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ABSTRACT.A computer program for calculating orbits and Poincaré sections in the dassical
Coulomb three body problem with arbitrary masses and charges in three dimensional space is
presented. The regularization procedure necessary to obtain a reliable numerical integration of the
equations of motion is sketched. Different configurations of the helium atom and the positronium
negative ion (ps-), obtained with the program, are analyzed.

RESUMEN.Se presenta un programa de computadora para calcnlar órbitas y secciones de
Poincaré en el problema Coulombiano clásico de los tres cuerpos, con masas y cargas arbitrarias.
Se esboza el procedimiento de regularización necesario para obtener una integración numérica
confiable de las ecuaciones de movimiento. Se analizan diferentes configuraciones obtenidas con el
programa para el átomo de helio y el ion negativo de positronio (Ps-).

PACS: 31.10.+z; 31.90.+8; 33.1O.Eb

l. INTRODUCTION

The three body problem (TI3P), stated as the study of the evolution of three point-like
partieles whose interaction is gravitational or electrostatic in an otherwise empty space,
is a long time elassical and perhaps one of the most fre<¡uently taek!ed ehallenges of
mathematieal physies.

However, the non-integrable eharaeter of the problem renders useless the attempt of
finding a funetion of time deseribing .the three partieles' evolution after starting from
arbitrary initial eonditions. This forees the adoption of other strategies, mainly:

a) A <¡ualitative approaeh where <¡uestions of topologieal eharaeter eoneerning the
solutions are addressed.

b) Attempts to obtain analytieal solutions to cases in whieh eertain symmetries (ge-
ometriea!, dynamieal or both) permit simplifieations to be performed.

e) Numerieal solutions to cases ranging from restrieted ones sueh as those mentioned
in (b) to the most general one where all parameters can be varied.

In this work, we shall present a computer program developed in the !anguage C++,
which calculatcs orbits for the c1ectrostatic TI3P with arhitrary lIlaSSCS,chargcs, and init.ial
conditions in three dimensional spaee .
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FIGURE 1. Geometry of the problem.

After introducing the geometry and notation of our problem, we shall sketeh the neees-
sary mathematieal tools for integrating the equations of motion of the TI3P, in a fashion
that reliably handles the singularities associated to the Coulomb potential in binary eol-
lisions. \Ve will then present sorne details eoneerning the program itself, and will finish
with sorne results obtained with it on the helium atom and the positronium negative ion
(Ps-).

At this point it should perhaps be noted that, even though these are systems whieh
in rigor should be treated quantum meehanieally, theoretieal developments from the last
few deeades have shown the relevanee of a detailed knowledge of the c/assieal behavior of
non-integrable systems in the analysis of many purely quantum aspeets (see Ref. 15), but
also Refs. [3), [10)).

2. TIIE TIIREE !lODY HAM1LTONIAN

Let ns then eonsider a system consisting of three point particles with masses mi and
eharges Z; (i = 1,2,3) interaeting through a Coulomb potential in free spaee. The eo-
ordinates and momenta of particle 1 will be deseribed by the vectors q; = (q;, Q2, qí)
and p; = (p;, P2, pí), respeclively, with analogous expressions -adjusting the indices
accordingly- for the other two. The geometry of the problem is illustrated in Fig. 1,
where the inter-particle distanees R, RI and R2 are indicated.

Since a systcm with aH three chargcs of egua] sign is of no physical interest when looking
for bound states, we assnllle withollt loss of generality Ihat particles 1 and 2 have charges
-ZI and -Z2, while particle 3 has charge +Z3, with Z; > Ofor i = 1,2,3. In atomie units,
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and considering only Coulomb interactions, the Hamiltonian for this system is

The associated canonical equations of motion read

(1)

dq~ aH'
dt= ap~'

dp~ aH'
dt aq~ (r = 1,2, ... , 9). (2)

It is quite clear that the Hamiltonian from Eq. (1) is singular whenever any of the
interparticle distances (R, R¡ or R2) vanishes. From a strictly numerical standpoint, we
will have problems when any of those distances becomes very small, even if it does not
strictly vanish, since in Eq. (1) terms with very different magnitudes will have to be added.

3. REGULARIZATION PROCEDURE

One standard way of avoiding the problems associated to binary collisions in the Hamilto-
nian (1) -the three-particle collision cannot be regularized- was developed by Aarseth
and Zare [1]' based on previous work by Kustaanheimo and Steifel [7). \Ve will sketch here
this procedure, whose detailed description can be found in Re£. [11, and more concisely in
Re£. [151.

The basic idea is to obtain a canonical transformation which gives the Hamiltonian a
non-singular form in the case of binary collisions, albeit at the expense of producing a
set of dynamical equations significantly more complex in their algebraic express ion. The
resulting set of coordinates and momenta will be called regularized coordinates (Q, P).

3.1. Relative coordinates and extension of phase space

Briefly, in order to go from the (q', p') to the (Q, P) we first change to variables relative
to m3 with

, ,
qk = qk - q3'
- ,

Pk - Pk',
q3 = q3'

I '+'P3 = PI + P2 P3.

(k=I,2),
(k=I,2),

(3)

\Ve see from Eq. (3) that P3 is the total momentum of the system. \Ve may then, without
loss of generality, assume that in the original system (q',p') the center of mass is at rest,
and we take it to be, for the sake of algebraic convenience, located at the origino This
eliminates six variables fram our equations, and leaves us with a two-particle problem,
which is however not further reducible to an equivalent one-particle description.
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\Ve next expand the dimension of the phase space by renaming variables according to

qr -+ Qr+l, Pr -+ Pr+l (r = 4,5,6), (4)

leaving the variables with r :5 3 as before and defining the mock coordinates and momenta

P4 == O, P8 == O. (5)

A discussion regarding the need for this extension can be found in Ref. [1).

3.2. Regularized coordinates and new time

\Ve now introduce the regularized eoordinates through a eanonieal transformation of the
(q, p) to the (Q, P) associated to a generating funetion

using the notation

8

W = W(p, Q) =¿p,j,(Q),
r=l

(6)

(7)

The j,(Q), are eontinuous, differentiable fllnetions yet unspecified, but whieh must obey
the eonditions

j, = j,(QI,Qz,Q3,Q4)

j, = j,(Qs,Q6,Q7,QB)

Let A be the matrix with eomponents

aj,
A" = aQ,'

(r :5 4),

(r > 4).

(8)

(9)

(lO)

and A" Az its two non-zero bloeks loeated on the diagonal.
If \Ve assume the j,(Q) to be sueh that

(k=I,2), (11)

where the Ak are real nllmbers, 1 is the 4 x 4 identity matrix T represents matrix trans-
position, we can write our Hamiltonian as

( 12)
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(13)

Now, if in a system described by a time independent Hamiltonian H with parameter t,
we inelude t as a coordinate and introduce a new time para meter r, the new Hamiltonian
HO will be given by

W = (H - E)::,

being E the total energy of the system.
Therefore, by taking

(14)

(15 )

we may avoid the divergences in Eq. (12) associated to R; '" O, i = 1,2.
In order for the regularization procedure to actually work we must now provide a set

{j,(Q)} of functions which satisfies the requested conditions, Eqs. (8), (9) and (11). One
such set is given by the Kustaanheimo-Steifel transformations, defined as

/ _ Q2 Q2 Q2 Q21 - 1 - 2 - 3 + 41

h = 2(QIQ2 - QJQ.),

h = 2(QIQJ + Q2Q.)'

/. = O,

/s = Q~ - Q~ - Q9 + Q¡,

/6 = 2(QSQ6 - Q7Q8),

h = 2(QSQ7 + Q6Q8),

/8 = O,

(16)

which lead to condition (11) being valid with Al = A2
Hamiltonian is finally given by

4. The resulting regularized

where the reduced masses with respect to 71lJ are

(17)

m'lm3
liI:J = 1

n1.l + m.;~

rn211t3
¡'23 = .

rn2 + 1"-:1
(18)

The canonical equations of mol ion associated lo Eq. (17) are then

ar
= DQ,

(r = 1,2, ... ,8). ( 19)
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The explicit form of the aboye equatlons for the general three dimensional case is quite
cumbersome, although easily obtained with a symbolic manipulation program (such as
Maple or Mathematica). It is nonetheless'useful to note that the derivatives 8R/8Q. can
be expressed in a compact form which is more efficient for numerical purposes than the
one obtained by direct differentiation. By defining the 8 x 1 column vector g as

g = [f¡ - f2] ,
f2 - fl

where the vectors f¡ and f2 are

(20)

f1 =

Qr - Q~ - Q5+Q~
2(Q¡Q2 - Q3Q4)

2(Q¡Q3 + Q2Q4)
O

Q~ - Q~ - Q~ + Q~
2(QsQ6 - Q7QS)

2(QSQ7+ Q6QS)
O

(21)

one can verify that the following relations hold [11]:

8R 1
8Qi = R(Ag)i, (i = 1,2, ... ,8). (22)

3.3. Transformation eq1lations

The explicit expressions for the transformations to regularized coordinates, resulting fmm
the aboye definitions, are

for q¡ ~ O; or

Q2 = q¡f2Q¡,

Q4 = O,

QI = q2/2Q¡,

Q4 = q3/2Q2,

(23)

(24)

for q¡ < O. For the variables (Qs, Q6, Q7, Qs) we have analogous expressions, obtained by
adding 4 to all indices and replacing q¡ by Q2.

The interparticle distances R¡, R2 and R, expressed in terms of the regularized coordi-
nates, can be cast in thc form

(25)
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R2 = Ri + R~ - 2f1 . f2.

Finally, the regularized momenta are given by

(26)

(k=I,2), (27)

where

(28)

4. CALCULATION PROGRAM

Through the time scale change, the elfect of the regularization is to take very small time
steps near the binary collisions (RI "" O or R2 "" O), while keeping a non-divergent Hamil-
tonian. However, despite this intrinsically adaptive nature of the regularized formulation,
numerical work shows that if one wishes to balance efficiency and precision, it is necessary
to implement an adaptive step size algorithm for the dilferential equation integrator.

Our program, developed in C++, uses a standard 4th order Runge-Kutta adaptive step
size integrator [121 driven by a routine which takes care of coordinate transformations,
memory storage, disk swapping of data and Poincaré section calculations. In order to im-
prove the accuracy of the results, Poincaré sections are obtained using reverse integration
over the trajectory to find the intersection between the orbit and the Poincaré surface
instead of interpolation, a method proposed by M. Hénon [61.

The program attempts to be useful for interactive exploration of the TIlP, allowing
control of the parameters which define the system and the integration conditions such as
charges, masses, positions and momenta, error tolerance, etc. Initial conditions are defined
in laboratory coordinates, integration is performed in the regularized ones, and position
output data files are generated in center of mass coordinates for viewing convenience (to
eliminate from the plots uniform displacements of the system). Ilesides position data, the
program generates files with relative coordinates, Poincaré sections and a time-energy
file which, since the system is conservative, serves as a checkout file for numerical prob-
1ems. Langmuir type orbits [4] and Poincaré sections in hyperspherical coordinates can be
obtained though menu options.

Since considerable simplification of the equations of motion ami coordinate transfor-
mations results from assuming t hat the tlm'e particles evolve in aplane, the source code
ineludes all the expressions corresponding to both the two and three dimensional cases.
This allows the compilation of programs for both types of configurations, with fast inte-
gration of the plane cases and a slower but general option for three dimensional studies.

The resulting program, usable as a tool for numerical exploration of the general Coulomb
TBP, produces accurate orbits in reasonahle t.imes on a typicai desktop computcr fUf most
threc dimensional configuratiolls. Sourcc codc is availahlc from the authors l1pon request.

Finally, we shall present some results obtained with the program for two typical three
body systems, namely the lIelium ato m and the PositrDnium negative ion (i.e., e- e+e-.
abbreviated Ps-).



CLASSICALTRAJECTORIESIN COULOMBTHREEBODYSYSTEMS 1077

05
EIedron 1 -
ElfldrOrl 2

-o.
-05., -o. -o. -o. -02 O 02 O' O. O.•

(a)

Electron 1 -
Eleetron2 -

05

O

-05

.1

.15
.1 -O, O O, 15 2 25

(b)

FIGURE2. Wannier orbits in tbe He atom. (a) Typical orbit. (b) Slightly perturbed trajectory.

5. TI/E I/ELIUM ATOM

5.1. Wannier orbits

In the so-caHed Wannier eonfiguration, both eleetrons orbit around the uucleus with equal
angular momentum, satisfying

(29)

In can be shown [15], that this eondition leads lo eHiptie trajeclories. This type of orbit
was proposed as one of the first elassieal 1Il0dels for 1he Helium alomo hut the preseuce of
a diverging Lyapunov exponent leads lo ex"ecl il lo be of litt!" siguificanc,' as a realistic
deseription of this syslem. Quantlllll ca1clliatiolls cOllfirlll lhis pn'diclioll (",'e HeL [151 for
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FIGURE3. Langmuir type orbits in the He atom. (a) Geometry oC the initial eonditions. (b) Dasie
orbit (shortest periodie orbit in the He atom). (e) A more eomplex orbit. (d) Poinearé map oC a
CamilyoC lrajeetories in hyperspheriea! coordinates (R - Pn plot).

a diseussion), whieh can be also eheeked n\lmerieally by performing slight variations in
the initial eonditions. Fig. 2a shows a typieal Wannier orbit, and in Fig. 2b we have a
horizontal displacement of 10-1 in the initia! position of one electron, leading rapidly to
ionization. This s\lggests that the orbit is \Instable, as other types of perturbations to the
initial conditions confirmo

5.2. LangmuiT type OTbits

This is another classical model for the He atom, which exhibits the shortest periodic orbit
of this system ¡see Fig. 3b], an orbit surro\lnded by a stability island in phase space.
Although strictly speaking t}¡c Lallgllluir orbit. is the oue just mClltioIlcd, one can study
the family of orbits whose init.ial condit.ion exhibit t.he symmet.ry shown in Fig. 3a. Our
program can generat.e orbits of t.his t.ype asking Cor t.he val \les of a, b ami the tot.al energy
E: those shown in Figs. 3b and 3c are obtain"d with a = 1.40i06 and a = 0.25, respectively
(E = -1, b = O for bot.h).
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FIGURE 4. Perturbations on Langrnuir type orbits.

The stability of these orbits in phase space can be easily seen by making a Poincaré mal'
in terms of the hyperspherical radius R defined as

(30)

and its associated canonical momentum I'R [8J. Such a mal' (with E = -1, b = O for 28
orbits varying a from 0.05 to 1.4) is shown in Fig. 3d where the "basic" orbit from Fig. 3a
appears as a dot at R = 1.98988 (i.e., a = 1.40706).
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FIGURE 5. Asyrnmetric tap orbits in thc He atom.

Now, numerical testing with perturbations on the initial conditions which alter the
symmetry of the configuration shows that the "basic" orbit is stabler than more cOlnplex
ones_ Figures 4a ami 4b were respectively obtailled with (L = 1.4070G, b = O, E = -1 and
a = 2, b = 0, E = -1 as starting point~l introducing titen a chaIlge in the x-coordinate
of one electron of magnitude Óx = 10-3 in the first case and &r = 10-6 in the second.
In Fig. 4a no ionization occurs with an illtegratioll time of t = 100 (atomic units), while
Fig. 41> s}¡ows auto.iullizatioll aft.ef t = 45.

This resu1t agrccs with what can be illfcrred [roIll thc Poillcaré lIlap just discusscd, for
the basic orbit is SIl[[Ollnded by a sharply defillcd tOrtiS strtlcture which we cxpect to cxist
in phase space evcn when the symmetry of the configuration is slightly broken, while such
a strllcture does not exist for orbits acound (L = 2 (i.e., ¡¡= 4).
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FIGURE 6. Planetary configurations for lhe He atom. (a) Variation on the frozen planet, L = O.
(b) Periodie orbit with L l' O. (e) Orbit where lhe eleelrons are closer, and therefore may have a
stronger interaction. (d) Three-dimensional configuration.

5.3. Asymmetrie top

This is another model originally proposed by Langmuir for the He atom, where the elee-
trons form an eqnilateral triangle whieh rotates rididly around the nueleus. The tra-
jeetory is shown in Fig. 5a, resulting from the initial eonditions "1 = (,.13/2, 0,1/2),
"2 = (,.13/2, O, -1/2), PI = P2 = (O, Po, O), with Po = 1.225. lf these exaet eonditions are
not given but the basie symmetry is maintained, uon-ionizing orbits can be obtained, sueh
as the one from Fig. 5b, whieh has Po = 1.4.

5.4. P/anetary configuration

This name is given to geometries where ou the average RI » R2. They possess both
experimental and tl1eorctical illter('~t(13, l'1J. and can exist in various different fonns.
lf L = O (L is the total angular momentum), we obtaiu a famil)' of configurations where

the simplest one is the so called "frozen planet" [13): one eleetron oseillates near the nueleus
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and the other remains almost stationary further away. Slightly different conditions which
respect L = O produce orbits like the one in Fig. 6a, while for L i O both electrons can
evolve in complete revolutions around the nudeus, albeit with very different frequencies:
Fig. 6b displays one such trajectory.
If the electrons are allowed to interact more (by not satisfying R¡ » R2 so rigidly), this

interaction can produce significant deformations on the orbits, but they may still exist
for long periods: Fig. 6c was obtained with initial conditions r¡ = (1, O,O), r2 = (3, O,O),
p¡ = (O, -1, O), P2 = (0,0.4, O) and an integration time of t = 601 (for a discussion,
see [18]).

Finally, three-dimensional planetary configurations are also possible, such as the one in
Fig. 6d.

6. THE PS- ION

6.1. Langmuir orbits

Wannier orbits in the Ps- ion exist identical to those in the He ato m (symmetry maintains
the e+ static in the center), and hence will not be shown.
Langmuir type orbits, with the same geometry form Fig. 3a also exist in the Ps- ion,

although here the e+ oscillates in a vertical straight line (plots are in the center of mass
system). In the Ps-, the simplest orbit has a more complex geometry than in the case
of He, as shown in Fig. 7a, caused by the motion of the e+ just mentioned. Here we also
have a whole family of trajectories, whose typical aspect is that of Fig. 7a.
The absence of an orbit as simple as in Helium is dear in the Poincaré section in

hyperspherical coordinates shown in Fig. 7c: there is a "hole" in the center of the map,
around which the simplest orbit (Fig. 7a) winds itself. This map seems at first sight chaotic,
but this is just a visual effect, as can be seen by plotting only a few trajectories (Fig. 7d);
a chaotic behavior would lead to these few orbits densely filling the entire regio n (or at
least sorne subregions) instead of just tracing finite sets of points.
Langmuir orbits in Ps- show even more sensitiveness to perturbations which destroy

the symmetry of the configuration than in Helium, as can be easily checked numerically.
Here, even the simplest configuration ionizes rapidly if its initial conditions are not exactly
symmetrical.

We must note that for three partide systems with finite masses, it is standard [2)
to use a different definition for hyperspherical coordina tes than the one given for He.
Although expression (30) remains valid for the hyperradius R, and its associated cano nical
momentum PR is constructed in the usual fashion, the vectors r¡ and r2 are now defined
as [2]

r¡ = q2 - q¡,

r2 = t::~3[-~(q¡ +q2) +q3]'

(31)

(32)
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FIGURE 7. Langmuir type orbits in the Ps- ion. (a) Shortest periodie orbit. (b) A more eomplex
one. (e) Poinearé map. (d) Detail oC the Poinearé map showing the regular strueture oC the orbits.

where

/112.3 =
(mi + m2)11I3

mI + ffi2 + nl3'
/112 = (33)

and ql, q2 and q3 are the position veetors oC particles 1, 2 and 3, respectively, in the
center oC mass system.

6.2. Asymmetric top

The basic definitions are in this case the same as for Helinm, and we also have non-ionizing
orbits, although very sensitive to syrnmetry-breaking changes in the initial conditions [see
Fig.8).

6.3. Planetary eonfigumtions

Through numerical search, no bound planetary configurations were found for the Ps-
ion, with all attempts resulting in orbits like Fig. 9a. A plausible hypothesis for this
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FIGURE 8_ Asymmetrie top orbits for the Ps- ion. (a) One sneh orbit. (h) Symmetry-hreaking
perturbation 00 the initial conditions, rapidly leading lo autoionization.

phenomenon is that, since in Ps- the positive partide has charge +1, the outer electron
sees a zero mean field from the e- e+ pair, too weak to keep it bound. In arder to test
the validity of this staternent, we gave .the positive partide a charge +2, keeping al! other
parameters equal: the resultiug orbit, shown in Fig. 9b, is bound.

7. CO"CLUSIONS

A general program for the numer;cal integrat ion of the dassical Coulomb three body
problem was presented, which uses regularized coordinates in arder to obtain reliable
results even in the case of dose inter-partide encounlers. The program, written in C++,
permits interactive changes to al! system parameters.
In the Heliutll alom, we sludied numerical!y the \\'aunier, Langmuir -oscil!atory and

asyrntnetric top- and planctary configuratiolls. Exccpt for tlle last Qlle, thcsc are aH
geometries with special symllletries, and we found them in general to be extremely sensitive
to changes in the inilial conditions which disrupled such symmetri,'s.
Planetary coufigurations, not associated to auy specific geometrical symllletry, were

found to be more robust with respect to variations iu the initial couditions. This suggests
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FIGURE 9. Planelary configuralions. (a) Ps- ion: no slable ones were found. (b) Hypolhetical
systcm with charge 2e+ at the nucJeus leads to non-ionizing orbits.

lhal lhey may occupy, with Iloll-iollizillg orbilS, a larger region in phase space lhan do lhe
aforemenlioned configuralions. Since bolh periodic and qllasi-periodic orbils were fouud,
and because of their significance in phase space, they appear as important geometries for
a semi-classical quantization of certain slates of the He atom, especially doubly exciled
states with appreciably different quautum ullmbers for both electrolls.

\Vith the Ps- ion, we found results analogous to thosc of hclium, conccrning thc st'nsi-
tivity of all configuralious with respect to the symmetry iu the iuitial couditious. Howe\"er,
the Ps- ion appears nUlIlerically to he unslabler lhau helium, with shorler self-ionizalion
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times and no bound planetary configurations: only the strictly symmetrical models lead
to classically bound states. This can be regarded as a classical justification for the exper-
imentally observed instability of the Ps- ion [9].

Finally, the program was recently used to confirm through numerical experiments, the-
oretical predictions concerning special geometries in Coulomb three body systems [16,17).
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