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ABSTRACT. A computer program for calculating orbits and Poincaré sections in the classical
Coulomb three body problem with arbitrary masses and charges in three dimensional space is
presented. The regularization procedure necessary to obtain a reliable numerical integration of the
equations of motion is sketched. Different configurations of the helium atom and the positronium
negative ion (Ps~), obtained with the program, are analyzed.

RESUMEN. Se presenta un programa de computadora para calcular orbitas y secciones de
Poincaré en el problema Coulombiano cldsico de los tres cuerpos, con masas y cargas arbitrarias.
Se esboza el procedimiento de regularizacion necesario para obtener una integracién numeérica
confiable de las ecuaciones de movimiento. Se analizan diferentes configuraciones obtenidas con el
programa para el 4&tomo de helio y el ion negativo de positronio (Ps™).

PACS: 31.10.+z; 31.90.+s; 33.10.Eb

1. INTRODUCTION

The three body problem (TBP), stated as the study of the evolution of three point-like
particles whose interaction is gravitational or electrostatic in an otherwise empty space,
is a long time classical and perhaps one of the most frequently tackled challenges of
mathematical physics.

However, the non-integrable character of the problem renders useless the attempt of
finding a function of time describing ‘the three particles’ evolution after starting from
arbitrary initial conditions. This forces the adoption of other strategies, mainly:

a) A qualitative approach where questions of topological character concerning the
solutions are addressed.

b) Attempts to obtain analytical solutions to cases in which certain symmetries (ge-
ometrical, dynamical or both) permit simplifications to be performed.

¢) Numerical solutions to cases ranging from restricted ones such as those mentioned
in (b) to the most general one where all parameters can be varied.

In this work, we shall present a computer program developed in the language C++,
which calculates orbits for the electrostatic TBP with arbitrary masses, charges, and initial
conditions in three dimensional space.
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FIGURE 1. Geometry of the problem.

After introducing the geometry and notation of our problem, we shall sketch the neces-
sary mathematical tools for integrating the equations of motion of the TBP, in a fashion
that reliably handles the singularities associated to the Coulomb potential in binary col-
lisions. We will then present some details concerning the program itself, and will finish
with some results obtained with it on the helium atom and the positronium negative ion
(Ps™).

At this point it should perhaps be noted that, even though these are systems which
in rigor should be treated quantum mechanically, theoretical developments from the last
few decades have shown the relevance of a detailed knowledge of the classical behavior of
non-integrable systems in the analysis of many purely quantum aspects (see Ref. [5], but
also Refs. [3], [10]).

2. THE THREE BODY HAMILTONIAN

Let us then consider a system consisting of three point particles with masses m; and
charges Z; (1 = 1,2,3) interacting through a Coulomb potential in free space. The co-
ordinates and momenta of particle 1 will be described by the vectors q} = (¢}, ¢}, q})
and pj = (p!,ph,p}), respectively, with analogous expressions —adjusting the indices
accordingly— for the other two. The geometry of the problem is illustrated in F ig. 1,
where the inter-particle distances R, R, and R; are indicated.

Since a system with all three charges of equal sign is of no physical interest when looking
for bound states, we assume without loss of generality that particles 1 and 2 have charges
—Z) and —Z,, while particle 3 has charge +Z3, with Z; > 0 for i = 1,2, 3. In atomic units,
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and considering only Coulomb interactions, the Hamiltonian for this system is

g D7y 52y D7

=2m R ®BR TR ()

r=1
The associated canonical equations of motion read

dg. OH'  dp.  OH
dt — ap.’ dt  9q.

(r=1,2,..,9). (2)

It is quite clear that the Hamiltonian from Eq. (1) is singular whenever any of the
interparticle distances (R, R; or R;) vanishes. From a strictly numerical standpoint, we
will have problems when any of those distances becomes very small, even if it does not
strictly vanish, since in Eq. (1) terms with very different magnitudes will have to be added.

3. REGULARIZATION PROCEDURE

One standard way of avoiding the problems associated to binary collisions in the Hamilto-
nian (1) —the three-particle collision cannot be regularized— was developed by Aarseth
and Zare [1], based on previous work by Kustaanheimo and Steifel [7]. We will sketch here
this procedure, whose detailed description can be found in Ref. [1], and more concisely in
Ref. [15].

The basic idea is to obtain a canonical transformation which gives the Hamiltonian a
non-singular form in the case of binary collisions, albeit at the expense of producing a
set of dynamical equations significantly more complex in their algebraic expression. The
resulting set of coordinates and momenta will be called regularized coordinates (Q, P).

3.1. Relative coordinates and extension of phase space

Briefly, in order to go from the (¢',p') to the (Q, P) we first change to variables relative
to mg with

qr = q) — 95, (k=1,2),
pk:P’, (k:].,?.),
q3 = q’: &

p3 = p} + P5 + Ps.

We see from Eq. (3) that ps is the total momentum of the system. We may then, without
loss of generality, assume that in the original system (¢, p') the center of mass is at rest,
and we take it to be, for the sake of algebraic convenience, located at the origin. This
eliminates six variables from our equations, and leaves us with a two-particle problem,
which is however not further reducible to an equivalent one-particle description.
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We next expand the dimension of the phase space by renaming variables according to
@& — gr+1,  Pr—Pry1 (1=4,5,6), (4)

leaving the variables with 7 < 3 as before and defining the mock coordinates and momenta
g =0, gs =0, ps =0, ps =0. (5)

A discussion regarding the need for this extension can be found in Ref. [1].

3.2. Regularized coordinates and new time

We now introduce the regularized coordinates through a canonical transformation of the
(q,p) to the (Q,P) associated to a generating function

8
W= W(p, Q) = Zprfr(Q)a (6)
r=1

using the notation

P = (PluP2,p3,P4,P5’P61 PTaPS)a Q = (Q11Q21 Q3v Q4J Q51 Qﬁ! Q?a QS) (7)

The f.(Q), are continuous, differentiable functions yet unspecified, but which must obey
the conditions

fr = fr(leQ?aQ:hQ‘l) (T—<.4)1 (8)
fr=Ffr(Q5,Q6,Q7,Q8)  (r >4). (9)

Let A be the matrix with components

afs
Ars = y
20, (10)
and A, Ay its two non-zero blocks located on the diagonal.

If we assume the f.(Q) to be such that

AAT = N\ R I (k=1,2), (11)

where the A; are real numbers, I is the 4 x 4 identity matrix T represents matrix trans-
position, we can write our Hamiltonian as

P 4 P} PTAATP, 7,7 _ ZyZ3 gAYz
2uisMi Ry 2p93Xa Ry maA AR Ry R R, R’ *

H(Q,P) = (12)
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where
P, = (P, P,P,P;), Py=(P,F, P B (13)
Now, if in a system described by a time independent Hamiltonian H with parameter ¢,

we include ¢ as a coordinate and introduce a new time parameter 7, the new Hamiltonian
H* will be given by

dt
H*=(H-E)—,
(H - B)o- (14)
being E the total energy of the system.
Therefore, by taking
dt = RiRydr (15)

we may avoid the divergences in Eq. (12) associated to R; = 0,1 =1,2.

In order for the regularization procedure to actually work we must now provide a set
{£-(Q)} of functions which satisfies the requested conditions, Eqs. (8), (9) and (11). One
such set is given by the Kustaanheimo-Steifel transformations, defined as

h=Q-Q-Q3+Qf, fs=QF-QF-QF+@j
f2 = 2(Q1Q2 — Q3Q4), fo = 2(Q5Qs — Q7Qs),
fi = 2(Q1Q3 + Q2Q4), fr = 2(QsQ7 + Q6Qs),
fa=0, fae =0,

which lead to condition (11) being valid with A\; = Ay = 4. The resulting regularized
Hamiltonian is finally given by

Ry o8 . By o L o T
rQ,P)= —Pi{+—P;+ —P1AjA; P
(Q.P) Buiz | 8ugs © 16mg | S
AN
- Z(RiZo + Rei) + RiRy (222 - E)., (17)
where the reduced masses with respect to mj are
mims mommsy

i e O PO i Y 18
H13 my + m3> H23 ma + M3 ( )

The canonical equations of motion associated to Eq. (17) are then

g, ar 4k A r ..,8). (19)
dr _ OP, dr 9Q,
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The explicit form of the above equations for the general three dimensional case is quite
cumbersome, although easily obtained with a symbolic manipulation program (such as
Maple or Mathematica). It is nonetheless useful to note that the derivatives 8R/8Q; can
be expressed in a compact form which is more efficient for numerical purposes than the
one obtained by direct differentiation. By defining the 8 x 1 column vector g as

e=[n2q]. (20)
where the vectors f; and f; are
Qf - Q3 - Q3 + Q3 QF - Q8 - QF +Q}
. 2(Q1Q2 — Q3Q4) £ 2(Q5Q6 — Q7Qs)
L= ) 2= ) (21)
2(Q1Q3 + Q2Q4) 2(QsQ7 + Q6Qs)
0 0

one can verify that the following relations hold [11]:

=(Ag)i, (i=12,...,8). (22)

3.3. Transformation equations

The explicit expressions for the transformations to regularized coordinates, resulting from
the above definitions, are

Q= [%ﬂqll +Q1)]1/2, Q2 = q2/2Q,

(23)
Q3 = ¢3/2Qq, Qs =0,
for g1 > 0; or
Q2 = [%Iqxl - QI)]lﬂr Q1 = ¢2/2Qn, (24)
Qs = D, Q4 = q3/2Q2,

for g1 < 0. For the variables (Qs, Qg, Q7,Qg) we have analogous expressions, obtained by
adding 4 to all indices and replacing q; by qs.

The interparticle distances Ry, Ry and R, expressed in terms of the regularized coordi-
nates, can be cast in the form

4 8
Ri=3 Q) R=YY¢q, (25)
r=1 r=5
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and
R*=R}+ Rl-2f - f,. (26)
Finally, the regularized momenta are given by
Py =Awpr  (K=1,2), (27)
where
p1 = (p1,p2,p3,p4), P2 = (Ps,P6,P7,P8)- (28)

4. CALCULATION PROGRAM

Through the time scale change, the effect of the regularization is to take very small time
steps near the binary collisions (R; = 0 or Ry = 0), while keeping a non-divergent Hamil-
tonian. However, despite this intrinsically adaptive nature of the regularized formulation,
numerical work shows that if one wishes to balance efficiency and precision, it is necessary
to implement an adaptive step size algorithm for the differential equation integrator.

Our program, developed in C++, uses a standard 4*h order Runge-Kutta adaptive step
size integrator [12] driven by a routine which takes care of coordinate transformations,
memory storage, disk swapping of data and Poincaré section calculations. In order to im-
prove the accuracy of the results, Poincaré sections are obtained using reverse integration
over the trajectory to find the intersection between the orbit and the Poincaré surface
instead of interpolation, a method proposed by M. Hénon (6]

The program attempts to be useful for interactive exploration of the TBP, allowing
control of the parameters which define the system and the integration conditions such as
charges, masses, positions and momenta, error tolerance, etc. Initial conditions are defined
in laboratory coordinates, integration is performed in the regularized ones, and position
output data files are generated in center of mass coordinates for viewing convenience (to
eliminate from the plots uniform displacements of the system). Besides position data, the
program generates files with relative coordinates, Poincaré sections and a time-energy
file which, since the system is conservative, serves as a checkout file for numerical prob-
lems. Langmuir type orbits [4] and Poincaré sections in hyperspherical coordinates can be
obtained though menu options.

Since considerable simplification of the equations of motion and coordinate transfor-
mations results from assuming that the three particles evolve in a plane, the source code
includes all the expressions corresponding to both the two and three dimensional cases.
This allows the compilation of programs for both types of configurations, with fast inte-
gration of the plane cases and a slower but general option for three dimensional studies.

The resulting program, usable as a tool for numerical exploration of the general Coulomb
TBP, produces accurate orbits in reasonable times on a typical desktop computer for most
three dimensional configurations. Source code is available from the authors upon request.

Finally, we shall present some results obtained with the program for two typical three
body systems, namely the Helium atom and the Positronium negative ion (1.e., e"e7e”
abbreviated Ps™).
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FIGURE 2. Wannier orbits in the He atom. (a) Typical orbit. (b) Slightly perturbed trajectory.

5. THE HELIUM ATOM

5.1. Wannier orbits

In the so-called Wannier configuration, both electrons orbit around th

angular momentum, satisfying

ri(t) = —ro(t).

e nucleus with equal

(29)

In can be shown [15], that this condition leads to elliptic trajectories. This type of orbit
was proposed as one of the first classical models for the Helium atom, but the presence of

a diverging Lyapunov exponent leads to expect it to be of little significance

as a realistic

description of this system. Quantum calculations confirm this prediction (see Ref. [15] for
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FIGURE 3. Langmuir type orbits in the He atom. (a) Geometry of the initial conditions. (b) Basic
orbit (shortest periodic orbit in the He atom). (¢) A more complex orbit. (d) Poincaré map of a
family of trajectories in hyperspherical coordinates (R — Pr plot).

a discussion), which can be also checked numerically by performing slight variations in
the initial conditions. Fig. 2a shows a typical Wannier orbit, and in Fig. 2b we have a
horizontal displacement of 10~* in the initial position of one electron, leading rapidly to
jonization. This suggests that the orbit is unstable, as other types of perturbations to the
initial conditions confirm.

5.2. Langmuir type orbits

This is another classical model for the He atom, which exhibits the shortest periodic orbit
of this system [see Fig. 3b], an orbit surrounded by a stability island in phase space.
Although strictly speaking the Langmuir orbit is the one just mentioned, one can study
the family of orbits whose initial condition exhibit the symmetry shown in Fig. 3a. Our
program can generate orbits of this type asking for the values of a, b and the total energy
E: those shown in Figs. 3b and 3c are obtained with a = 1.40706 and a = 0.25, respectively
(E = =1, b= 0 for both).
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FIGURE 4. Perturbations on Langmuir type orbits.

The stability of these orbits in phase space can be easily seen by making a Poincaré map
in terms of the hyperspherical radius R defined as

R=/Ir1|? + [ro|? (30)

and its associated canonical momentum pg [8]. Such a map (with E = —1, b = 0 for 28
orbits varying a from 0.05 to 1.4) is shown in Fig. 3d where the “basic” orbit from Fig. 3a
appears as a dot at R = 1.98988 (i.e., a = 1.40706).
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FIGURE 5. Asymmetric top orbits in the He atom.

Now, numerical testing with perturbations on the initial conditions which alter the
symmetry of the configuration shows that the “basic” orbit is stabler than more complex
ones. Figures 4a and 4b were respectively obtained with a = 1.40706, b =0, £ = —1 and
a=2b=0, E= —1 as starting points, introducing then a change in the r-coordinate
of one electron of magnitude éx = 1073 in the first case and éx = 1076 in the second.
In Fig. 4a no ionization occurs with an integration time of ¢t = 100 (atomic units), while
Fig. 4b shows auto-ionization after ¢ = 45.

This result agrees with what can be inferred from the Poincaré map just discussed, for
the basic orbit is surrounded by a sharply defined torus structure which we expect to exist
in phase space even when the symmetry of the configuration is slightly broken, while such
a structure does not exist for orbits around a = 2 (i.e., R = 4).
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(c) (d)

FIGURE 6. Planetary configurations for the He atom. (a) Variation on the frozen planet, L = 0.
(b) Periodic orbit with L # 0. (c) Orbit where the electrons are closer, and therefore may have a
stronger interaction. (d) Three-dimensional configuration.

5.3. Asymmetric top

This is another model originally proposed by Langmuir for the He atom, where the elec-
trons form an equilateral triangle which rotates rididly around the nucleus. The tra-
jectory is shown in Fig. 5a, resulting from the initial conditions ri = (v3/2,0,1/2),
r; = (V/3/2,0, —=1/2), p1 = p2 = (0,po,0), with py = 1.225. If these exact conditions are
not given but the basic symmetry is maintained, non-ionizing orbits can be obtained, such
as the one from Fig. 5b, which has py = 1.4.

5.4. Planetary configuration

This name is given to geometries where on the average Ry > Rj;. They possess both
experimental and theoretical interest [13,14], and can exist in various different forms.

If L =0 (L is the total angular momentum), we obtain a family of configurations where
the simplest one is the so called “frozen planet” [13]: one electron oscillates near the nucleus
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and the other remains almost stationary further away. Slightly different conditions which
respect L = 0 produce orbits like the one in Fig. 6a, while for L # 0 both electrons can
evolve in complete revolutions around the nucleus, albeit with very different frequencies:
Fig. 6b displays one such trajectory.

If the electrons are allowed to interact more (by not satisfying R; > Ry so rigidly), this
interaction can produce significant deformations on the orbits, but they may still exist
for long periods: Fig. 6¢c was obtained with initial conditions r; = (1,0,0), r2 = (3,0,0),
p1 = (0,-1,0), p2 = (0,0.4,0) and an integration time of ¢ = 601 (for a discussion,
see [18]).

Finally, three-dimensional planetary configurations are also possible, such as the one in
Fig. 6d.

6. THE PS™ ION

6.1. Langmuir orbits

Wannier orbits in the Ps~ ion exist identical to those in the He atom (symmetry maintains
the et static in the center), and hence will not be shown.

Langmuir type orbits, with the same geometry form Fig. 3a also exist in the Ps™ ion,
although here the e™ oscillates in a vertical straight line (plots are in the center of mass
system). In the Ps™, the simplest orbit has a more complex geometry than in the case
of He, as shown in Fig. 7a, caused by the motion of the et just mentioned. Here we also
have a whole family of trajectories, whose typical aspect is that of Fig. Ta.

The absence of an orbit as simple as in Helium is clear in the Poincaré section in
hyperspherical coordinates shown in Fig. 7c: there is a “hole” in the center of the map,
around which the simplest orbit (Fig. 7a) winds itself. This map seems at first sight chaotic,
but this is just a visual effect, as can be seen by plotting only a few trajectories (Fig. 7d);
a chaotic behavior would lead to these few orbits densely filling the entire region (or at
least some subregions) instead of just tracing finite sets of points.

Langmuir orbits in Ps~ show even more sensitiveness to perturbations which destroy
the symmetry of the configuration than in Helium, as can be easily checked numerically.
Here, even the simplest configuration ionizes rapidly if its initial conditions are not exactly
symmetrical.

We must note that for three particle systems with finite masses, it is standard [2]
to use a different definition for hyperspherical coordinates than the one given for He.
Although expression (30) remains valid for the hyperradius R, and its associated canonical
momentum pg is constructed in the usual fashion, the vectors r) and rp are now defined
as [2]

r, = qz — q1, (31)

1
= PR [-—(m g s (32)
(12 2
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FIGURE 7. Langmuir type orbits in the Ps~ ion. (a) Shortest periodic orbit. (b) A more complex
one. (c) Poincaré map. (d) Detail of the Poincaré map showing the regular structure of the orbits.

where
my + ma)ms mims
T ki L R . (33)
my + mg + m3 my + ma

and q;, q2 and q3 are the position vectors of particles 1, 2 and 3, respectively, in the
center of mass system.

6.2. Asymmetric top

The basic definitions are in this case the same as for Helium, and we also have non-ionizing
orbits, although very sensitive to symmetry-breaking changes in the initial conditions [see
Fig. 8].

6.3. Planetary configurations

Through numerical search, no bound planetary configurations were found for the Ps—
ion, with all attempts resulting in orbits like Fig. 9a. A plausible hypothesis for this
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(b)

FIGURE 8. Asymmetric top orbits for the Ps~ ion. (a) One such orbit. (b) Symmetry-breaking
perturbation on the initial conditions, rapidly leading to autoionization.

phenomenon is that, since in Ps™ the positive particle has charge +1, the outer electron
sees a zero mean field from the ee* pair, too weak to keep it bound. In order to test
the validity of this statement, we gave-the positive particle a charge +2, keeping all other
parameters equal: the resulting orbit, shown in Fig. 9b, is bound.

7. CONCLUSIONS

A general program for the numerical integration of the classical Coulomb three body
problem was presented, which uses regularized coordinates in order to obtain reliable
results even in the case of close inter-particle encounters. The program, written in C++,
permits interactive changes to all system parameters.

In the Helium atom, we studied numerically the Wannier, Langmuir —oscillatory and
asymmetric top— and planetary configurations. Except for the last one, these are all
geometries with special symmetries, and we found them in general to be extremely sensitive
to changes in the initial conditions which disrupted such symmetries.

Planetary configurations, not associated to any specific geometrical symmetry, were
found to be more robust with respect to variations in the initial conditions. This suggests
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FIGURE 9. Planetary configurations. (a) Ps~ ion: no stable ones were found. (b) Hypothetical
system with charge 2et at the nucleus leads to non-ionizing orbits.

that they may occupy, with non-ionizing orbits, a larger region in phase space than do the
aforementioned configurations. Since both periodic and quasi-periodic orbits were found,
and because of their significance in phase space, they appear as important geometries for
a semi-classical quantization of certain states of the He atom, especially doubly excited
states with appreciably different quantum numbers for both electrons.

With the Ps™ ion, we found results analogous to those of helium, concerning the sensi-
tivity of all configurations with respect to the symmetry in the initial conditions. However,
the Ps™ ion appears numerically to be unstabler than helium, with shorter self-ionization
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times and no bound planetary configurations: only the strictly symmetrical models lead
to classically bound states. This can be regarded as a classical justification for the exper-
imentally observed instability of the Ps~ ion [9)].

Finally, the program was recently used to confirm through numerical experiments, the-
oretical predictions concerning special geometries in Coulomb three body systems [16, 17].

ACKNOWLEDGMENTS
We would like to thank Dr. Manuel Péez for very helpful discussions regarding computing

aspects of the problem. Support from Colciencias and CIEN, under contract N° 1115-05-
012-92, is gratefully acknowledged.

REFERENCES
1. S.J. Aarseth and K. Zare, Celest. Mech. 10 (1974) 185.
2. J. Botero, Phys. Rev. A35 (1987) 36.
3. D. Delande and A. Buchleitner, Adv. At. Mol. Opt. Phys. 34 (1994) 85.
4. M.S. Dimitrijevié and P.V. Grujié¢, Z. Naturforsch. 39a (1984) 930.
5. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, Berlin (1990).
6. M. Hénon, Physica 5D (1982) 412.
7. P. Kustaanheimo and E. Steifel, J. Reine Angew. Math. 218 (1965) 204.
8. J. Mahecha, J. Phys. B: At. Mol. Opt. Phys. 27 (1994) 1925.
9. A.P. Mills, Phys. Rev. Lett. 50 (1983) 671.
10. M. Nauenberg, Comments At. Mol. Phys. 25 (1990) 151.
11. F. Pérez, 1994. Undergraduate thesis, Universidad de Antioquia, Departamento de Fisica (Un-
published).
12. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C,

Cambridge, Cambridge University Press (1988).

13. K. Richter and D. Wintgen, Phys. Rev. Lett. 65 (1990) 1965.

14. K. Richter and D. Wintgen, J. Phys. B: At. Mol. Opt. Phys. 24 (1991) L565.

15. K. Richter, G. Tanner and D. Wintgen, Phys. Rev. A48 (1993) 4182.

16. A. Santander, 1995. Undergraduate thesis, Universidad de Antioquia, Departamento de Fisica
(Unpublished).

17. A. Santander, J. Mahecha and F. Pérez, “Rigid rotor and fixed shape solutions in the Coulom-
bic three body problem”, Few Body Systems (presented for publication).

18. T. Yamamoto and K. Kaneko, Phys. Rev. Lett. 70 (1993) 1928.



