ) = &% kb (T) Jy]

+ Vi(t)J. + Va(t). (141)

This expression is not a linear function of the SU(2) generators and consequently (104)
ceases to be valid. We next proceed to obtain an appropriate linear approximation
for (141).
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6. HARMONIC LIMIT

An straightforward way to obtain a linear expansion for Vi(t) is to consider the harmonic
limit. This limit was analyzed in Sect. 2, and implies taking the limit N — co. From (34)
we have that in this limit 2J, /N becomes the identity operator.

Applying this result to the non linear part of the interaction potential (141) we obtain

Jim Vi(t) = cos(wot)Va(t)Jy + VA(£)J: + Va(t), (142)

where we introduced the harmonic constant defined by

w,
wo = —h‘i (143)

The potential (142) is linear in the SU(2) generators and consequently (104) is valid.
Substitution of (104) and (142) in (97) leads to the set of differential equations

g1(t) 1 sin(g1(t)/h) tan(ga(t)/R)  —cos(gi(t)/h) tan(ga(t)/R) O 0
g20t)| _ |0 cos(g1/h) sin(g1(t)/h) 0[] Vaul(t)
g | |0 —sin(gi(t)/h)/ cos(ga(t)/h)  cos(gi(t)/h)/ cos(ga(t)/R) O || Vi(t)
9a(t) 0 0 0 1)\ Va(t)
(144)
where we have defined
Vi1 (t) = COS(uJot)Vg(t). (145)

Once we know the solution of (144) the transition probabilities can be computed us-
ing (109). For a general Hamiltonian of the type (71) the solutions to (144) are obtained
numerically, but again it is possible to find closed expressions for particular interactions,
as we now show.

6.1. Ezponential interaction potential

When the dipole and Morse interactions do not contribute to the atom-diatom interaction,
the energy of the system is again given by (113)-(114) with classical trajectories (117).
The evolution operator, however, should now satisfy

dU(t)

— = Va1 (1), U (1), (146)

ih
the solution of which is given by

Ut) = e 50, (147)
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Introducing (147) in (146) we obtain the asymptotic solution

k
g2(~00, +00) = ho,
ks
where
e 2uwomad
] == h )
ks = sinh(kg),
and

ko = wnamq/i.
2E

The transition probabilities are then given by (121)
P(ljm) — |jm)) = |d, .. (B2)I?,
with

_ 92(=00,400) _k

B2 - =1

We note that this expression reduces to (122) in the large E limit

. 2a
i B = T IR,

since it then corresponds to the sudden approximation.
The transition probabilities (152) can be simplified to the expression

v == (1) (122 e

with
a2 (2
p = tan (2),

where we have used the number of quanta v instead of m.

947

(148)

(149)
(150)

(151)

(152)

(153)

(154)

(155)

(156)
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6.2. Ezponential and Morse interaction potentials

When a Morse interaction is introduced in addition to the exponential potential, again
closed expressions can be found. In this case the energy is given by (130), with classical

trajectory (133)
2¢b2/20 [2E bt
= Ay — Ay + (A; + Ag) cosh ( — —) , (157)
p poag

where A; and A, are defined by (135)-(136). On the other hand, in the harmonic approx-
imation we find the interaction potential

~ ~

Vi(t) = cos(wot)Jyype4(0/a0 4 gp2e=2=(t)/e0 _ g gpe=be(t)/eo, (158)
Substitution of (158) and (115) in (97) gives rise to the differential equation

27 cos(wot)

= (159)
Ay = Az + (A1 + Ar) cosh ({22 L

ga(t)

ag

with asymptotic solution

g2(—00,+00) ~mag I 20 ko 2/A1 A,
= = h| — _ .
3o - ik \| A A sin = arctan iy (160)

Finally, the transition probabilities are obtained by means of (152), with 3, given
by (160) and approximated by (155) for systems where [, is small.

~

7. J. AS A VARIATIONAL PARAMETER

Since in the harmonic limit 2J, /N becomes unity, a simple possibility is to consider this
operator as a free parameter. If this is the case we can linearize Vi(t) substituting the
J, operator by 2P in the nonlinear part of (141) and treat P as a variational parameter.
In this way the interaction potential (141) becomes linear in the SU(2) generators while
the parameter P is fixed by fitting the transition probabilities to the ones calculated with
other methods. This leads to the potential

- cos(wotP - -
V() = 0Py )5, + Vi) +Va(e), (161)

cos(zowot)
where we have introduced the anharmonicity parameter zowp, which is related to the Morse
potential parameter through zowp = &% = —A/h [see Eq. (13)]. The operator U(t) is
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again given by (104) but now the functions g;(t) also depend on the (fixed) parameter P.
The differential equations satisfied by g;(t) are given by (147), where (148) is modified to

cos(wptP)
Var = v 162
i cos(zowot) 3(t) ki)

and the transition probabilities are in general computed using (111). This procedure still

relies on the harmonic limit, where jz is taken to be a scalar, but introduces anharmonic
contributions in a simple fashion in terms of the modified potential (162).

This way to linearize the potential 17;(15) has been included for the sake of completeness,
but we do not explore it any further. Since the basic aim of this work is to analyze a new
methods to go beyond the sudden and harmonic approximations, we now proceed to study
this problem.

8. THE EVOLUTION OPERATOR AS A FUNCTION OF THE INITIAL STATE

We now turn our attention to a more general method of approximating the interaction
potential V7(t) which still allows the solution of (97).

To search for a linear approximation to (141) we first apply V;(t) to a Morse eigenfunc-
tion |jm) and then insert a complete set of states 2, |71) (G| in the resulting expression.

Taking into account the selection rules for jy, which imply u = m % 1, we readily find

Vi6)ljm) = Vi (t)]jm),

where
~ . Z‘/g(t) { —iAt/h § (2Atm
Vm(t) = sin(2At/h) ¢ o8 __h_)

_ giAt/n [cos (QAt(m +1)

5 )|jm+1)(jm-f—l[

+ cos (EM%—-I—)) ljm = 1)(Gm - 1|] } 8

+Vi(t)J, + Va(t). (163)

It is not apparent, however, whether the m-dependent operator Vm(t), is hermitian. To
assure Hermiticity we thus define the potential

V() = VL () + Vin(2)), (164)
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which takes the form

Vs(t)

Y= cos(At/h)

{cos(24tm/R) + cos(2At(m + 1)/h)|jm + 1)(jm + 1]
+ cos(2At(m — 1)/R)|jm — 1)(jm — 1| }Jy

+ Vi(t)J: + Va(2). (165)

We now use the fact that the m-dependent cosine functions in (165) are essentially
identical for small values of the diatom phonon numbers v (large m values) so the error is
small if we average the excitation of the two possible states p = m x 1. This leads to the
simple m-dependent potential

V) = cos(2.rowgtm)cos(:cgwot)Va(t)jy
+Va(t)J. + Va(t), (166)

which has the form (100). Formally, we can consider the time evolution of the component
wave function (y(t)|jm):

—ink wnlim) = —in N
= (Y(@)|Vi(t)|im), (167)

and introdnce the adjoint of the time evolution operator

‘ . d{:'t(t . o IS ¥ . \
{’»“(?'u) i(-ih—a—))’ﬁn> = {(Y(to)! U (133 () jm). (168)

If we now substitute (166) for the action of Vi(t) on the state |jm), we find

dUr!u(t) _ UT

r (V" (t) (169)

—ih

when we consider that the initial state of the molecule is | jm). We can now propose an
m-dependent evolution operator whose adjoint is given by

U,tn(t) — e;';ya(m‘t)jz e;‘;yz(m.t)jyeﬁgl(m.ﬂjz eh9s(mit) (170)
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where the functions g; also depend on the initial state m. The differential equations sat-
isfied by the functions g;(m,t) are

a1(t) 1 in(g1/h)tan(ga/h)  —cos(g1/h)tan(go/R) O 0
g2t) ] _ |0 cos(g1/h) sin(gy /h) 0| | Vaz(m,t)
9s(t) | |0 —sin(g1/h)/cos(ga/h) cos(gi/h)/cos(ga/h) O e |’
94(t) 0 0 0 1 Va(t)
(171)
where
Vaa(m, t) = cos(2zowotm) cos(zowot)Va(t). (172)

The transition probabilities are again evaluated using ( 111), but closed expressicns can
be found only for the particular interactions considered before.

8.1. Ezponential interaction potential

For the exponential interaction the evolution operator acquires a closed form. This case is
particularly interesting since an exponential potential was assumed by Clark and Dickinson
in their quantum mechanical description of the transition probabilities for the scattering
of an atom from a one dimensional Morse oscillator (11]

When Vi(t) = V5(t) = 0 the time evolution operator takes the form

Un(t) = e~ kotmt)dy (173)
which for the potential (166) leads to 7
g(m, t) = cos(2zowomt) cos(zowot)Va(t), (174)

where V3(t) is again given in terms of the classical trajectory (117)

Vi(t) = 'ype_b::(t)f'lﬂ = Esech? (”-2% %) ; (175)

with ¥y = —3DN 7, 1. To obtain the scattering matrix we integrate (174)

o d Jree _ wompal { (2m —1)xo (2m + 1)zg
Blm) = h f_m glmt)di = b T,k sinh[(2m — 1)zoko) o sinh[(2m + 1)zqko) }

(176)
where kg is given by (154) and zp = 1/(N + 1).
The transition probabilities are thus

P(ljm) — |jm")) = |(jm’ [Py | jm))?
= |d&2, . (B(m)). (177)

which are compared in the next section with the results of Clark and Dickinson.
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8.2. Ezxponential and Morse interaction potential

We now consider the effect of the Morse potential together with the exponential interac-
tion. In this case the total energy is given by (124) with classical trajectory

2¢b/a [2E bt
= A; — Ay + (A; + Az) cosh ( ——, (178)
P noag

where A; and A; were defined in (135)-(136). The interaction potential is then

V™(t) = cos(2zowomt) cos(zqwot)Va(t)Jy + Va(t) (179)
and the time evolution operator takes the form
Upn(t) = e~ %92y g=foe,
Substitution in (169) gives rise to the differential equation

_ ~[cos(wozot(2m + 1)) + cos(wozot(2m — 1))]

ga(t) Ay — Az + (A1 + Ag)cosh ((/2ER) e
whose solution can be found in closed form
afm) = L0279 _ m\;—?im e I
i ag
L) o=
where
_ 2/
v - 268
and
woZo

(= .
[2E b
# ao
The transition probabilities are again given by

P(ljm) — |jm')) = |d& .. (Ba(m))|*.

When the dipole interaction Vi(t) is taken into account it is not possible to obtain closed
expressions for the transition probabilities, but a numerical analysis is straightforward.
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FIGURE 1. Three dimensional representation of the probability P(0 — v) as a function of the
collision energy in units of fw, /2 according to the calculations of Clark and Dickinson [11]. The
interaction parameter b is given by 0.314.

9. RESuULTS

In this section we present the results of the different approximations we have considered,
starting with the case where only the exponential interaction is taken into account and
compare them with the analysis of Clark and Dickinson.

A convenient way to present the global results is to fix the initial state (to v; = 0,
for example) and to plot in a three dimensional figure the probabilities P(0 — v) as a
function of both the energy and v. In Fig. 1 we show in this way the results of Clark
and Dickinson for the H, — H, system, where we only plot energies above 4hw,, since
we expect our approximations to break down for lower energies. In Fig. 2 we show the
calculated probability surface corresponding to the sudden approximation, Eq. (121). In
this case the probabilities depend only on the interaction parameter b, which was fitted
to obtain the best agreement with the surface of Fig. 1. (In this approximation the prob-
abilities are independent of the properties of the molecule). Note that it is possible to
minimize this error for different values of b, as illustrated in Fig. 3 where we plot the
deviation (defined as the sum of the probability differences between the ones given in
Fig. 1 and those of Fig. 2) as a function of b. The global fit is clearly not satisfactory, and
the oscillations observed are unphysical. We should mention the role of the equilibrium
distance z. in the description of the collision. When the triatomic system from which we
start our model can give rise to a bound molecule, then z, can be determined. When this
is not the case (e.g., for the H, + H, system), the parameter p = p(z.) is to be treated
as an additional parameter. However, when only the exponential interaction is taken into
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FIGURE 2. Probability P(0 — v) as a function of the collision energy (in units of A, /2) in the
sudden approximation. The fitted interaction parameter was found to be b = 0.112.

account the interaction v can be renormalized to include p, making this parameter un-
necessary. This is the case when we compare our model with the Clark and Dickinson
results.

As shown in Sects. 5 and 6, the sudden approximation can be removed by making some
approximations in the interaction potential given by (141). Taking the limit (144) we ob-
tain the harmonic approximation, with transition probabilities given by (155). We remark
that even though both (155) and (121) are given in terms of Wigner’s d- function, their
arguments are quite different. In this case we do obtain a dependence on the spectroscopic
constant w, (we = 4395 cm™!, =ewe = 117 cm™! for Hz) which characterizes the molecule.
In Fig. 4 we present the fit of the lransition probability function (155) to the results of
Clark and Dickinson of Fig. 1. Although the improvement with respect to the sudden
approximation is evident and the unphysical oscillations disappear, strong discrepancies
remain for low energies and for high values of v.

We finally turn our attention to the m-dependent approximation proposed in Sect. 8.
In Fig. 5 we present the results of (176) and (177) with b as our only free parameter. The
discrepancies for lower energies and higher quantum numbers v are drastically diminished.
Even though these results differ slightly from the exact calculations of Clark and Dickinson,
the general trend is reproduced remarkably well taking into account the semiclassical
method and our other approximations. In Fig. 6 we present the transition probabilities
P(1 — v) at fixed energy E = 12fiw,/2, for the exact calculation of Ref. [11] and the
three different approximations we have analyzed in this article. Again the agreement with
Ref. [11] becomes closer as we move from the sudden approximation to the m-dependent
approximation, with the harmonic limit in-between.
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FIGURE 3. Plot of deviations between the probabilities calculated in the sudden approximation
and those provided by Clark and Dickinson, as a function of the interaction parameter b.

The algebraic model we have presented provides three types of interactions between the
atom and the molecule. Up to now we have only considered the exponential interaction
since in this case exact calculations are available. However, the other two contributions
—Morse and dipole interactions— can be easily included in order to study their effect on
the transition probabilities.

The introduction of the dipole interaction is particularly interesting, since it distin-
guishes between homonuclear and heteronuclear diatomic molecules. Although in this case
we cannot compare with exact calculations, we present in Fig. 7 the results of including
the dipole interaction on the transition probabilities obtained with our m-dependent ap-
proximation. Note that we have considered both signs of the dipole interactions, which
correspond to the two possible frontal collisions.

10. CONCLUSIONS

We have presented an algebraic approack to one-dimensional atom-mnlecule collisions,
which seems to provide an attractive alternative to the standard integro-differential tech-

clusion of the Morse potential together with the exponential one still leads to analytical
expressions for the classical trajectories and transition probabilities. To our knowledge
these are new solutions for this system. This is not the case for the dipole interactions,
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FIGURE 4. Probability P(0 — v) as a function of the collision energy (in units of hw, /2) in the
harmonic approximation. The fitted interaction parameter was found to be b = 0.137.

where only numerical solutions for the classical trajectories can be obtained. Through these
potentials, however, it is possible to study collisions involving heteronuclear molecules, as
shown in Fig. 7.

It is important to note that the m-dependent averaged potential (166) can be obtained
directly from (98) without going through the one-dimensional interaction potential (141).
These results suggest that the approximation method developed in this work can be ex-
tended to three dimensional systems. We can obtain an m-dependent three dimensional
interaction potential (linear in the generator of the U(4) algebra) by carrying out an av-
erage over the three dimensional matrix elements equivalent to (165). We are thus in a
position where we can develop the three-dimensional algebraic model without the strin-
gent restrictions implied by the sudden approximation and apply it to real atom-molecule
collision processes. This work is currently in progress.
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FIGURE 5. Probability P(0 — v) as a function of the collision energy (in units of hwe/2) in
the approximation with m-dependence in the interaction potential [Eq. (177)]. The interaction
parameter is b = 0.122.

APPENDIX A

In this appendix we derive the interaction potential (141) starting from (98).

The Hamiltonian H, only depends on the J, operator (see Eq. (72)). On the other hand
the potential V(¢) includes contributions of the operators J, and jy as indicated in (89)
and (90)-(93). Since Hy commutes with J., we only need to analyze the contribution

VP = il j gmiad? (182)

in the interaction potential (98), where q = A(t —to)/h.
Applying to (182) the Baker-Campbell-Hausdorff formula (105) we obtain

o= 5 (159
n=0 '

where the number of commutators corresponds to the summation index n. Taking into
account the commutation relations

[‘jzszy] = —jy = Qijzjxa (184)
[jzzi‘]-l'] =-J:+ 2ijzjy1 (185)



958 R.D. SANTIAGO ET AL.
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FIGURE 6. Transition probabilities P(1 — v) for a fixed collision energy E = 12hw, /2 using (a) the
exact results of Clark and Dickinson (¢), (b) the harmonic limit (3O) and (c) the m-dependence
approximation (+). The points corresponding to the sudden approximation do not appear in the

plot.

we find for the n consecutive commutators in (183) the result

P A A

w2, =Ly
n 2r .
(=) :2) (21‘) (Ble)™ dy s ; (2r+l

) @A), (186)

where (2] denotes the integer part of z. Expression (186) is now substituted in (183) to
obtain

Vi = 8, J, +iS, Jx, (187)
where
w (3] .
=y __ (g L) (188)
o Yoo (n—2r)(2r)! 21") (2r)!
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FIGURE 7. Effect of the dipole interaction on the transition probabilities in the m-dependent
approximation. The energy was taken to be E = 10hw, /2. We have denoted by (O) and () this
effect for positive (a = 0.02) and negative (@ = —0.02) values of the dipole parameter, respectively.

S = i [2;_11 (_iQ)n (2j )2r+1 (189)
T L Gri)n-2r 1)

We now proceed to simplify the first sum. The second one can be simplified in the same
way.

The sum S) can be split in two parts, corresponding to n even (n = 2u) and n odd
(n = 2u + 1), respectively:

Si=3 S I o
b (2u — 2r)1(2r)! " 77F

u=0r=0
=4 i i (—)uqutl - -
u=0r=0 (2u+1- 2r)!(2r)! z) -

This double sum can be written in a more convenient form by interchanging the sums over
u and r, and identifying the series expansion of the functions cos(g) and sin(g). We thus
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obtain

= - (_)rq2r T \2r _ Far
1= 3 V(97,27 (cos(q) — isin(q))
= (2r)!

= e " cos(2¢J,). (191)

Following the same procedure for the second sum S, we find

o0 r 2r+1

= (=1)"*g 312 ;
Sy = g r+1 _—ta
3 ’rz:u ry 2JTTe

= —ie~"sin(2¢J,). (192)

With these results the contribution (187) takes the final form

L [e_quy cos(2qu)jy + €' cos(2qu)jy] " (193)

(3]
W= sin(2q)

which allows to rewrite the interaction potential (98) in the form

»

- _ iVa(t) _iAt 2AtJ,
Vilt) = Geatym {e N ”“’S( h )

— et cos (2A;J") jy} + Vi(t)J. + Va(t).
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