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ABSTRACT. Motivated by the existence of second order ladder operators, we implement an algo-
rithm to find ladder operators for one-dimensional hamiltonians H of order N > 2, and we show
that always it is possible to construct the first order ladder operators, but their more general
relation with H is not that of the factorization method.

RESUMEN. Motivados por la existencia de operadores escalera de segundo orden, se propone un
algoritmo para hallar operadores escalera de orden N > 2 para hamiltonianos unidimensionales y
se muestra que siempre es posible construir los de primer orden aunque su relacién mas general
con H no es la dada por el método de factorizacién.

PACS:02.30.Tb; 03.65.Fd

1. INTRODUCTION

Since Dirac [1], based in the early works of Pauli (2] and Weyl [3], showed that the eigen-
value problems for the one-dimensional harmonic oscillator and the angular momentum
could be easily solved by the use of raising and lowering operators, the factorization
method (FM) acquired great importance in Quantum Mechanics. Many efforts to deepen
on it were realized later on, and the main results were found by Infeld and Hull (4]. Even
though there were some later important works about the subject, the general belief was
that the factorization method had been entirely explored.

Recently however, Mielnik [5], Nieto [6] and Fernindez [7] have shown that the fac-
torization method can provide us still more information. This fact motives us to make a
review of the FM’s reach.

It is a common prejudice to assume that the ladder operators associated to the eigen-
functions of a differential operator must factorize it. Nevertheless, this idea contains some
constrains which restrict the method, and therefore it is not general.

The goal of this paper is to clarify the general relation existent between one second
order differential operator H with eigenfunctions ¢, and eigenvalues A,, and its associated
ladder operator of index n, showing that in general if we know the ladder operators, it
does not mean that we know the factorization of H. This can be the starting point for
future research on the real reach of the factorization method.
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2. THE FACTORIZATION METHOD

In its most classical form, the FM turns round about of the following ideas. Consider the
usual eigenvalue problem

Hyy, = )\n"vbm (1)
where H is the second order differential operator

d? d
H = P(z) 1 +Q(a) 1 + R(x), 2)

and the subscript n is discrete (n = 0,1,2,.. .)- Now, suppose that there exist two first
order differential operators A} and A [8], called ladder operator, such that they connect
two consecutive eigenfunctions of H:

Af:fwﬂ = Cf‘wnilv (3)

¢t being constants. Then, in principle, as some times its argued [4, 9], they could be
calculated by demanding that H is factorizable as

H= AL Ay + k= AT AT + R (4)

where k;, and k2 are constants related to ¢t by
kl = —C_ic0; k2 =An—C 0. (5)

Assuming that
d d
A+ = OQn Ny A_ = — Op——
n an + ﬁ ar n Tn ) dz’ (6)

and introducing the last expressions into (4) we obtain

2

d
H = _ﬁn—lﬁnm + (ﬁnﬁl'}'n - ,Bn—lé:-; - an—lén)

d2
= —ﬁn6n+] E + (ﬁn7n+l = ﬁn6:1+1 - an5n+1)

+ (en-17n + Ba17} + kL)

Fl= &~

=+ (C"n'}’n-{-l = 6n+10’:a £y k?;) ’ (7)

Comparing with Eq. (2), it is easy to note that the functions a,,, 3,, ¥, and op, satisfy the
non linear equations

—Bn-16n = P,

Bn-1"m = Bn-16;, = an_16, = Q,

Un-1Yn + Bn17y + kn = R,
Q-1 — 60y _; + kﬁ,l = R. (8)
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If they have solutions, then, the original problem stated by (1) is enormously simplified.
This is due to the fact that once one knows a solution for the eigenvalues problem (1), it
is always possible to determine all the other solutions, with different subscript, through
the ladder operators. So, the problem is reduced to specify the first solution.

To find a first solution of (1), it is sufficient to note that whenever we apply the lower
operator A, to one eigenfunction ,,, we obtain the immediate inferior eigenfunction ¥,_,.
But we can’t repeat this procedure forever. It has to exist one eigenfunction, the ground
state, g, such that

Ay o = 0. (9)

Notice that (9) is a first order differential equation, which always has one solution. In
this way, once we know 1y, we generate the nth eigenfunction ¢, performing n successive
raising operations on g, that is

n—1 1

= ] Ao, (10)

Therefore, the general problem of solving the family of second order differential equa-
tions (1) is equivalent to find the solution of the first order equation (9). Here is the power
of the FM.

FM may be generalized without any problem to the case when the eigenfunctions depend
on several subscripts, like the most general problem to solve in quantum mechanics (the
problem with degeneration), and the ladder operator raise or low an index different to
n [4,9]. In such a case, the constants k! and k2 will be functions of the parameter A, and
the index over which the ladder operators act and the FM technique works in a similar way.
However, in this paper we shall restrict our discussion to the FM such as was presented
above.

3. LADDER OPERATORS OF ORDER N > 1

Certainly, the relations (4) and (5) are sufficient to ensure that AX are ladder operators [4,
9], but it is possible that these relations are not necessary, that is the fact we will try to
establish.

If one considers the Eq. (3), it can be noted that this may be summarized by

[H, A%] = £AM, AT, (11)

with AAp = Ans1 — An, because from the last expression, the equation (3) can be easily
obtained. Nevertheless, Eq. (11) has a more general meaning, because it ensures that A
are ladder operators, even though they are not first order operators. Actually this kind of
operators are not too strange, because the existence of second order ladder operators has
been well established in the context of physical problems by Moshinsky et al. [10]. In fact,
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the Eq. (11) may give us one method to calculate ladder operators whose order is N > 2,
by extending the method used by Morales et al. [11] for the case of order 2.
Assuming that A} exist, and with order N, they may be written as

5 g‘a o) () (12)

Now, one can build the expressions

g =3 fatp ()" fratd v aatl) () 4 (mez) (2)']

k=0

and

AEH = ZankZ( ) [p(k l (di)HzJ“Q(k'” (%)Hl R0 (%)ll, (14)

where the derivative of order k over one function f has been written as f(*). The last
expression, after changing the order in the sum takes the form

4 o + (k (k-1) [ @ 2 k-t ( & a k-1) [ @ :

Next, when the Eqgs. (13) and (15) are introduced into (11), and both left and right
sides are compared, we obtain after some algebra the system of equations

Hayg = +AMaso+ Y af R®), (16)
k=0
2Paqy) = £AMak, + Y {IRD + QWX - HaE), (17)

ir
L

+ (i _[ 1) Q(t_i+1) - (1) R('!_’;)] a;t’l — Haf!i; (18)

being 1 < ¢ < N + 1. Note that Eq. (18) itself is a first order equation for a*
function of ‘ln,z for I > 1. Setting i = N + 1 we find

n,i—1° in

PN — Nt P =, (19)
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which is easy to integrate, to obtain

oy = P C:,N’ (20)

n!
where cf N s an integration constant. Once we know af N it i an easy task find ai N-1
using again the Eq. (18), but now setting i = N to obtain

QPG:"(‘}ZI_(N_l)“f.rv—lp(l) = [AXs + MI\;;I)

P® 4+ NQW + R- H|aZ,, (21)

which is a first order linear equation for af'N_l. Once we solve (21), we can iterate this
procedure for af'k, k=N —2,...,1. In all of the cases the differential equation for aff‘k
will be of first order. Finally, afo can be calculated from Eq. (17). So, the Eq. (16) will
be a constrain over the method, like that established for the FM.

As an example we solve the system (16)-(18) for N = 2 for the harmonic oscillator’s
hamiltonian

d? 5
H=—d—$§+:1:, (22)

whose eigenvalues are A, = 2n + 1. Suppose that exist a second order ladder operator for
H, then one may write it down as

:i:d2

d
Ar =gt ot — 4+ a7 —.
0T g T 72 dg?

(23)

Therefore, from (20) we obtain a constant a%, for which we choose azi = 1. Now the
equation for ali is

A /
#V=33 = df=FFeta, (24)

| >

where A is the distance between the levels connected by A*. Taking a7 and a,2i into (17)

one obtain
AN pAY
a(:)t‘(l): [(E) -2 rFcp—. {25}

2

After the integration
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In this way we have calculated all the functions a;*. Finally we must use Eq. (16) in order
to fix the constants ¢; and cg. It can be put in the form

2 A2 Af S
:l:A(%—2)a:2+c1(Z—T)m:}:coA+(?) =0. (27)

Comparing the coefficients with zero, one finds A = 4, ¢; = 0 and ¢y = F1. Thus, we have
obtained the second order operator

+_ @ d o
A =E;:i‘:f:2$a+z 1 (28)

that raises (+) or lowers (—) the eigenstates , of H two levels:

Pnt2 X AT,

Once we know A with order N, we must emphasize that H is not factorizable by this
ladder operators. This fact is clear if we consider the products Ay A7 and A7, Af. Both
are differential operator whose order is N +1 at least, while H has order 2 only. Hence, the
condition (4) will implicate that the factorization of H is possible only if N = 1. Therefore,
the FM is useful only when the ladder operators have order 1, because, if N > 1 then
obviously

At AT £ H -k} (29)
and
A LAY # H -k, (30)

But in such a case we may use the method explained before.

Moreover, this conclusion is independent of the method employed to determinate the
ladder operators. In fact, we may easily extend it by saying that every L-th order differ-
ential operator, may be factored only into the form (4) by operators whose orders N; and
N3y are such that L = Ny + Ns.

4. GENERAL RELATION OF A* with H

Now then, once we have established the consequence of the existence of ladder operators
with order N > 1, over the FM, we must point out that the FM’s strength resides in the
reduction of the order of the problem [Eqgs. (1) and (9)], in opposition to the case when
the order of A, is greater than 1. In such a case, we will raise the order of the problem,
and in principle, without advantage. However, we always may use the Eq. (3) together
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with th(.i eigenvalue problem (1), to reduce the differential order of AZ. In order to make
clear this point we begin by taking Eq. (1), and differentiating (! — 2) times

(%)1_2 Ff = B (%)Hwn. (31)

Since H has order two, from (31), the I-th derivative 1,[1,(,1) can be put as a function of the
derivatives whose order is lower than [l. So, the last relation may be rewritten as

(%)lwn = Fin ((é) (%)”) Y (32)

where F, is a linear differential operator. Hence, the derivative of order ! over ¢, in (3),
may be replaced in favor of its lesser orders derivatives.

In this way, all the derivatives with order [ > 1 may be substituted into (3) to obtain
first order ladder operators to 1. For example, the operator considered before in Eq. (28)
applied to one eigenfunction ¢, of H in (22), can be transformed using

& = (a*-2m=1) 0 (33

into
+ d 2
A; =F2z—+22 -(2n+1)F 1 (34)

Note that in this case N = 2 and Fs, = (::;2 —2n-1).

Thus, we have established that always it is possible to reduce the order of the problem (1),
even though the original ladder operators have order N > 2. Therefore it is sufficient to
consider the first order ladder operators.

On the other hand, with respect to Eq. (11), it is important to note that this equation
contains an intrinsic constrain, associated with the dependence in n of AZ. To be strict,
is enough to demand

(H, Ai]wn = +AA, Afd)n (35)

to ensure the validity of Eq. (3). In such a case we will have a different operator by each
state, as it happens with A% in (34), which does not satisfy Eq. (11).

Let us now examine the effect of the previous results on the general relation between
AT and H.

Because of (29), (30) and (35), the procedure described above may not ensure in general
the relation (4). For example, consider the Laguerre’s operator defined by

HL; = I£+(1—$)i L, =-nL (36)
n — da':2 dl‘ n = Y
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and the recurrence relations [12]
(n + l)Ln+l = (271 s o I)Lﬂ - nLn—l’

miLn =il = Tideg s (37)
dz

Using (37) together with (36), we may build the second order ladder operators

> = £—+(1—2.r)—d—+(x—1)
= dz '

d? d
S AL 38
4 {xdaﬂ + d:r] ’ (38)

which can be also obtained by the method showed in the last section (11].
Using (36) into the last one, or directly from (37), we can obtain the first order ladder
operators

. d " d

An—[n—ma], An—[(n+1—x)+:c;i—x~]. (39)

It is important to note that

A flJr——..";r"d—z—|-:z:(:1¢—l)i—n:.c+(n-1~1)2 (40)

wEL e dz? dz
and
AT AT = 2d2+(1~ 1)d+( ) (41)
n—14'n — Id.’,rz T s nin —x).

Hence, even though AZ are of first order, H can not be factored by these into the form
(4). The same happens in the case of the ladder operators in (34) and the hamiltonian
for the harmonic oscillator [Eq. (22)). We are thus leading to the following conclusion:
The more general relation between a second order operator H with its first order ladder
operators A is not of the form (4). Instead, we may write

Dy = A, At =H+0,,
E, = A} (A; =H+B,, (42)

where O,, and B, are new second order operators, which have the same eigenfunctions
of H

Ontn = (Cr:+1c: = ’\n) Yn,

Buthn = (165 = An) tn. (43)
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Obviously, when O,, and B,, are constants, we have the case that of the FM.
Finally, it is interesting to note that in the case of Laguerre’s operator the relation of
A¥ with H may be written as

Dy dn
(3) = 1@ @ -2+ (27), (44)
where d,, (e,) is the eigenvalue of D, (Ey), and A, = —n, with f(z) = —z. But this
relation might not be general.

5. CONCLUDING REMARKS

The results discussed above, are summarized in the following affirmation: Not all operator
H is factored by its ladder operators, as it happened in the former examples, but the
relation (44) might establish new lines of research.

It is important to note that the above developments may be generalized when H is an
NP order differential operator. In this sense the above affirmation is general. Moreover,
when one has a Nth order operator, it is in general sufficient with consider the ladder
operators whose orders Ny, Ny satisfy N = N1+ N, because the other cases (N < N1+ N3)
always can be transformed into the last one.

On the other hand, our conclusion has the following interesting property: when the
relation between Af and H is not trivial, that is, when O, and B, are not constants, we
have the set

{H, D,, En On, B,} (45)

of operators, which have the common eigenfunctions {¢n} on the same index. Nevertheless,
the operators in (45) do not commute, because they are depending in the index n as the
relation (35) shows, since we can not separate the action of the commutator and the specific
common eigenfunction. Strictly speaking, the operators in (45) share only one eigenvector
by each value of n, and then, the set (45) does not generate a space of commuting operators.
Hence, we must be careful in the use of them.
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