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ABSTRACT.Using an SU(2)-based model of triatomic molecules for vibrations and a coberent-state
metbod to extract a classical variable for one of tbe bonds, we derive a scattering Ilamiltonian for
one-dimensiona! atom-diatom collisions which generalizes previous dcscriptions. The problem of the
energy transfer from the atom to a diatomic molecule described by a Morse oscillator is considcred
in detai\. \Ve briefly discuss the generalization of the model to three-dimensional systems.

RESUMEN.Con base en el modelo SU(2) para la descripción de vibraciones moleculares y emple-
ando un método de estados coherentes para extraer una variable clásica de uno de los enlaces,
se deduce un hamiltoniano de dispersión para colisiones unidimensionales átomo-diátomo, el cual
generaliza las descripciones anteriores. Se considera en detalle el problema de la transferencia de
energía del átomo a la molécula diatómica, la cual se describe mediante un oscilador de Morse. Se
examina brevemente la generalización del modelo al caso tridimensional.

PACS: 03.65.Fd; 34.50.Ez

l. INTHODUCTION

AIgebraic modc1s have recently been proposed fOl' the study of rotation-vibration molec-
ular spectra [1-31. Both the SU(4) [1-3] and the SU(2) [4-6] algebraic models constitute
promising alternatives to the usual integro-differential techniques for the analysis of vibra-
tional spectroscopic data, the latter being specially suited fOl'the incorpOl'ation of discrete
symmetries in a simple fashion [61. On the other hand, atom-molecule one-dimensional
collision processes have been studied in detail with different degrees of approximation
by solving the Schriidinger equation in configuration space [7,81. In particular, collisions
between an atom and a diatomic molecule represented by a l\lorse oscillator have been
analyzed using classical [9]' semiclassical [101 and quantum mechanical treatments 111].
In the last years Lie algebraic methods have also been applied to scattering problems in
molecular physics [12-15]. In the framework of these techniques one-dimensional collisions
have been studied in conjnnction with time evolntion operator methods for a variety of
molecular potcntials, including hannonic, anharmonic and r"lorsc oscillators, whcrc tite
atom-diatom interaction is usnally restricted to an exponentia! fonn [l3J. For three di-
mensional systcms, however, no algcbraic scheme has been implementcd and thus OIle
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needs to resort to a number of computational integro-differential methods to describe
such interactions [16).

In two recent papers, we proposed a new algebraic framework, based on the vi-
bron model, that leads to a three-dimensional description of atom-diatom collision pro-
cesses [17,18]. Our basic idea was to first consider the atom-diatom system as a triatomic
molecule, described algebraically by means of the vibron modeJ. This model incorporates
monopole, dipole and quadrupole interactions between the bonds and has been success-
fully applied to the description of molecular rotation-vibration spectra [1-3]. In addition,
an attractive feature of this scheme is that the Hamiltonian and other operators can be
transformed to configuration space by means of a coherent state basis, where coordinates
can be defined for each bond in the molecule [19,20]. In particular, a direct connection can
be established between the SO(4) limit of the vibron model for diatomic molecules and
a Morse potential [21]. Given the parametrized triatomic vibron Hamiltonian described
in a U1(4) x U2(4) basis, we then apply the coherent-state method to only one of the
U(4) spaces, thus extracting a coordinate dependen ce for the interaction between one
of the atoms and the remaining diatom, while the latter is still described algebraically.
Although we start from a bound-state description, the formalism can then be analytically
continued to positive energies as will be shown in detail in the one-dimensional example
below. The result is a mixed coordinate space-algebraic Hamiltonian, which is formally
analogous to the ones nsed in one-dimensional schemes [12-15].As a bonus, all interactions
are well defined and we do not need to restrict them in ad-hoc fashion to an exponential
form 117,18]. In principIe, this Hamiltonian can then be solved in the interaction picture,
including the evaluation of matrix elements and classical trajectories [17,18].

Although the model introduced in Refs. [17,18] is fnlly three-dimensional and we are
hopeful that it will prove useful for the analysis and interpretation of real inelastic scat-
tering data; its application is still a difficult task. \Vhile the diatomic molecule can be
described to a good approximation in the vibron model framework, the parametrization
of the interaction requires considerable computationaJ trials, as well as the analysis of the
approximations involved in the interaction picture. For this reason we have constructed
a one-dimensional version of our model based on the U 1 (2) x U2(2) dynamical algebra,
which generalizes previous one-dimensional descriptions and is simpler to analyze than the
three-dimensional model, but already incorporates most of the attractive features (and
difficulties) of the full modeJ. In this case the analytic continuation to positive energies
corresponds exactly to a U(I, 1) description of the potential associated to the incoming
atom, as we show in the next section. For this system we can compare our results with
exact calculations for the interaction of an atom with a Morse potential [11] and can thus
gauge the accuracy of onr approximations with the objective of extending them to the 3D
case.

In the next section we introduce the general U1(2) x U2(2) algebraic Hamiltonian and
derive the corresponding mixed Hamiltonian using the method described before. In Sect. 3
we analyze this Hamiltonian in the interaction picture and the procedure to obtain the
wave functions. \Ve use the sndden approximation in Sec!.. 4 to obtain the time-dependent
solutions and describe ncw closcd rcsults fOf thc timc-dcpClldcllt c1assical trajcctories. In
Sect. 5 we rewrite the interaction potential in a way which willlater allow us to remove the
sudden approximation. \Ve present the harmonic limit of the model in Sec!.. 6, usiug the
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interaction potential previously obtained and then analyze the solutions for the case when
the dipole moment is null. An interesting variation of the harmonic result is sketched in
Sect. 7, while in Sect. 8 we consider a new method of approximation which goes beyond
the sudden approximation for Morse oscillators. In Sect. 9 we compare our results with
exact calculations carried out by Clark and Dickinson, while in the last section we present
our conclusions and discuss how the present analysis can be used as a guide for the study
of the three-dimensional model and its applications to real atom-diatom collisions.

2. ATOM-MOLECULE INTERACTION HAMILTONIAN

We start by analyzing the stretching vibrations of triatomic molecules. A straightforward
way to deal with this problem consists in considering harmonic interactions between the
atoms. This assumption, although physically reasonable for small number of quanta, does
not provide an adequate description of the system when the number of phonons increases.
One of the simplest potentials displaying anharmonic effects is the Morse potential, which
can give rise to dissociation, as expected for molecular systems. We shall consider Morse-
like interactions between the atoms of the triatomic molecule in the framework of an
algebraic approach, starting by establishing the algebraic representation of the Morse
potential in the one dimensional case.
The Hamiltonian of a particle of reduced mass p. under a Morse potential is given by

_ h2 d2 2. •
1lM = ---- + D(e--;r - 2e-;l), (1)

2p. dx2

whose eigenstates we denote by £. These states can he associated with U(2) :) SO(2)
states [22]. In order to see how this isomorphism comes abont, consider the radial eqnation

1 ( 1 d d a
2

)- ---r-
d

+ 2 + r2 q,(r) = (N + l)q,(r),
2 r dr r r

(2)

which corresponds to a two-dimensional harmonic oscillator (in nnits where h = l' = e = 1)
associated to a U(2) symmetry algebra [231. By carrying out the transformation

r2 = (N + l)e-P,

Eq. (2) transforms into

[_ :;2 + (N: 1)2 (e-2p _ 2e-p)] q,(p) = _ (%) 2q,(p), (3)

which can be identified with (1) after defining x = pd and mnltiplying by h2 /21,d2, provided
that

(4)

£= f¡2
2

--212m,¡u
(5)
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where we have defined m = u/2. In the framework of the U(2) algebra, the operator Ñ
(whose eigenvalues are denoted by N) corresponds to the total number of bosons and
is fixed by the potential shape according to (4), while m is the eigenvalue of the 80(2)
generator J,. In order to obtain the possible values of m in terms of N, we recall that !l
simple realization of the U(2) generators can be given in terms of the number operator N
and the operators jI':

with

(6)

(7)

where sI (s) and tI (t) are bosonic operators satisfying the usual commutation relations

[s, sI) = [t, tI) = 1. (8)

All other commutators vanish. The operators (6), (7) satisfy the usual angular momentum
commutation relations, which in terms of the raising and lowering operators

j+ = j. + ¡jy,

L = j. - ¡jy,

are given by

li" j,J = ::l:lb

li+,L¡ = 2j,.

Computing j2 = ji + j; + ji, we find

j2 = Ñ (Ñ + 1)22'

from which the identification

. N
) = 2'

(9)

(lO)

(11)

(12)

(13)

(14)

between the eigenvalues j ami N associat~d 1.0 j and Ñ, respectively, is readily made.
One can show directly from (6)-(7) that [J2, NI = O. The set (7) thus defines the 8U(2)
subalgebra of U(2). In Our applications Ñ = N is fixed by the interatomic potential.
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From the identification (14) we obtain for m, the eigenvalue of J" the foUowing values:

N (N - 2) 1
m = :1:2",:1: 2 , ... 2 01' O.

According to (5) the Morse energy is given in terms of m2, which means that the Morse
spectrum is reproduced twice. Consequently, when calculating particular spectral proper-
ties the m-values must be restricted to be positive. \Ve note that the fact that only part
of the U(2) states in the representation [N) correspond to physical states is a peculiarity
due to the unphysical nature of the one-dimensional mode!. In the three-dimensional ver-
sion of the model the physical states span the fuU [N] representation of U(4) [17,18]. For
practical purposes we can work with the fuU representation of U(2) and only impose the
m 2': O restriction when computing transition probabilities, as shown in the subsequent
sections. In terms of the U(2) algebra, it is clear from (5) that the Morse Hamiltonian has
the algebraic realization

(15 )

The eigenfunctions of this Hamiltonian are then specified by the quantum numbers N
and m, which are the eigenvalues of the invariant operators of the groups U(2) and 50(2),
respectively. For this reason they are denoted in the foUowing forrn:

where in this case we take

U(2) ::l 50(2)
J J

I[NI, m},
( 16)

N
m=2"'

N - 2 1
2 1'" 12 01' O. (17)

The Morse Harniltonian (15) can be rewritten in the more convenient fOrIn

• 'M A.. .. .
Il = AH = 2(J+"- + LJ+ - N),

where we have used the relation

(l8)

• 2
and added the constant ter m A~ in order to place the ground state at zero energy.
The parameters N and A appearing in (l8) are related with ¡he usual harmonic and
leading-anharmonic constants We and X,.I.v'f' llscd in spcctroscopy. To obtain this relation
it is convcnicnt to introduce tlle quantum 1I1lJllbcr

N
v = j - 711 = 2 - Ul., ( 19)



ATOM-MOLECULE INELASTIC SCATTERING... 929

which corresponds lo lhe number of quanla in lhe Morse oscillalor as indicaled by ilS
eigenvalues

N-I N
v = 0,1,2, ... -2- or 2'

for N odd or even, respeclively. In lerms of v, lhe Morse eigenfunclions are given by

U(2) :> 50(2)
1 1

I[N), v),

where

(20)

(21)

I[N]' v) =
(N - v)! - v
N!v! (L) I[N]' O), (22)

and I[NI, O) is lhe Morse vacuulO Slale. In lerms of v, lhe eigenvalues of lhe Hamillo-
nian (18) are given by

A
EM = -2(N + 1/2) + A(N + I)(v + 1/2) - A(v + 1/2)2,

from which we make lhe idenlificalion

We = A(N + 1),

XeWe = A.

(23)

(24)

(25)

Thus, in a dialomic molecule lhe parameters A and N can be delermined by lhe speclro-
scopic constants We and XeWe.

Before considering lhe mode! for lhe case of a lrialomic molecule, we discuss lhe har-
monic limil of lhe U(2) mode!. The purpose of this analysis is lwo-fold. On lhe one hand
il clarifies lhe physical meaning of lhe algebraic mode!. On the olher, it paves lhe way for
lhe subsequenl analysis of lhe harmonic limil in the case of lhe alom-dialom syslem. We
slarl by eSlablishing lhe aclion of lhe jI operalors on lhe Morse slales (21)

j+I[N], v) = vv(N - v + 1) IIN], v - 1),

LI[Nj,v) = V(N-v)(V+I)I[Nj,V+I).

Defining lhe change of scale transformalion

(26)

(27)

-1 _ L
b = .;N' (28)
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it is clear that

lim ¡j I[NJ,V) = JiiI[Nj, V - 1),
N-o<>

lim ¡jtI[Nj, V) = JV+l1[N], V + 1).
N-o<>

(29)

(30)

which correspond to the harmonic limit of the model, as expected from the role of N in
Eq. (4), ¡.e., for infinite potential depth the Morse potential cannot be distinguished from
an harmonic potential. Using the definitions (19) and (28) we can rewrite the commutation
relations (12) in the alternative form

where

- -t 2íi
!bb]=I--, N'

Ñ .
íi = 2" - Jo,

(31 )

(32)

is the Morse phonon operator corresponding to the definition (19). The limit N - 00 leads
to the contraction of the SU(2) algebra to the Weyl algebra generated by b, bt and 1, with
the usual bosan commutation relation lb, bt] = 1. Expression (11) can also be rewritten as

[¡j,¡jt] = 2io,
N

which means that in the harmonic limit

l
. 210,m N = 1.

N-o<>

(33)

(34)

Relations (28)-(34) indicate the procedure to arrive at the harmonic limit of the model,
¡.e., the i+,L should be renormalized by dividing by IN and then take the limit N - oo.
Following the aboye procedure we obtain for the harmonic limit of the Morse Hamilto-

nian (18)

. 1. M . I [1 (" ") Ñ]
)~o<>NH = )~oo N 2" J_J+ + J+1- - 2"

1 I
= -(btb+ bbt) - -
2 2

= btb,

which is the usual harmonic oscillator Hamiltonian. Here we have denoted with b) (bol
the corresponding harmonic creation (annihilation) operators defined by bl = limN_oo ¡j),
bi = limN_oo ¡ji.
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We remark that Eq. (28) can be applied in the opposite sense, ¡.e., as a way to construct
the anharmonic representation of harmonic operators. Any given function of b, b' can be
mapped into the same function of j+, j_ through the correspondence

, L
b -+ "fJii' (35)

(36)

For example, the one-dimensional harmonic oscillator (with atomic units)

with eigenvalues E = v + 1/2, can be transformed to its anharmonic representation by
means of (35) and using Eqs. (13) and (32)

- 1 -- __
H -+ 2N(LJ+ + hJ-)

1 -2
= N(P-j;)=(v+1/2)- ~,

which corresponds to the algebraic realization ofthe Morse oscillator. This prescription can
be applied to every oscillator in the system and to the interaction terms among them [24]
We now turn our attention to a triatomic molecular system. In this case we assign a

Ui(2) algebra to each interatomic interaction, which means that we describe each relative
interaction with a Morse potentia!' In addition, we may inelude bond-bond interactions
using the group generators, as explained below. All relevant operators in the model are
then expressed in terms of the generators of the group

(37)

whieh corresponds to the dynamical group of the system. In particular, the Hamiltonian
of the system can be expanded in terms of the dynamical group generators, taking into
account its hermiticity and its invariance with respect to the symmetry group of the
system. There is no point symmetry for A - A - B and A - B - C molecules, while for
A - B - A and A - A - A molecules (in olle-dimension) it is isomorphic to the permutation
group 52. Since we shall focus on the system H2-He, we do not worry about the point
symmetry of the triatom. The simplest molecular Hamiltollian describing the stretching
vibrational excitations can be written as [231

- -2 -2 •• --
11= AJ,.l + BJ'.2 + CJ,.IJ'.2 + DJI . h, (38)

where j{,i' ~ = x, y, Z, are the generators of the SUi(2) grollps. A possible basis to diago-
nalize the Hamiltonian (38) is the one associated lo the local mode chain

VI (2)
J

I[NII,

x V2(2) ::> SO'(2)
J J

IN2J; VI,

x S02(2) ::> SO(2)
J J

V2; V),
(39)
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where below each group we have indicated the eigenvalues characterizing the invariant
operators associated to each group. Explicitly the basis (39) is given by

where IINiJ, Vi) are given by (22), and V is the total uumber of quanta de!ined as

V = VI + V2.

(40)

(41)

The !irst two terms in (38) correspond to two independeut Morse oscillators, as (15)
indicates. The third term represents a weak coupling between the oscillators, whose form
can be seen by its action on the basis (40)

" " (NIN2 ¡ )Jz,IJz,2I1N¡J[N2j; VI, V2;V) = -4- - ;¡(N¡ V2 + N2vI) + V¡V2 I[N¡JIN21; VI, V2; V),
(42)

where (19) was used. Note that in the harmonic limit both N¡ aud N2 ~ 00, so that

(". 2). ~1~2 N 1hm -- - - = --(VI + V2)'
N-oc N 4 2

(43)

The last ter m il . i2 gives rise to a strong interaction of the two Morse oscillators. This
interaction is not diagonal in the basis (40) and in the harmonic limit it reduced to

l. io¡io2 1 l' (i+IL2+L¡i+2)= UI1 -- + - Inl ------~
¡••••-oo N 2,\'-00 lV

= -~(VI + V2) + ~(blbl + blb¡). (44)

The Hamiltonian (38) thus corresponds to the anharmonic form of the simple Hamiltonian

(45)

\Vhile the Hamiltoniau (38) incorporates the dominant interactions in triatomic
molecules as shown in several papers on this subject [4-6], it is not the most general
one. \Ve propose a simple generalizalion of (38) consisting of the following molecular

Hamiltonian
" "2 "2 ." ". ""
HMol = A./z•I + lJJz.2 + CJz¡./z2 + D./"./2 + FN2./y.¡' (46)

\Ve stress that (46) is choseu for simplicity aud that iu arder to iuelude long range polar"
ization or Van der Waals inleractions additional terms must be ineluded. Note that lhe
last term in (46) does not conserve the v quautum number and that it is asymmetric in
the two bonds. This fact reflects the differeut roles played by these interactions for the
scattering atom"molccule system.
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Before we can apply this formalism to atom-molecule scattering, we shall show that
Eq. (3) can be analytically continued to positive energies and that this procedure cor-
responds to a description of the system in terms of the U(I, 1) algebra [251 To achieve
this goal, we first note that Eq. (3) suggests that the continuous part of the spectrum
can be obtained by analytically continuing m --+ ik, where k is then proportional to the
momentum and in the range O ~ k < oo. Since (2) and (3) are assodated to a U(2)
algebra and it is well known that this algebra can be transformed into U(I, 1) byanalytic
continuation [251, we now study the chain of algebras

U(I, 1) :J 0(1, 1) (47)

arising from (21) by this continuation. Thc SU(I, 1) subalgcbra of U(I, 1) is gencrated by
the set of operators k+, [L, k, satisfying the cornmutation relations [26)

[k+J<_1 = -2I<"

[k" kr] = :i:k",

(48)

(49)

where k" = kx :i: ili:y, whosc only difference with the SU(2) cornmutators is the minus
sign in (48). The quadratic SU(I, 1) invariant is given by

which can be rclated to the lincar U(I, 1) invariant by the rclation [25J

- 1 - _e = ;¡(M + 1)(M - 1).

(50)

(51)

This linear invariant takes intcger values and for positive energies plays the role of the
total boson number N in Eq. (2). A coordinatc rcalization for the k; and ir operators
can be written as [25)

(52)

(53)

(54)

and

(55)
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Prom these relations it is simple to verify the commutators (48) and (49) and that

[[(;, if] = O, (56)

which proves the invariance of if. Using Eq. (51) and denoting the eigenvalues of 6 by

we find that

(6) = j(j + 1),

M = -(2j + 1).

(57)

(58)

The generator [(, of (54) has been chosen to be a non-compact generator (associated to
0(1,1) in (47)) and thus it will have a continuous spectrum [271. \Ve are concerned with
the simultaneous eigenfunctions of if and [(" which we denote by 1M, k),

iflM, k) = MIM, k),

[(,1M, k) = klM, k).

Returning to the realization (54) and (50) we introduce hyperbolic coordinates

x = rcoshlJ,

y = l' sin hlJ.

In these variables, the operators Ü and [(, are given by

if = ~ (1'2 - ~ i!.-ri!.- + 2- ¡y2 )
2 l' ur ur 1'2 Ur/J2 '

_ i U
I<, = 2ulJ'

The solutions of Eqs. (59), (60) can be written as

where ep satisfies

1 ( 1 u U 4k
2

)_ __ -1'..,-- - -2 +,.2 <I>".k(1')= M<I>",dr),
2 rur!)r l'

which is the analog of Eq. (2). Finally, carrying out the transformation

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)



ATOM-MOLECULE INELASTIC SCATIERING... 935

we find

(68)

This is again the one-dimensional Morse-oscillator equation, but associated to the scat-
tering solutions, k2 > O.Comparing (68) with (3) we see that M = N + 1, in order that
both equations arise from the same potentia1. Also note that k is a continuous variable,
since O in (61) is an hyperbolic angle and hence is not periodic. We have carried out this
derivation of the scattering Morse equation in terms of U(l, 1) in order to show that the
analytic continuation m - ik of Eqs. (2) and (3) has a precise mathematical meaning.
We stress the fact that both (3) and (68) correspond to the same potential, as long as we
take M = N + 1. Having done so we return to the U¡(2) x U2(2) Hamiltonian (46) and
derive below a classical coordinate for U2(2). Strictly speaking, the scattering Hamilto-
nian corresponds to U¡(2) x U2(1, 1), but we shall derive an energy surface for the simpler
U¡(2) x U2(2) system and then proceed to carry out the analytic continuation to the
positive energies corresponding to a scattering regime.
We now introduce a classical distance between one of the atoms and the center of mass

of the other two, by taking the expectation value of (16) with respect to a coherent state
basis associated to one of the bonds (e.g., bond number 2) [19-21]

(69)

where sI and tI are the two scalar boson creation operators (6), (7) and (8), with even
and odd parity, respectively, through which the U2(2) algebra is realized [23].The variable
r in (69) is a radial parameter, which is related to the distance x between the atom and
diatom center of mass by [21]

r=
e-b(x-.r", >/ao

2 - e-b(x-x. )/00 ' (70)

where x< is the value of x for which the Morse potential acquires its minimum value, i.e.,
if only B/;,2 was present in the Hamiltonian (16), x< would correspond to the equilibrium
bond distance, while b is a potential parameter whose value depends on the molecule to
be considered and ao is a scale parameter which we take as the 130hrradius. The justifica-
tion for this change of variable will become clear below. Taking into account the explicit
realization (7) of the generators of the U2(2) group, we can compute the expectation value
of (46) with respect to (69). We arrive at a Hamiltonian which depends on the first bond
through the operators {jo,I a = x, y, z}, and is a functioll of the second bond coordillate x:

(71)
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with

where

- -2Ho = ho(N¡) + AJ"I,

- - ~( ~)~V¡(X) = -o.'J,,¡e- 2'0 2-e-'0

_ (~2b('-''¡)V2(X) = -(3 2e- '0 - e-'O ,

0.' = -~(C + D)N,

(3 = -~BN(N - 1),

"/' = -~DN.

(72)

(73)

(74)

(75)

(76)

(77)

(78)

The potential V2(x) arises from the /;.2 operator in (46) and we see from (74) that the
application of (69) and (70) indeed leads to a Morse potential for this term, as expected.
In (71) Ho corresponds to the Morse-like Hamiltonian of the diatomic molecule, with
ho(N¡) chosen to place the ground state at null energy. In order to understand the meaning
of the VI(x) term in the Hami!tonian, it is convenient to recall the explicit realization (7)
of the operators ¡je¡) in terms of boson operators st(s) and tt(t) [23). In analogy to the
situation in the three-dimensional model iI7J where the space is generated by stand pt
boson operators with positive and negative parity, respectively [IJ, in the one-dimensional
case tt is assigned negative parity while "t remains with positive parity [23). Thus tt is the
one-dimensional projection of the pt boson and can in fact be identified with p¿. Given
that tt is odd and st is evm the operator j,.I, which appears in VI(x), ha, odd parity
and can be identified with the one-dimensional projection of lhe dipole inleraclion. The
term V2(x) does not involve the SU(2) operators and as mentioned above corresponds lo a
Morse-like inleraclion. Finally, lhe potenlial V3(.T) contains the even paríty operator jy.¡
and can be identified with the monopole interaclion considered in previons analyses [7J.
\Ve nole that the para meter F of (46) does nol appear in (76)-(78) because its value was
fixed to be -D/2 in order to exactly reproduce an exponenlial pOlential in (75) and thus
be able lo compare our resulls with other cakulalions [11-131. In the 3-dimensionalmodcl
lhis interaction appears wilhout lhe need of fixing particular parameler values [17).

The liybrid Hamiltolliall (71) depends 011 t.II(' molecular eoordinatcs, through the op-
erators jet, and on lhe relative coordinate x. This coupled system is quite complicated,-
however, and we need to resort lo approximations in order lo solve it. \Vhen the energy of
the projeclile is high compared wilh the molecular \'ibrational energy an adiabatic approx-
imalion can he applied. \Ve can then "frel'ze" lhe molecular ('oordinales by substituting
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iz,1 and iv,l in (73) and (75) by appropriate expectation averages defined by

iz 1- .lz,I(V)= (j,vliz,dj,v) = (N2 - v), (79)

l(j, v - Iliv,dj, vW + l(j, v + Iliv,dj, vW (80)iv,l - .lV,I(j,V) = 2

where IJ, v) correspands to the vibrational states of the molecule (21), characterized by
the number of bosons NI = 2j and the number of quanta v = j - m [23). The substitution
of (79) and (80) into (73) and (75), respectively, leads to an v-dependent (ar m-dependent)
Hamiltonian which is only a function of the relative coordinate x. This approximation
allows the computation of classical trajectories followed by the atom. This task is achieved
by writing the classical Lagrangian for the system, which is given in general by

L = EK - V(x), (81)

where EK and V(x) correspond to the kinetic and potential energies, respectively. In our
case we are interested in describing the classical trajectory of an atom subject to the
interactions (71). According to (79), the contribution (72) is a constant during the motion
of the atom and consequently we identify the potential energy felt by the ato m with the
energy surface (72)-(75):

(82)

We note that (82) generaJizes the exponential interaction VJ(x) assumed in previous one-
dimensional analyses [12-14). Once the form of the potential has been estabJished, we can
consider the classical equations of motion for the incoming particle. Since x corresponds
to the relative coordinate from the atom to the diatom center of mass, we write the kinetic
energy in the form

E J1 .2..~=-x
n 2 '

where J1 is the reduced mass given by

(»lA + mIJ)meIl=----~_,
mA + mIJ + me

(83)

(84)

where mA and mB correspond to the diatomic molecule, and me IS the mass of the
incoming atom.

The Lagrangian is then given by

- /3(e-2b(x-x. )/ao _ 2e-b(x-r. )/ao) _ )e-b(x-x.)/ao,
(85)
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with

The differential equations to be solved are

i: = Px/I-',
P
x
= - ob e-b(x-x.)/2ao (2 _ e-b(x-x.)/ao) ~

2ao

+ ob e-3b(x-x.)/2ao (2 _ e-b(X-x.)/ao)-~

2ao

+ 2~b (e-2b(X-x.)/ao _ e-b(x-x.)/ao)

+ lb e-b(x-x.)/ao,
ao

(86)

(87)

where P
x
is the conjugate momentum of x. The solution of the set of Eqs. (86)-(87) gives

rise to the classical trajectory x(t), whose substitution in (72)-(75) leads a Hamiltonian

of the form

R = Ro + V(t),

with a time-dependent interaction given by

where
1

VI (t) = !(e + D)N J,,1 e-b(x(t)-x. )/2ao (2 - e-b(x(t)-x. )/ao ) , ,

V
2
(t) = -tBN(N - 1) (e-2b(X(I)-x.)/ao - 2e-b(x(I)-x.)/ao) ,

V3(t) = _~DNJ",le-b(x(I)-x.)/ao,

(88)

(89)

(90)

(91)

(92)

(93)

We have included the potential V.(t) in order to show that V(t) can be expressed in terms
of a set of operators which closes into a Líe algebra.



ATOM.MOLECULEINELASTICSCATTERING... 939

3. TIME-EVOLUTION OPERATOR

We now turn our attention to the eigenfunctions of the atom-molecule interaction Hamilto-
nian. A suitable procedure to obtain the wave functions of a Hamiltonian of the form (88)
is provided by the interaction picture [28]. In the framework of this scheme the wave
function 1/1(t) is given in terms of the time evolution operator

1/1(t) = U(t, to)1/1(to),

where the wave function 1/1(to) corresponds to an eigenfunction of Ho, provided that
V(to) = O. In our case

1/1(to) = IiNd,m).
In turn, the evolution operator U(t, to) can be written in the form 128].

U(t, to) = U(O)(t, to)U¡(t, to),

where U(O}(t, to) is the time-evolution operator corresponding to Ho:

while UI(t, to) satisfies the equation

. aUI(t, to) -
,h at = V¡(t)UI(t, to)

with

(94)

(95)

(96)

(97)

(98)

Now the problem reduces to solving the differential equation (97) for UI(t, to). This in
general is still a difficult task, and consequently approximations for VI(t) must be sought.
Since we are working in an algebraic framework we look for approximations which are

based on algebraic considerations, such as the olle arising from the following theorem [291.
TIlEOREM: The solutions of equations of the form

d~;t) = .4(t)U(t), U(O) = 1, (99)

where .4(t) is an operator which can be written as a linear combination of generators .¥,
of a Lie algebra

k

..t(t) =L (/,(t),\'" k finite,
i=l

(100)
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can be written in the form

k

(¡(t) = TI exp(9i(t)Xi)'
i=l

(101)

The coeflicients ai(t) are scalar functions of t and the operators Xi time-independent. Jt
is further required that the Lie algebra generated by the Xi under the commutator be of
£inite dimension [291.

This theorem implies that if we can express the interaction potential V¡(t) as in (100),
then the solution for the evolution operator will be given in the form (101). The algebraic
space in our hybrid model corresponds to an SU(2) Lie algebra and thus the potential
V(t) [Eq. (89)1 is given in terms of a linear combination of the SU(2) generators. The
approximations we propose in the following sections linearize the interaction potential
V¡(t) in the SU(2) algebraic space in order for (101) to remain valido

4. SUDDEN APPROXIMATION

The simplest way to obtain an interaction potential V¡(t) linear in the j{,l corresponds
to the sudden approximation, in which the interaction time is so short that V(t) can be
taken as a pulse (6.t ~ O) in time. If this is the case the expansion of (98)

.. ~ i ..
V¡(i) = V(t) + ¡:;IHo, V(t)J6.t +... (102)

gives V¡(t) = V(t), which is equivalent to assume a null commutator between ho and
V(t). In this approximation the differential equation to be solved reduces to

iñ 8U¡~~, to) = V(t)U¡(t, to), (103)

which has the form (99). The time evolution operator is then given by

(104 )

where we have deleted the subindex 1 in j{.1 to simplify the notation.
Substituting (104) into (103) we find the differential equations satisfied by the functions

9;(t). By means of the modified Baker-Campbell-Hausdorff formula 126]

Á -Á - - - 1 - - - 1 - - - -e Be = D + lA, DI + 2,IA, lA, D]] + 3! lA, lA, lA, D]]] +... (105)
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they can be written as

1

O

O

O

- cos(gl (t)/") tan(g2(t)/")

sin(g¡(t)/")
cos(g[ (t)/")/ COS(g2(t)/")

O

sin(g¡(t)/") tan(g2(t)/")
cos(g[(t)/")

- sin(g¡ (t)/")/ COS(g2(t)/")
O

1

O

O
O

=

9¡ (t)
92(t)

9a(t)
94( t)

o
Va(t)

V¡(t)

V2(t)
(106)

The solution of this system of differential equations leads to the time evolution operator
U(t). The vibrational transition probabilities P(ljm) - Ijm')) of the diatomic molecule
can in turn be obtained from U(t, to) by means of the scattering matrix

s = V( -00, +00) (107)

P(ljm) - Ijm')) = l(jm'ISljmW (108)

Explici tiy,

(109)

where the parameters

/3[ = g[ (-00, +00)/",

/32 = g2( -00, +00)/", (110)

correspond to the asymptotic values of the functions 9;(t) in (106). A closed expression
for (109) in terms of \Vigner's D-functions can be fonnd by inserting a complete set of
states Ijm):

In general the system of equations (106) is difficnlt to solve analytically and the functions
must be ealculated llumericalIy. I1owever, therc are t\vo ('a.....cs, which we discuss in tile uext
subsections, where analytic solutions can be fonnd both for the classical trajectories and
for the functions 9;(t).
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4.1. Exponential inteme/ion potential

If the Hamiltonian (71) contains only the potential V3(x),

H = Ho + V3(x),

the total energy is given by

where we have defined
!:.<

P == eGO.
The evolution operator takes the simple form

i92 (t) .
U(t) = e- • J"

where 92(t) satisfies the equation

[/2 = -¡pe-bxlao.

The solution for the classical trajectories is well known [101 and is given by

e-bxlao = E sech2 ( fE 0:.) ,
-¡p V 2; 00

which leads to the solution

92(to, t) = J2EJl 00 [tanh (n;0:.)] t ,
b 2" 00 'a

for (116). In the limit t - 00 and to - -00 we have
200 =92(-00,+00) = bv2E1'

and the scattering matrix takes the form

S•-_ e 2iQQ.,j2E; j
b'" v .

According to (108) the transition probability fram statc Ijm) to Ijm') is given by

P(lj17l) -Ijm')) = Id;"m,(,6¡)12,

(112)

(113)

(114)

(115 )

(116)

( 117)

(118)

(119)

(120)

(121)

where we have introduced the d;"m' functiuns [30J and
200 rn-=Ih=¡;¡;V2E¡1. (122)

Exprcssion (121) was obtained previously by Levine and Wulfman [121 for the vibra.
tiunal energy transfer between an atom and a Morse oscillator in a linear collisiun as
well as by Frank et al [17] in the une-dimensional limit of the three dimensional algebraic
approach to atom-diatom collisions.
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4.2. Exponential and M orse intemetion potentials

When the Morse potential (74) is added to (112) it is still possible to find a closed expres-
sion for the transition probabilities. In this ease the Hamiltonian is given by

(123)

with classieal total energy

(124)

with p given by (114). The evolution operator now has the form

leading to the differential equations

[/2 = "Ipe-bx/ao,

9. = (3p(pe-2bx/ao _ 2e-bx/ao).

In order to obtain the classical trajectories we rewrite (124) as

where

(125 )

( 126)

(127)

(128)

and

(
2(3-"1)/z = y + 2E

(3 (2(3 - "1)2
E + 4E2

yp = ebx/ao.

The solution to (128) is then given by

cosh ( fiE_2E!!!: +e) = (_éx_/ao + _2(3_-_"1)/v¡; 00 p 2E
(3 (2(3 - "1)2
E + 4E2 ' ( 129)

where e is a constant to be determined. At the classical turning point t = O and x = b
(maximal approximation), there is no kinetic energy and (124) I",comes

( 130)
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or

2f3 - 'Y = f3pe-M/ao _ E eM/ao,
p

while (129) reduces to

cosh(C) = e:eM/oo + 2f3 - 'Y) / J4Ef3 + (2f3 - "1)2.

The substitution of (131) into (132) leads to the condition

cosh(C) = 1,

which implies that C = O. From (129) we find

(131)

(132)

ebxlao 2f3 - 'Y
-- =- --+
P 2E

f3 (2f3 - ')')2 I (f!E bt)
E + E2 COS 1 - - ,

4 l' Uo
( 133)

which can be introduced into (126) lo oblain

[
2f3 - 'Y

In(t) = 'Y - 2E + f3 + (2f3_- ')'_)2cosh (J_2E '!i)]_l
E 4~ ~ ~

with solulion

/¥; n; ,
'YUo 21' A2 E bl

92(/0,t)= VAiA2 [2¡;[arclan( -lanh( --))] ,
b A¡A2 VE Al 2~ uo 'o

(134)

f3 (2f3 - "1)2 'Y - 2f3 éblao
E + 4E2 + 2E = -p-'

where we have definrd

Al =
f3 (2f3-')')2
E + 4E2

'( - 2{3 137' -M/ao
2E = EC

.

(135 )

( 136)

Taking lhe limil t ~ 00 and lo ~ -00 we obtain for (134)

2')'00
(J2( -00, +00) = -b- (137)
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We note that for {3- 00 we recover the function (119). An analogous procedure leads to

9,(-00,+00) = 2{3ao ~ (Al - A2 _ 2) aretan M
A
2

b VEA;A; 2AIA2 VA;
ao{3 f2ii (138)

+ bAIA2 VE'
Finally, from (125) we obtain the transition probabilities

(139)

where

(140)

5. INTERACTlON POTENTIAL

Although the use of the sudden approximation simplifies the analysis, much of the molec-
ular identity is losl. The Hamiltonian lÍo is not present in Eq. (103) and thus cannot
iniluence the probability distribution, since the sudden approximation neglects the molec-
ular vibrational energy when compared with the collision energy, turning the v¡brational
structure of the molecule irrelevant.
Even though these high energy collision processes are suitable to describe sorne limiting

physical situations, it is clear that a more general approach is required if we want to
describe the collision in greater detail. In this section we rewrite the interaction poten ti al
in a way that will allow us to go beyond the sudden approximation.
\Ve first note that taking into accollnt the commutation relations

-2 - - . - -[1" Jy] = -Jy - 2,J,J"
-2 - .--[1" Jx] = -Jx + 2,J,Jy,

and (105), it is possible to rewrite the interactioll potential (98) 1Il the form (see Ap-
pendix A)

ti ( ) _ iVJ(t) [-';' i (2Ati,) _ i;' (2Ati,) -]
J t - sin(2At/") e y cos" ecos h Jy

+ VI(t)i, + V2(t). (141)

This expression is not a linear fllnetioll of Ihe SU(2) generalors and eonsequently (104)
eeases lo be valid. \Ve next proceed lO obtain an appropriale linear approximation
for (141).



946 R.n. SANTIAGO ET AL.

6. HARMONIC LIMIT

An straightforward way to obtain a linear expansion for V¡(t) is to consider the harmonic
limito This limit was analyzed in Sect. 2, and implies taking the limit N --> oo. From (34)
we have that in this limit 2J,/N becomes the identity operator.
Applying this result to the non linear part of the interaction potential (141) we obtain

(142)

where we introduced the harmonic constant defined by

(143)

The potential (142) is linear in the SU(2) generators and consequently (104) is valido
Substitution of (104) and (142) in (97) leads to the set of differential equations

91(t)

92(t)

93(t)
94 (t)

1

O
=

O

O

sin(gl(t)/h) tan(g2(t)/h)

COS(gl/h)
- sin(g¡ (t)/h)/ COS(g2(t)/")

O

- COS(gl (t)/h) tan(g2(t)/h)

sin(gl(t)/")

COS(gl (t)/")/ cos(g2(t)/h)
O

O

O

O

1

O

V31 (t)

V¡(t)

V2(t)
(144)

where we have defined

(145 )

Once we know the solution of (144) the transition probabilities can be computed us-
ing (109). For a general Hamiltonian of the type (71) the solutions to (144) are obtained
numerically, but again it is possible to find closed expressions for particular interactions,
as we now show.

6.1. Exponential intemction potential

\Vhen the dipole and Marse interactians da not contribute to the atom-diatom interaction,
the energy of the system is again given by (113)-( 114) with classical trajectories (117).
The evolution operator, however, should now satisfy

(146)

the solution of which is given by

(147)
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Introducing (147) in (146) we obtain the asymptotic solution

k¡
92(-00, +00) = h k

2
'

where

2¡tW01Ta6
k¡ = h '

k2 = sinh(kol.

and

The transition probabilities are then given by (121)

with

/32= 92(-00, +00) = kl.
h k2

\Ve note that this expression reduces to (122) in the large E limit

lim /32= 2
b
a
h
oJ2EJ1,

£-00

since it then corresponds to the sndden approximation.
The transition probabilities (152) can be simplified to the expression

P(lNv) -.INv')) = (VI) (N - V) ( pV'-:)N'
V v' - v 1+ P

with

2 (/32)P = tan "2 '

where we ha\'e used the number oC <¡\Ianta v instead oC m.

(148)

(149)

(150)

(151)

( 152)

(153)

( 154)

(155)

(156)
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6.2. Exponentia/ and Morse intemetion potentia/s

When a Morse interaction is introduced in addition to the exponential potential, again
closed expressions can be found. In this case the energy is given by (130), with classical
trajectory (133)

2éx/ao (f!E bt)-- = Al - A2 + (Al + A2)cosh - - ,
p p ~

(157)

where Al and A2 are defined by (135)-(136). On the other hand, in the harmonic approx-
imation we find the interaction potential

5ubstitlltion of (158) and (115) in (97) gives rise to the differential equation

. (t) = 2,. cos(wot)
92 ( ~Al - A2 + (Al + A2)cosh V -¡;a¡;)

with asymptotic solution

{3 = 92(-00,+00) = ,..,.,a0{;!hll . I (ko a (2v'AiA2))
2 - , 'k' A E Slll 1 retan •.

" " '2 .'11 2 1r Al - .'12

(159)

(160)

Finally, the transition probabilities are obtained by means of (152), with /32 glven
by (160) and approximated by (155) for systems where {32 is small.

7. i, AS A VARIATIONAL PARAMETER

5ince in the harmonic limit 2i,/N becomes nnity, a simple possibility is to consider this
operator as a free parameter. If this is the case we can linear;ze V¡(t) substitnting the
i, operator by 2P in the nonlinear part of (141) and treal P as a variational parameler.
In this way the interaction potential (141) beco mes linear in lhe 5U(2) generators while
the parameter P is fixed by fitting the transition probabilities to the ones calculated with
other methods. This leads to the potential

• cos(wotP) , .
V¡(t) = ( )V3(t)Jy + VI(t)J, + V2(t),

cos Towot
(161)

where we have introdllced the anharmonicity parallleter xowo, which is related to the Morse
potential para meter throllgh xowo = x,¡;" = -A/" ¡see Eq. (13)1. The operator U(t) is



ATOM-MOLECULE INELASTIC SCATTERING... 949

again given by (104) but now the functions 9i(t) also depend on the (fixed) parameter P.
The differential equations satisfied by 9i(t) are given by (147), where (148) is modified to

V cos(wotP) V ( )
31 = ---- 3 tcos(xowot) (162)

and the transition probabilities are in general computed using (111). This procedure still
relies on the harmonic limit, where j, is taken to be a scalar, but introduces anharmonic
contributions in a simple fashion in terms of the modified potential (162).
This way to linearize the potential V/(t) has been included for the sake of completeness,

but we do not explore it any further. Since the basic aim of this work is to analyze a new
methods to go beyond the sudden and harmonic approximations, we now proceed to study
this problem.

8. TI/E EVOLUTlON OPERATOR AS A FUNCTION OF TI/E INITIAL STATE

\Ve now turn our attention to a more general method of approximating the interaction
potential V/(t) which still allows the solution of (97).

To search for a linear approximation lo (141) we first apply V/(t) to a Morse eigenfunc-
tion Ijm) and then insert a complete set of states L:~Ijl')(j/lI in the resulting expression.
Taking into account the selection rules for jy, which imply l' = m:!: 1, we readily find

where

v.- () - iV3(t) {-iAt1hJ- (2Atm)m t - . e y cos --
slll(2At/h) T,

A1h[ (2At(m+1))- e" cos h Ijm + I)(jm + 11

(
2Af(m - 1)) ]} _+ cos h Jjm - 1)(jm - 11 Jy

+ VI (t)j, + V2(t). (163)

Jt is not apparent, however, whether the m-depeudeut operator Vm(t), is hermitian. To
assure IIermiticity we thus define the polelltial

¡m 1 Kit A\ / (t) = 2(\ "'(t) + V,,,(t)), (164)
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which takes the form

• m V3(t) {V¡ (t) = cos(At/h) cos(2Atm/h) + cos(2At(m + l)/h)ljm + l)(jm + 11

+ cos(2At(m - l)/h)ljm - l)(jm - 11}iy

(165)

We now use the fact that the m-dependent cosine functions in (165) are essentially
identical for small values of the diatom phonon numbers v (large m values) so the error is
small if we average the excitation of the two possible states J1 = m :f: 1. This leads to the
simple m-dependent potential

vr(t) = cos(2xowotm)cos(xowot)V3(t)jy

+ V¡(t)j, + V2(t), (166)

which has the form (100). Formally, we can consider the time evolution of the component
wave function (,p(t)ljm):

-ih~(,p(t)ljm) = -ih d(,p(t)lljm)
dt dt

= (,p(t)IV¡(t)ljm),

p.!1d inll<,d'.lce the adjoint of the time evolution operalor

(
\
'( d{;t(t))\ ) --\~,(:u). -ih-

d
-t- jm = (lÍJ(to)!UtU;I'¡(t)!im).

lf we now substitute (166) for the actior. of V¡(t) on lhe state Ijm), \Ve fiud

-h dU~.(t.)= Út (t)Vm(t)
l dt ni I

(167)

(166)

(169)

when we consider thal the initial state of the molecule is Ijm). \Ve can now propose an
m-dependent evolution operator whose adjoint is given by

(170)
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where the functions g¡ also depend on the initial state m. The differential equations sat-
isfied by the functions g,(m, t) are

9¡ (t) 1 ,in(g¡/ñ) tan(g2/ñ) - cos(g¡/ñ) tan(g2lñ) O O
92(t) O cos(g¡fñ) sin(g¡fñ) O Vn(m, t)

=
V¡ (t)93(t) O - sin(g¡fñ)/ cos(g2lñ) cos(g¡fñ)/ cos(r;2Iñ) O

94 (t) O O O 1 V2(t)
(171)

where

V32(m, t) = cos(2xowotm) cos(Xowot)V3(t). (172)

The transition probabilities are again evaluated using (111), but dosed expressicns can
be found only for the particular interactions considered before.

8.1. Exponential intemction potential

For the exponential interaction the evolution operator acquires a dosed formo This case is
particularly interesting since an exponential potential was assumed by Clark and Dickinson
in their quantum mechanical description of the transition probabilities for the scattering
of an atom from a one dimensional Marse oscillator [111
When V¡ (t) = V2(t) = O the time evolution operator takes the form

(173)

(174)

(175 )

irm(t) = e-kg(m.t)i"

which for the potential (166) leads to

9(m, t) = cos(2xowomt) cos(Xowot)V3(t),

where V3(t) is again given in terms of the dassical trajectory (117)

V3(t) = "Ipe-bx(t)/ao = Esech2 ( fE !!i) ,V 2;. ao

with "1 = -~DN:Ty.¡. To obtain the scattering matrix we integrate (174)

.8(m) =.!. r+oc
g(m, t) dt = w01rlta5 { (2m - l)xo + (2m + l)xo }

ñ J-oc b2:Tyñ sinh[(2m - l)xoko] sinh[(2m + l)xokol '
(176)

where ko is given by (154) and Xo = 1/(N + 1).
The transition probabilities are thus

P(lJm) --+ IJm')) = l(jm'le¡¡¡(m)i, IJm)l2

= Id;", m(.B(m)W. (177)

which are compared in the next section with the results of Clark and Dickinson.
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8.2. Exponential and Morse interaction potential

\Ve now eonsider the elfeet of the Morse potential together with the exponential interae-
tion. In this ease the total energy is given by (124) with classieal trajeetory

2ebx/a (I¥E bt)--=A¡-A2+(AI+A2)eosh --,
p J1 ao

where Al and A2 were defined in (135)-(136). The interaetion potential is then

and the time evolution operator takes the form

Substitution in (169) gives rise to the dilfercntial equation

. ( ) _ ,[eos(woxot(2m + 1)) + eos(woxot(2m - 1))1
g2t- (mbt) ,A¡-A2+(A¡ +A2)eosh VIi'ao

whose solution ean be found in closed form

(178)

(179)

( 180)

where

and

(3 ( )
_ g( -00, +(0)

2 m -

"
= ",aretan, { sinh(rl(2m + 1))

f[l.!!.- sinh(rl(2m + 1),,)V -¡¡ ao

sinh(rl(2m - 1)) }
+ sinh(rl(2m - 1),,) ,

2.¡¡JE
, = ,- 2(3'

(181)

rl=

The transition prohabilitics are again giVPll hy

\Vhen the dipole interaetion irI(t) is takcn inlo aeeounl it is not possible lO oblain closed
expressions fOf thc transition prohabilities, hut a Illlmerical analysis is straightforward.
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FIGURE 1. Three dimensional representation of the probability P(O _ v) as a function of the
collision energy in units of tu.J,/2 according to lhe calculations of Clark and Dickinson [11J. The
interaclion parameler b is given by 0.314.

9. RESULTS

In this seclion we present the results of the different approximations we have considered,
starting with the case where only the exponential interaction is taken into account and
compare them with the analysis of Clark and Dickinson.
A convenient way to present the global results is to fix the initial state (to Vi = O,

for example) and to plot in a three dimensional figure the probabilities P(O _ v) as a
function of both the energy and v. In Fig. 1 we show in this way the results of Clark
and Dickinson for the H, - Hz system, where we only plot energies aboye 4hw" since
we expect our approximations lo break down for lower energies. In Fig. 2 we show the
calculated probability surface corresponding to the sudden approximation, Eq. (121). In
this case the probabilities depend only on the interaction parameter b, which was fitted
to obtain the best agreement with the surface of Fig. 1. (In this approximation the prob-
abilities are ¡ndependent of the properties of the molecnle). Note that it is possible to
minimize this error for different values of b, as il1ustrated in Fig. 3 where we plot the
deviation (defined as the sum of the probability differences between the ones given in
Fig. 1 and those of Fig. 2) as a fnnction of b. The global fit is clearly not satisfactory, and
the oscil1ations observed are unphysical. \Ve should mention the role of the equilibrium
distance x, in the description of lhe col1ision. \Vhen the triatomic system from which we
start our model can give rise tu a hound molecule, thell I f' can be detcrmined. \Vhen this
is not lhe ca~e (e.9., for lhe Hz + He s)'slem), lhe pararneler p = p(x,) is lO be lreated
as an additional pararneler. However. when onl)' lhe exponential inleraction is taken into
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FIGURE 2. Probability P(O _ v) as a function of the collision energy (in units of Tu.!./2) in the
sudden approximalion. The filled inleraclion parameter was found to be b = 0.112.

account the interaction / can be renormalized to inelude p, making lhis parameter un-
necessary. This is the case when we compare our model with the Clark and Dickinson
results.
As shown in Sects. 5 and 6, lhe sudden approximalion can be removed by making sorne

approximations in the interaction potential given by (141). Taking the limit (144) we oh-
tain the harmonic approximation, with transition probabilities given by (155). We remar k
that even though both (155) and (121) are given in terms of Wigner's d- function, their
arguments are quite differenl. In this case we do obtain a dependence on the spectroscopic
constant w. (w. = 4395 cm-1, .-.w. = 117 cm-1 for H2) which characterizes the molecule.
In Fig. 4 we present the fit of the ~ransition probability function (155) to the results of
Clark and Dickinson of Fig. 1. Although the improvement with respect to the sudden
approximation is evident and the unphysical oscil1alions disappear, strong discrepancies
remain for low energies and for high values of ".
We final1y turo our attention to the m-dependent approximation proposed in Sect. 8.

In Fig. 5 we present the results of (176) and (177) with b as our only free parameter. The
discrepancies for lower energies and higher quantum numbers vare drastical1y diminished.
Even though lhese resulls differ slightly from the exact calculations of Clark and Dickinson,
the general trend is reproduced remarkably wel1 taking into account the semielassical
method and our other approximations. In Fig. 6 we present the transition probabilities
P(I -+ v) at fixed energy E = 12hw./2, for the exact calculation of Re£. [111 and the
three different approximations we have analyzed in lhis artiele. Again the agreement with
Re£. [111 becomes eloser as we move from the sudden approximation to lhe m-dependent
approximation, with the harmonic limit in-between.
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FIGURE 3. Plot of deviations between the probabilities caIculated in the sudden approximation
and those provided by Clark and Dickinson, as a function of lhe interacUon parameter b.

The algebraic model we have presented provides thrce lypes oí interactions between the
atom and the molecule. Up to now we have only considered the exponential interaction
since in this case exact calculations are available. However, the other two contributions
-Morse and dipole interactions- can be easily included in order to study their effect on
the transition probabilities.

The introduction oí the dipole interaction is particularly interesting. since it distin-
guishes between homonuclear and heteronuclear diatomic molecules. Although in this case
we cannot compare with exact calculations, we present in Fig. 7 the results oí ineluding
the dipole interaction on the transition probabilities obtained with our m-dependent ap-
proximation. Note thal we have considered bOlh signs oí lhe dipole interactions, which
correspond to the two possible frontal col1isions.

10. CONCLUSIONS

\Ve have presented an alg~braic approad: to one-dimensional atom-mnlecule col1isions,
\\hich seems to provide an attractive alternative to the standard integro-differential tech-
niques. Although we have tesled 01" approximations only for lhe case oí an exponential
interaction, the rnodel natural1y provides additional Morse and dipole potentials. The in-
elusion of the Morse potenlial logether with the exponenlia! one s!iB leads 1.0 analytical
expressions íor the elassical trajectories and transilion probabilities. To our knowledge
these are new solutions for lhis system. This is nol the case for the dipole interactions,
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FIGURE 4. Probability P(O ~ v) as a funetion of the collision energy (in units of hw./2) in the
harmonie approximation. The fitted interaetion parameter was found to be b = 0.137.

where only numerical solutions for the classical trajectories can be obtained. Through these
potentials, however, it is possible to study collisions involving he tero nuclear molecules, as
shown in Fig. 7.

It is important to note that the m-dependent averaged potential (166) can be obtained
directly from (98) without going through the one-dimensional interaction potential (141).
These results suggest that the approximation method developed in this work can be ex-
tended to three dimensional systems. \Ve can obtain an m-dependent three dimensional
interaction potential (linear in the generator of the U(4) algebra) by carrying out an av-
erage over the three dimensional matrix elements eqnivalent to (165). \Ve are thns in a
position where we can devclop the three-dimensional algebraic modcl without the strin-
gent restrictions implied by the sndden approximation and apply it to real atom-molecule
collision processes. This work is currently in progress.
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the approximation with m-dependenee in the interaetion potential [Eq. (177)1. The interaetion
parameter is b = 0.122.

ApPENDlX A

In this appendix we derive the interaetion potential (141) starting from (98).
The Hamiltonian ¡fa only depends On the J, operator (see Eg. (72)). On the other hand

the potential V(t) ineludes eontributions of the operators i, and iy as indicated in (89)
and (90)-(93). Sinee ¡fa eommntes with i" we only need to analyze the eontribution

in the interaetion potential (98), where q = A(t - to)/t"
Applying to (182) the Baker-Campbell-Hausdorff formnla (105) we obtain

00 (' )n
-,[3J _ '" lq -2'2 '211 - L -, [J"[J" ... ,[J,,Jyj ... ),

n=O n.

(182)

(183)

where the number of eommutators eorresponds to the summation index n. Taking into
account the commutation relations

( 184)

(185 )
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FIGURE 6. Transilion probabililies P(I - v) for a fixed collision energy E = 12m.,,/2 using (a) lhe
exacl resuIls of Clark and Diekinson (O). (b) lhe harmonie ¡¡mil (O) and (e) the m.dependenee
approximalion (+). The poinls eorresponding lo lhe sudden approximalion do nol appear in lhe
piOlo

we ¡¡nd for the n eonseeulive eornrnutators in (183) tbe result

'2'2 '2IJ,.J" ... ,[J"Jy], •.. ] =

(186)

where [zl denoles lbe integer part of Z. Expression (186) is now subslituled in (183) lo
oblain

where

',13) •..
11 = 51 Jy + ¡52 J"

00 III (-iq)" 2' 2,
SI = L L ( _2 )'(2 .), ( JJ '

n:O r:::::O n T. ,.

(187)

(188)
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FIGURE 7. Effect of the dipole interaction on the transition probabilities in the m-dependent
approximation. The energy was taken to be E = 10hw,/2. \Ve have denoted by (O) and (<» this
effect for positive (o = 0.02) and negative (o = -0.02) values of the dipole parameter, respectively.

00 [";'1 ( ')"
S2 = L L -Iq (2i )2r+1

"=0 r=O (2r + l)!(n - 2r - 1)! ' . (189)

We now proceed to simplify the tirst sumo The second one can be simplitied in the same
way.
The sum SI can be split in two parts, corresponding to neven (n = 2u) and n odd

(n = 2u + 1), respectively:

00 u ()U 2u

SI = ~~ (2u ~ 2r~!(2r)! (2i,)2r

00 u ()U 2u+1

- iL L (2u +-1 _q 2r )!(2r )! (2i, )2r.
u=Dr=O

(190)

This double sum can be written in a more convenient form by interchanging the sums over
u and r, and identifying the series expansion of the functions cos(q) and sin(q). We thus
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obtain

00 (_ rq2r •
SI =?; (2r)! (2J,)2r[eos(q) - isin(q)]

= e-iq eos(2qi,).

Following the same proeed ure for the seeond sum 52, we find

00 ( l)r+lq2r+1
S = i '" - (2i )2r+le-iQ
2 ~ (2r + 1)! '

= _ie-iq sin(2qi,).

With these results the eontribution (187) takes the final form

whieh allows to rewrite the interaetion potential (98) in the form

ir ( ) = iVa(t) [-~ i (2Ati,)
1 I sin(2AI/") e y eos "

óAI (2Ati,). ] .- eT eos -,,- Jy + VI (1)), + V2(t).
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